Volume 33 Issue 5
Sep.  2012
Turn off MathJax
Article Contents
RAO Xiao-Ping, XU Zhi-Xiang, XU Fu-Qiang. Progress in activity-dependent structural plasticity of neural circuits in cortex. Zoological Research, 2012, 33(5): 527-536. doi: 10.3724/SP.J.1141.2012.05527
Citation: RAO Xiao-Ping, XU Zhi-Xiang, XU Fu-Qiang. Progress in activity-dependent structural plasticity of neural circuits in cortex. Zoological Research, 2012, 33(5): 527-536. doi: 10.3724/SP.J.1141.2012.05527

Progress in activity-dependent structural plasticity of neural circuits in cortex

doi: 10.3724/SP.J.1141.2012.05527
  • Received Date: 2012-07-04
  • Rev Recd Date: 2012-08-30
  • Publish Date: 2012-10-10
  • Neural circuits of mammalian cerebral cortex have exhibited amazing abilities of structural and functional plasticity in development, learning and memory, neurological and psychiatric diseases. With the new imaging techniques and the application of molecular biology methods, observation neural circuits’ structural dynamics within the cortex in vivo at the cellular and synaptic level was possible, so there were many great progresses in the field of the activity-dependent structural plasticity over the past decade. This paper reviewed some of the aspects of the experimental results, focused on the characteristics of dendritic structural plasticity in individual growth and development, rich environment, sensory deprivation, and pathological conditions, as well as learning and memory, especially the dynamics of dendritic spines on morphology and quantity; after that, we introduced axonal structural plasticity, the molecular and cellular mechanisms of structural plasticity, and proposed some future problems to be solved at last.
  • loading
  • [1]
    Alvarez VA, Sabatini BL. 2007. Anatomical and physiological plasticity of dendritic spines [J]. Annu Rev Neurosci, 30: 79-97.
    [2]
    Amaral MD, Pozzo-Miller L. 2009. The dynamics of excitatory synapse formation on dendritic spines [J]. Cellscience, 5(4): 19-25.
    [3]
    Bear MF, Huber KM, Warren ST. 2004. The mGluR theory of fragile X mental retardation [J]. Trends Neurosci, 27(7): 370-377.
    [4]
    Bhatt DH, Zhang SX, Gan WB. 2009. Dendritic spine dynamics [J]. Annu Rev Physiol, 71: 261-282.
    [5]
    Bourne J, Harris KM. 2007. Do thin spines learn to be mushroom spines that remember [J]? Curr Opin Neurobiol, 17(3): 381-386.
    [6]
    Chen JL, Nedivi E. 2010. Neuronal structural remodeling: is it all about access [J]? Curr Opin Neurobiol, 20(5): 557-562.
    [7]
    Chklovskii DB, Mel BW, Svoboda K. 2004. Cortical rewiring and information storage [J]. Nature, 431(7010): 782-788.
    [8]
    Dahlen JE, Jimenez DA, Gerkin RC, Urban NN. 2011. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb [J]. Front Neurosci, 5: 66.
    [9]
    De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K. 2006. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex [J]. Neuron, 49(6): 861-875.
    [10]
    Derkach VA, Oh MC, Guire ES, Soderling TR. 2007. Regulatory mechanisms of AMPA receptors in synaptic plasticity [J]. Nat Rev Neurosci, 8(2): 101-113.
    [11]
    Engert F, Bonhoeffer T. 1999. Dendritic spine changes associated with hippocampal long-term synaptic plasticity [J]. Nature, 399(6731): 66-70.
    [12]
    Fox K, Wong ROL. 2005. A comparison of experience-dependent plasticity in the visual and somatosensory systems [J]. Neuron, 48(3): 465-477.
    [13]
    Fu M, Yu XZ, Lu J, Zuo Y. 2012. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo [J]. Nature, 483(7387): 92-95.
    [14]
    Fu M, Zuo Y. 2011. Experience-dependent structural plasticity in the cortex [J]. Trends Neurosci, 34(4): 177-187.
    [15]
    Greer PL, Greenberg ME. 2008. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function [J]. Neuron, 59(6): 846-860.
    [16]
    Grutzendler J, Kasthuri N, Gan WB. 2002. Long-term dendritic spine stability in the adult cortex [J]. Nature, 420(6917): 812-816.
    [17]
    Hao JD, Rapp PR, Leffler AE, Leffler SR, Janssen WGM, Lou W, McKay H, Roberts JA, Wearne SL, Hof PR, Morrison JH. 2006. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys [J]. J Neurosci, 26(9): 2571-2578.
    [18]
    Ho VM, Lee JA, Martin KC. 2011. The cell biology of synaptic plasticity [J]. Science, 334(6056): 623-628.
    [19]
    Holtmaat A, Svoboda K. 2009. Experience-dependent structural synaptic plasticity in the mammalian brain [J]. Nat Rev Neurosci, 10(9): 647-658.
    [20]
    Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K. 2006. Experience-dependent and cell-type-specific spine growth in the neocortex [J]. Nature, 441(7096): 979-983.
    [21]
    Holtmaat AJGD, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang XQ, Knott GW, Svoboda K. 2005. Transient and persistent dendritic spines in the neocortex in vivo [J]. Neuron, 45(2): 279-291.
    [22]
    Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J. 2010. Structural dynamics of dendritic spines in memory and cognition [J]. Trends Neurosci, 33(3): 121-129.
    [23]
    Kaufmann WE, Moser HW. 2000. Dendritic anomalies in disorders associated with mental retardation [J]. Cereb Cortex, 10(10): 981-991.
    [24]
    Kennedy MB, Beale HC, Carlisle HJ, Washburn LR. 2005. Integration of biochemical signalling in spines [J]. Nat Rev Neurosci, 6(6): 423-434.
    [25]
    Kennedy MJ, Ehlers MD. 2006. Organelles and trafficking machinery for postsynaptic plasticity [J]. Annu Rev Neurosci, 29: 325-362.
    [26]
    Kwon HB, Sabatini BL. 2011. Glutamate induces de novo growth of functional spines in developing cortex [J]. Nature, 474(7349): 100-104.
    [27]
    Lee WC, Huang H, Feng GP, Sanes JR, Brown EN, So PT, Nedivi E. 2006. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex [J]. PLoS Biol, 4(2): e29.
    [28]
    Lendvai B, Stern EA, Chen B, Svoboda K. 2000. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo [J]. Nature, 404(6780): 876-881.
    [29]
    Leslie JH, Nedivi E. 2011. Activity-regulated genes as mediators of neural circuit plasticity [J]. Prog Neurobiol, 94(3): 223-237.
    [30]
    Majewska A, Sur M. 2003. Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation [J]. Proc Natl Acad Sci USA, 100(26): 16024-16029.
    [31]
    Marik SA, Yamahachi H, McManus JNJ, Szabo G, Gilbert CD. 2010. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex [J]. PLoS Biol, 8(6): e1000395.
    [32]
    Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu CZ. 2004. Interneurons of the neocortical inhibitory system [J]. Nat Rev Neurosci, 5(10): 793-807.
    [33]
    Mataga N, Mizuguchi Y, Hensch TK. 2004. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator [J]. Neuron, 44(6): 1031-1041.
    [34]
    Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H. 2004. Structural basis of long-term potentiation in single dendritic spines [J]. Nature, 429(6993): 761-766.
    [35]
    Mizrahi A. 2007. Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb [J]. Nat Neurosci, 10(4): 444-452.
    [36]
    Mizrahi A, Crowley JC, Shtoyerman E, Katz LC. 2004. High-resolution in vivo imaging of hippocampal dendrites and spines [J]. J Neurosci, 24(13): 3147-3151.
    [37]
    Mizrahi A, Katz LC. 2003. Dendritic stability in the adult olfactory bulb [J]. Nat Neurosci, 6(11): 1201-1207.
    [38]
    Mozzachiodi R, Byrne JH. 2010. More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory [J]. Trends Neurosci, 33(1): 17-26.
    [39]
    Nedivi E, Hevroni D, Naot D, Israeli D, Citri Y. 1993. Numerous candidate plasticity-related genes revealed by differential cDNA cloning [J]. Nature, 363(6431): 718-722.
    [40]
    Oray S, Majewska A, Sur M. 2004. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation [J]. Neuron, 44(6): 1021-1030.
    [41]
    Pan F, Aldridge GM, Greenough WT, Gan WB. 2010. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome [J]. Proc Natl Acad Sci USA, 107(41): 17768-17773.
    [42]
    Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD. 2006. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes [J]. Neuron, 52(5): 817-830.
    [43]
    Patterson M, Yasuda R. 2011. Signalling pathways underlying structural plasticity of dendritic spines [J]. Br J Pharmacol, 163(8): 1626-1638.
    [44]
    Roberts TF, Tschida KA, Klein ME, Mooney R. 2010. Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning [J]. Nature, 463(7283): 948-952.
    [45]
    Saghatelyan A, Roux P, Migliore M, Rochefort C, Desmaisons D, Charneau P, Shepherd GM, Lledo PM. 2005. Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation [J]. Neuron, 46(1): 103-116.
    [46]
    Stettler DD, Yamahachi H, Li W, Denk W, Gilbert CD. 2006. Axons and synaptic boutons are highly dynamic in adult visual cortex [J]. Neuron, 49(6): 877-887.
    [47]
    Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. 1999. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite [J]. Nature, 402(6760): 421-425.
    [48]
    Trachtenberg JT, Chen BE, Knott GW, Feng GP, Sanes JR, Welker E, Svoboda K. 2002. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex [J]. Nature, 420(6917): 788-794.
    [49]
    Tsai J, Grutzendler J, Duff K, Gan WB. 2004. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches [J]. Nat Neurosci, 7(11): 1181-1183.
    [50]
    Xu TH, Yu XZ, Perlik AJ, Tobin WF, Zweig JA, Tennant K, Jones T, Zuo Y. 2009. Rapid formation and selective stabilization of synapses for enduring motor memories [J]. Nature, 462(7275): 915-919.
    [51]
    Yamahachi H, Marik SA, McManus JNJ, Denk W, Gilbert CD. 2009. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex [J]. Neuron, 64(5): 719-729.
    [52]
    Yang G, Pan F, Gan WB. 2009. Stably maintained dendritic spines are associated with lifelong memories [J]. Nature, 462(7275): 920-924.
    [53]
    Yuste R, Bonhoeffer T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies [J]. Nat Rev Neurosci, 5(1): 24-34.
    [54]
    Zhou Q, Homma KJ, Poo MM. 2004. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses [J]. Neuron, 44(5): 749-757.
    [55]
    Ziv NE, Ahissar E. 2009. Neuroscience: New tricks and old spines [J]. Nature, 462(7275): 859-861.
    [56]
    Zuo Y, Lin A, Chang P, Gan WB. 2005a. Development of long-term dendritic spine stability in diverse regions of cerebral cortex [J]. Neuron, 46(2): 181-189.
    [57]
    Zuo Y, Yang G, Kwon E, Gan WB. 2005b. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex [J]. Nature, 436(7048): 261-265.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2198) PDF downloads(2232) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return