Volume 33 Issue 3
May  2012
Turn off MathJax
Article Contents
SONG Wei, SONG Jia-Kun. Development of the lateral line system in juvenile Siberian sturgeon (Acipenser baerii). Zoological Research, 2012, 33(3): 261-270. doi: 10.3724/SP.J.1141.2012.03261
Citation: SONG Wei, SONG Jia-Kun. Development of the lateral line system in juvenile Siberian sturgeon (Acipenser baerii). Zoological Research, 2012, 33(3): 261-270. doi: 10.3724/SP.J.1141.2012.03261

Development of the lateral line system in juvenile Siberian sturgeon (Acipenser baerii)

doi: 10.3724/SP.J.1141.2012.03261
  • Received Date: 2012-01-16
  • Rev Recd Date: 2012-03-24
  • Publish Date: 2012-06-22
  • The Siberian sturgeon (Acipenser baerii Brandt), a chondrostean, occupies an important position in the evolution of the electroreceptor. In order to more fully understanding the evolution of these receptors, we examined the development of the lateral line system during early ontogeny of the Siberian sturgeon by using light and scanning electron microscopes. We detected four major events in this process: the lateral line placodal development, the sensory ridge formation, the receptor formation and the canal formation. On day 1 of post hatching, all six lateral line placodes are present and the posterior lateral line placode starts actively migrating posteriorly along the mid-line of the trunk, depositing neuromasts at intervals on the way of migration. The other lateral line placodes elongate to form sensory ridges according to its destination line pattern over the head, all containing primordial neuromasts. By day 7, ampullary organs rise from the lateral zones of the ventral of the head, though this may lag up to one week behind of that of the neuromasts. On day 9, the epidermis under the neuromast slowly invaginates, and the bony lateral line canals begin to form. Towards day 29, the epidermal cells surrounded some single openings of the ampullary organs at the ventral surface of the head, begin to migrate, and then transform into 3 to 4 aggregate openings. By this point, abundant microvilli are visible on the surface of the receptor epithelium, similar to the structure in elasmobranches and other sturgeons. On the day 57 of post hatching, the trunk canal is fully embedded into the lateral scutes. By then, the majority of ampullary organs are highly concentrated on the ventral rostrum, arranged in clusters of 3?4, distributing closely such as the shape of quincunx, thus completing the formation of the lateral line system.
  • loading
  • [1]
    Baker CVH. 2008. The evolution and elaboration of vertebrate neural crest cells[J]. Curr Opin Genet Dev, 18(6): 536-543.
    Baker CVH, Bronner-Fraser M. 2001. Vertebrate cranial placodes I. Embryonic induction[J]. Dev Biol, 232(1): 1-61.
    Baker CVH, O'Neill P, McCole RB. 2008. Lateral line, otic and epibranchial placodes: Developmental and evolutionary links?[J]. J Exp Zool B: Mol Dev Evol, 310(4): 370-383.
    Camacho S, Del Valle Ostos M, Llorente JI, Sanz A, García M, Domezain A, Carmona R. 2007. Structural characteristics and development of ampullary organs in Acipenser naccarii[J]. Anat Rec, 290(9): 1178-1189.
    Cheng H, Huang SQ, Heatwole H. 1995. Ampullary organs, pit organs, and neuromasts of the Chinese giant salamander, Andrias davidianus[J]. J Morphol, 226(2): 149-157.
    Collazo A, Fraser SE, Mabee PM. 1994. A dual embryonic origin for vertebrate mechanoreceptors[J]. Science, 264(5157): 426-430.
    Dupin E, Calloni G, Real C, Gonçalves-Trentin A, Le Douarin NM. 2007. Neural crest progenitors and stem cells[J]. C R Biol, 330(6-7): 521-529.
    Freitas R, Zhang GJ, Albert JS, Evans DH, Cohn MJ. 2006. Developmental origin of shark electrosensory organs[J]. Evol Dev, 8(1): 74-80.
    Gibbs MA. 2004. Lateral line receptors: Where do they come from developmentally and where is our research going?[J]. Brain Behav Evol, 64(3): 163-181.
    Gibbs MA, Northcutt RG. 2004. Development of the lateral line system in the shovelnose sturgeon[J]. Brain Behav Evol, 64(2): 70-84.
    Gisbert E, Ruban GI. 2003. Ontogenetic behavior of Siberian sturgeon, Acipenser baerii: A synthesis between laboratory tests and field data[J].Environ Biol Fish, 67(3): 311-319.
    Gisbert E, Williot P. 2002. Advances in the larval rearing of Siberian sturgeon[J]. J Fish Biol, 60(5): 1071-1092.
    Gisbert E, Williot P, Castelló-Orvay F. 1999. Behavioural modifications in the early life stages of Siberian sturgeon (Acipenser baerii, Brandt)[J].J Appl Ichthyol, 15(4-5): 237-242.
    Goulet J, Engelmann J, Chagnaud BP, Franosch JMP, Suttner MD, Van Hemmen JL. 2008. Object localization through the lateral line system of fish: theory and experiment[J]. J Comp Physiol A, 194(1): 1-17.
    Gurgens C, Russell DF, Wilkens LA. 2000. Electrosensory avoidance of metal obstacles by the paddlefish[J]. J Fish Biol, 57(2): 277-290.
    Hofmann MH, Wojtenek W, Wilkens LA. 2002. Central Organization of the Electrosensory System in the Paddlefish (Polyodon spathula)[J]. J Comp Neurol, 446(1): 25-36.
    Lin X. 2003. Preliminary study on growth characteristics of juvenile Acipenser Baeri[J]. J Putian Univ, 10(3): 30-33. [林星. 2003. 西伯利亚鲟稚幼鱼生长特征的初步研究. 莆田学院学报, 10(3): 30-33.]
    Ma J. 2007. Studies on the Early Development and Growth Pattern of Chinese Sturgeon, Acipenser sinensis, and Amur sturgeon, Acipenser schrenckii[D]. Master thesis, Shanghai Fisheries University, Shanghai.[马境. 2007. 中华鲟和施氏鲟胚后发育及生长研究[D]. 硕士学位论文, 上海水产大学, 上海.]
    Mogdans J, Geisen S. 2009. Responses of the goldfish head lateral line to moving objects[J]. J Comp Physiol A, 195(2): 151-165.
    Northcutt RG. 1992. Distribution and innervation of lateral line organs in the axolotl[J]. J Comp Neurol, 325(1): 95-123.
    Northcutt RG, Brändle K, Fritzsch B. 1995. Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls[J]. Dev Biol, 168(2): 358-373.
    Northcutt RG, Catania KC, Criley BB. 1994. Development of lateral line organs in the axolotl[J]. J Comp Neurol, 340(4): 480-514.
    O'Neill P, McCole RB, Baker CVH. 2007. A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula[J]. Dev Biol, 304(1): 156-181.
    Rodríguez A, Gisbert E. 2002. Eye development and the role of vision during Siberian sturgeon early ontogeny[J]. J Appl Ichthyol, 18(4-6):280-285.
    Schlosser G. 2006. Induction and specification of cranial placodes[J]. DevBiol, 294(2): 303-351.
    Schlosser G. 2008. Do vertebrate neural crest and cranial placodes have a common evolutionary origin?[J]. BioEssays, 30(7): 659-672.
    Song JK, Yan HY, Popper AN. 1995. Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure[J].Hearing Res, 91(1-2): 63-71.
    Song W, Song JK, Fan CX, Zhang T, Wang B. 2010. Studies on the early embryonic development of artificially-bred Siberian sturgeon (Acipenser baeri)[J]. J fish Chn, 34(5): 777-785. [宋炜, 宋佳坤, 范纯新, 张涛, 王斌. 2010. 全人工繁殖西伯利亚鲟的早期胚胎发育. 水产学报, 34(5): 777-785.]
    Teeter JH, Sznmier RB, Bennett MVL. 1980. Ampullary electroreceptors in the sturgeon Scaphirhynchus platorynchus (Rafinesque)[J]. J Comp Physiol, 138(3): 213-223.
    Wang W, Zhu H, Hu HX, Tian ZH, Dong Y. 2009. Heteroplasmy in mtDNA control region and phylogenetics of five sturgeon[J]. Zool Res, 30(5): 487-696. [王巍, 朱华, 胡红霞, 田照辉, 董颖. 2009. 五种鲟鱼线粒体控制区异质性和系统发育分析. 动物学研究, 30(5):487-496.]
    Wilkens LA, Hofmann MH. 2007. The paddlefish rostrum as an electrosensory organ: A novel adaptation for plankton feeding[J].Bioscience, 57(5): 399-407.
    Zhuang P, Song C, Zhang LZ, Zhang T, Huang XR, Wang B. 2009.Allometric growth of artificial bred Siberian sturgeon Acipenser baeri larvae and juveniles[J]. Chn J Ecol, 28(4): 681-687. [庄平, 宋超, 章龙珍, 张涛, 黄晓荣, 王斌. 2009. 全人工繁殖西伯利亚鲟仔稚鱼发育的异速生长. 生态学杂志, 28(4): 681-687.]
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1950) PDF downloads(1879) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint