Volume 45 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Yu-Fa Luo, Shu-Qiang Li. Indian monsoon drove the dispersal of the thoracica group of Scytodes spitting spiders. Zoological Research, 2024, 45(1): 152-159. doi: 10.24272/j.issn.2095-8137.2023.364
Citation: Yu-Fa Luo, Shu-Qiang Li. Indian monsoon drove the dispersal of the thoracica group of Scytodes spitting spiders. Zoological Research, 2024, 45(1): 152-159. doi: 10.24272/j.issn.2095-8137.2023.364

Indian monsoon drove the dispersal of the thoracica group of Scytodes spitting spiders

doi: 10.24272/j.issn.2095-8137.2023.364
All sequences generated in this study have been deposited in GenBank (accession numbers in Supplementary Tables S1, S2). All information on sampling locations is provided in Supplementary Tables S1–S3. The sequence alignment datasets of phylogeny and molecular clock analyses are publicly available on the Dryad database (online at http://datadryad.org/).
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
Y.F.L. and S.Q.L. designed the study. Y.F.L. carried out laboratory protocols and data analysis. Both authors drafted the manuscript and read and approved the final version of the manuscript.
Funds:  This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences to S.Q.L. (XDB31000000) and National Natural Sciences Foundation of China to Y.F.L. (NSFC-31860602, 32170463, 31660611)
More Information
  • Corresponding author: E-mail: lisq@ioz.ac.cn
  • Received Date: 2023-11-22
  • Accepted Date: 2023-11-23
  • Published Online: 2023-12-06
  • Publish Date: 2024-01-18
  • We examined the global biogeography of the Scytodes thoracica group of spitting spiders based on 23 years of sampling at the species level (61 species in the thoracica group and 84 species of Scytodes) using DNA data from six loci. Our results indicated that the thoracica group initially dispersed from Southeast Asia to East Africa between 46.5 and 33.0 million years ago, and dispersal events intensified between Southeast/South Asia and East/South Africa from the early to late Miocene. The timing of these events indicates that Asian-African faunal exchange of the thoracica group was driven by the Indian monsoon, and the pattern of dispersal suggests that colonialization took root when the Indian monsoon shifted from a North-South direction to an East-West direction from the middle Eocene.
  • All sequences generated in this study have been deposited in GenBank (accession numbers in Supplementary Tables S1, S2). All information on sampling locations is provided in Supplementary Tables S1–S3. The sequence alignment datasets of phylogeny and molecular clock analyses are publicly available on the Dryad database (online at http://datadryad.org/).
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    Y.F.L. and S.Q.L. designed the study. Y.F.L. carried out laboratory protocols and data analysis. Both authors drafted the manuscript and read and approved the final version of the manuscript.
  • loading
  • [1]
    An ZS. 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 19(1-5): 171−187. doi: 10.1016/S0277-3791(99)00060-8
    [2]
    An ZS, Kutzbach JE, Prell WL, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature, 411(6833): 62−66. doi: 10.1038/35075035
    [3]
    Blandenier G. 2009. Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey. Bulletin of the British Arachnological Society, 14(7): 308−316.
    [4]
    Clift PD, Webb AG. 2018. A history of the Asian monsoon and its interactions with solid Earth tectonics in Cenozoic South Asia. In: Treloar PJ, Searle MP. Himalayan Tectonics: A Modern Synthesis. London: Geological Society, London, Special Publications.
    [5]
    Dean DA, Sterling WL. 1985. Size and phenology of ballooning spiders at two locations in eastern Texas. Journal of Arachnology, 13(1): 111−120.
    [6]
    Donoghue PCJ, Benton MJ. 2007. Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends in Ecology & Evolution, 22(8): 424−431.
    [7]
    Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7: 214. doi: 10.1186/1471-2148-7-214
    [8]
    Favre A, Päckert M, Pauls SU, et al. 2015. The role of the uplift of the Qinghai–Tibetan Plateau for the evolution of Tibetan biotas. Biological Reviews, 90(1): 236−253. doi: 10.1111/brv.12107
    [9]
    Garb JE, Gillespie RG. 2009. Diversity despite dispersal: colonization history and phylogeography of Hawaiian crab spiders inferred from multilocus genetic data. Molecular Ecology, 18(8): 1746−1764. doi: 10.1111/j.1365-294X.2009.04125.x
    [10]
    Greenstone MH. 1982. Ballooning frequency and habitat predictability in two wolf spider species (Lycosidae: Pardosa). The Florida Entomologist, 65(1): 83−89. doi: 10.2307/3494147
    [11]
    Guillot S, Replumaz A. 2013. Importance of continental subductions for the growth of the Tibetan Plateau. Bulletin de la Société Géologique de France, 184(3): 199−223.
    [12]
    Guindon S, Dufayard JF, Lefort V, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59(3): 307−321. doi: 10.1093/sysbio/syq010
    [13]
    Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95−98.
    [14]
    He SL, Ding L, Xiong ZY, et al. 2022. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet. Science Bulletin, 67(21): 2245−2258. doi: 10.1016/j.scib.2022.10.006
    [15]
    Hoang DT, Chernomor O, von Haeseler A, et al. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2): 518−522. doi: 10.1093/molbev/msx281
    [16]
    Huber M, Goldner A. 2012. Eocene monsoons. Journal of Asian Earth Sciences, 44: 3−23. doi: 10.1016/j.jseaes.2011.09.014
    [17]
    Jeanmougin F, Thompson JD, Gouy M, et al. 1998. Multiple sequence alignment with Clustal X. Trends in Biochemical Sciences, 23(10): 403−405. doi: 10.1016/S0968-0004(98)01285-7
    [18]
    Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6): 587−589. doi: 10.1038/nmeth.4285
    [19]
    Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772−780. doi: 10.1093/molbev/mst010
    [20]
    Kuntner M, Agnarsson I. 2011. Phylogeography of a successful aerial disperser: the golden orb spider Nephila on Indian Ocean islands. BMC Evolutionary Biology, 11: 119. doi: 10.1186/1471-2148-11-119
    [21]
    Lee VMJ, Kuntner M, Li DQ. 2015. Ballooning behavior in the golden orbweb spider Nephila pilipes (Araneae: Nephilidae). Frontiers in Ecology and Evolution, 3: 2.
    [22]
    Lemoine F, Domelevo Entfellner JB, Wilkinson E, et al. 2018. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature, 556(7702): 452−456. doi: 10.1038/s41586-018-0043-0
    [23]
    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451−1452. doi: 10.1093/bioinformatics/btp187
    [24]
    Licht A, van Cappelle M, Abels HA, et al. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519): 501−506. doi: 10.1038/nature13704
    [25]
    Luo YF, Goh SP, Li DQ, et al. 2020. Global diversification of Anelosimus spiders driven by long-distance overwater dispersal and Neogene climate oscillations. Systematic Biology, 69(6): 1122−1136. doi: 10.1093/sysbio/syaa017
    [26]
    Luo YF, Li SQ. 2018. Cave Stedocys spitting spiders illuminate the history of the Himalayas and southeast Asia. Ecography, 41(2): 414−423. doi: 10.1111/ecog.02908
    [27]
    Luo YF, Li SQ. 2022. The stepwise Indian-Eurasian collision and uplift of the Himalayan-Tibetan Plateau drove the diversification of high-elevation Scytodes spiders. Cladistics, 38(5): 582−594. doi: 10.1111/cla.12512
    [28]
    Luo YF, Li SQ. 2023. Global expansion of a solitary-social tropical spitting spider shaped by multiple long-distance dispersals. Ecography, 2023(3): e06632. doi: 10.1111/ecog.06632
    [29]
    Magalhaes ILF, Azevedo GHF, Michalik P, et al. 2020. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. Biological Reviews, 95(1): 184−217. doi: 10.1111/brv.12559
    [30]
    Meijer J. 1977. The immigration of spiders (Araneida) into a new polder. Ecological Entomology, 2(1): 81−90. doi: 10.1111/j.1365-2311.1977.tb00867.x
    [31]
    Miao YF, Herrmann M, Wu FL, et al. 2012. What controlled Mid-Late Miocene long-term aridification in Central Asia? Global cooling or Tibetan Plateau uplift: a review. Earth-Science Reviews, 112(3-4): 155−172. doi: 10.1016/j.earscirev.2012.02.003
    [32]
    Morley EL, Robert D. 2018. Electric fields elicit ballooning in spiders. Current Biology, 28(14): 2324−2330.e2. doi: 10.1016/j.cub.2018.05.057
    [33]
    Nguyen LT, Schmidt HA, von Haeseler A, et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268−274. doi: 10.1093/molbev/msu300
    [34]
    Nylander JAA, Olsson U, Alström P, et al. 2008. Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Systematic Biology, 57(2): 257−268. doi: 10.1080/10635150802044003
    [35]
    Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25(7): 1253−1256. doi: 10.1093/molbev/msn083
    [36]
    Prell WL, Kutzbach JE. 1992. Sensitivity of the Indian Monsoon to forcing parameters and implications for its evolution. Nature, 360(6405): 647−652. doi: 10.1038/360647a0
    [37]
    Rambaut A, Drummond AJ. 2009. Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer.
    [38]
    Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57(1): 4−14. doi: 10.1080/10635150701883881
    [39]
    Renner SS. 2005. Relaxed molecular clocks for dating historical plant dispersal events. Trends in Plant Science, 10(11): 550−558. doi: 10.1016/j.tplants.2005.09.010
    [40]
    Ronquist F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46(1): 195−203. doi: 10.1093/sysbio/46.1.195
    [41]
    Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572−1574. doi: 10.1093/bioinformatics/btg180
    [42]
    Ruddiman WF, Kutzbach JE. 1990. Late Cenozoic plateau uplift and climate change. Transactions of the Royal Society of Edinburgh:Earth Sciences, 81(4): 301−314. doi: 10.1017/S0263593300020812
    [43]
    Sanmartín I, Enghoff H, Ronquist F. 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society, 73(4): 345−390. doi: 10.1006/bijl.2001.0542
    [44]
    Soubrier J, Steel M, Lee MSY, et al. 2012. The influence of rate heterogeneity among sites on the time dependence of molecular rates. Molecular Biology and Evolution, 29(11): 3345−3358. doi: 10.1093/molbev/mss140
    [45]
    Spicer RA. 2017. Tibet, the Himalaya, Asian monsoons and biodiversity–In what ways are they related?. Plant Diversity, 39(5): 233−244. doi: 10.1016/j.pld.2017.09.001
    [46]
    Sugg PM, Edwards JS. 1998. Pioneer Aeolian community development on pyroclastic flows after the eruption of Mount St. Helens, Washington, U. S. A. Arctic and Alpine Research, 30(4): 400−407. doi: 10.2307/1552013
    [47]
    Tardif D, Fluteau F, Donnadieu Y, et al. 2020. The origin of Asian monsoons: a modelling perspective. Climate of the Past, 16(3): 847−865. doi: 10.5194/cp-16-847-2020
    [48]
    Weyman GS, Sunderland KD, Jepson PC. 2002. A review of the evolution and mechanisms of ballooning by spiders inhabiting arable farmland. Ethology Ecology & Evolution, 14(4): 307−326.
    [49]
    Wheeler WC, Coddington JA, Crowley LM, et al. 2017. The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33(6): 574−616. doi: 10.1111/cla.12182
    [50]
    World Spider Catalog. [2023-08-10]. World spider catalog. version 24.5. Natural History Museum Bern,http://wsc.nmbe.ch.
    [51]
    Wu FL, Fang XM, Yang YB, et al. 2022. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3(10): 684−700.
    [52]
    Wunderlich J. 1993. Die ersten fossilen Speispinnen (Fam. Scytodidae) im Baltischen Bernstein (Arachnida: Araneae). Mitteilungen aus dem Geologisch-Palä ontologischen Institute der University Hamburg, 75: 243−247.
    [53]
    Wunderlich J. 2011. Some fossil spiders (Araneae) in Eocene European ambers. Beiträ ge Araneology, 6: 472−538.
    [54]
    Yu Y, Harris AJ, Blair C, et al. 2015. RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87: 46−49. doi: 10.1016/j.ympev.2015.03.008
    [55]
    Yu Y, Harris AJ, He XJ. 2010. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56(2): 848−850. doi: 10.1016/j.ympev.2010.04.011
    [56]
    Zhang R, Jiang DB, Ramstein G, et al. 2018. Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: a modeling study. Earth and Planetary Science Letters, 484: 295−308. doi: 10.1016/j.jpgl.2017.12.034
  • ZR-2023-364-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (530) PDF downloads(158) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return