Volume 33 Issue 5
Sep.  2012
Turn off MathJax
Article Contents
GUANG Hui-Juan, LI Zheng, WANG Yi-Peng, LAI Ren, YU Hai-Ning. Progress in cathelicidins antimicrobial peptides research. Zoological Research, 2012, 33(5): 523-526. doi: 10.3724/SP.J.1141.2012.05523
Citation: GUANG Hui-Juan, LI Zheng, WANG Yi-Peng, LAI Ren, YU Hai-Ning. Progress in cathelicidins antimicrobial peptides research. Zoological Research, 2012, 33(5): 523-526. doi: 10.3724/SP.J.1141.2012.05523

Progress in cathelicidins antimicrobial peptides research

doi: 10.3724/SP.J.1141.2012.05523
  • Received Date: 2012-03-05
  • Rev Recd Date: 2012-08-15
  • Publish Date: 2012-10-10
  • Cathelicidins are a family of multi-functional antimicrobial peptides found in almost all types of vertebrates, where they play vital roles in the immune system. As they possess broad-spectrum antimicrobial properties, cathelicidins are not only strongly resistant to Gram-positive and Gram-negative bacteria, fungi, and viruses, but they are also active against many antibiotic-resistant clinical bacteria, adopting a special antimicrobial mechanism that is unlikely to lead to microbial resistance. Cathelicidins likewise possess simple structures, and low hemolytic and cytotoxic activities. Collectively, these features suggest potentially novel and exciting prospects for cathelicidins’ application in medicine. Here, we review the structures, classification, activities, mechanisms, as well as prospective developments in the usage and application of cathelicidin antimicrobial peptides.
  • loading
  • [1]
    Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. 1995. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis [J]. Proc Natl Acad Sci USA, 92(1): 195-199.
    Boman H, Marsh J, Goode JA. 1994. Antimicrobial Peptides [M]. London: John Wiley & Son Ltd.
    Dombrowski Y, Peric M, Koglin S, Kammerbauer C, Göss C, Anz D, Simanski M, Gläser R, Harder J, Hornung V, Gallo RL, Ruzicka T, Besch R, Schauber J. 2011. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions [J]. Sci Transl Med, 3(82): 82ra38.
    Feng FF, Chen C, Zhu WJ, He WY, Guang HJ, Li Z, Wang D, Liu JZ, Chen M, Wang YP, Yu HN. 2011. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc‐CATHs, from Coturnix coturnix [J]. FEBS J, 278(9): 1573-1584.
    Gennaro R, Skerlavaj B, Romeo D. 1989. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils [J]. Infect Immun, 57(10): 3142-3146.
    Hancock REW, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies [J]. Nat Biotechnol, 24(12): 1551-1557.
    Kokryakov VN, Harwig SSL, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI. 1993. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins [J]. FEBS Lett, 327(2): 231-236.
    Lehrer RI, Ganz T. 1996. Endogenous vertebrate antibiotics [J]. Ann NY Acad Sci, 797(1): 228-239.
    Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A. 1996. Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation [J]. FEBS Lett, 383(1/2): 93-98.
    Pungercar J, Strukelj B, Kopitar G, Renko M, Lenarcic B, Gubensek F, Turk V. 1993. Molecular cloning of a putative homolog of proline/arginine- rich antibacterial peptides from porcine bone marrow [J]. FEBS Lett, 336(2): 284-288.
    Qu XD, Harwig SS, Oren AM, Shafer WM, Lehrer RI. 1996. Susceptibility of Neisseria gonorrhoeae to protegrins [J]. Infect Immun, 64(4): 1240-1245.
    Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. 1988. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils [J]. J Biol Chem, 263(20): 9573-9575.
    Sanchez JF, Wojcik F, Yang YS, Strub MP, Strub JM, Van Dorsselaer A, Martin M, Lehrer R, Ganz T, Chavanieu A, Galas B, Aumelas A. 2002. Overexpression and structural study of the cathelicidin motif of the protegrin-3 precursor [J]. Biochemistry, 41(1): 21-30.
    Sang YM, Ortega MT, Rune K, Xiau W, Zhang GL, Soulages JL, Lushington GH, Fang JW, Williams TD, Blecha F, Melgarejo T. 2007. Canine cathelicidin (K9CATH): gene cloning, expression, and biochemical activity of a novel pro-myeloid antimicrobial peptide [J]. Dev Comp Immunol, 31(12): 1278-1296.
    Scocchi M, Romeo D, Cinco M. 1993. Antimicrobial activity of two bactenecins against spirochetes [J]. Infect Immun, 61(7): 3081-3083.
    Scocchi M, Wang SL, Gennaro R, Zanetti M. 1998. Cloning and analysis of a transcript derived from two contiguous genes of the cathelicidin family [J]. Biochim Biophys Acta, 1398(3): 393-396.
    Shi J, Ross CR, Leto TL, Blecha F. 1996. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox [J]. Proc Natl Acad Sci USA, 93(12): 6014-6018.
    Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA, Wang W, Hong T, Boo LM, Wu HY, Waring AJ, Lehrer RI. 2002. SMAP‐29 has two LPS‐binding sites and a central hinge [J]. Eur J Biochem, 269(4): 1181-1189.
    Tamamura H, Murakami T, Horiuchi S, Sugihara K, Otaka A, Takada W, Ibuka T, Waki M, Yamamoto N, Fujii N. 1995. Synthesis of protegrin- related peptides and their antibacterial and anti-human immunodeficiency virus activity [J]. Chem Pharm Bull, 43(5): 853-858.
    Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. 1998. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils [J]. Antimicrob Agents Chemother, 42(9): 2206-2214.
    Vandermeer T J, Menconi M J, Zhuang J, Wang HL, Murtaugh R, Bouza C, Stevens P, Fink M P. 1995. Protective effects of a novel 32-amino acid C-terminal fragment of CAP18 in endotoxemic pigs [J]. Surgery, 117(6): 656-662.
    Wang YP, Hong J, Liu XH, Yang HL, Liu R, Wu J, Wang AL, Lin DH, Lai R. 2008. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics [J]. PloS One, 3(9): e3217.
    Wang YP, Lu ZK, Feng Ff, Zhu W, Guang HJ, Liu JZ, He WY, Chi LL, Li Z, Yu HN. 2011. Molecular cloning and characterization of novel cathelicidin-derived myeloid antimicrobial peptide from Phasianus colchicus [J]. Dev Comp Immunol, 35(3): 314-322.
    Wuerth K, Hancock REW. 2011. New insights into cathelicidin modulation of adaptive immunity [J]. Eur J Immunol, 41(10): 2817-2819.
    Yasin B, Harwig S, Lehrer RI, Wagar EA. 1996. Susceptibility of Chlamydia trachomatis to protegrins and defensins [J]. Infect Immun, 64(3): 709-713.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3067) PDF downloads(3048) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint