Volume 44 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Yu-Juan Zhang, Zeyu Luo, Yawen Sun, Junhao Liu, Zongqing Chen. From beasts to bytes: Revolutionizing zoological research with artificial intelligence. Zoological Research, 2023, 44(6): 1115-1131. doi: 10.24272/j.issn.2095-8137.2023.263
Citation: Yu-Juan Zhang, Zeyu Luo, Yawen Sun, Junhao Liu, Zongqing Chen. From beasts to bytes: Revolutionizing zoological research with artificial intelligence. Zoological Research, 2023, 44(6): 1115-1131. doi: 10.24272/j.issn.2095-8137.2023.263

From beasts to bytes: Revolutionizing zoological research with artificial intelligence

doi: 10.24272/j.issn.2095-8137.2023.263
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
Y.J.Z. and Z.C. conceived the review. Y.J.Z., Y.S., J.L., Z.L, and Z.C. prepared the manuscript, figures, and tables. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the National Natural Science Foundation of China (31871274), Natural Science Foundation of Chongqing, China (CSTB2022NSCQ-MSX0650), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202100508), Team Project of Innovation Leading Talent in Chongqing (CQYC20210309536), and “Contract System” Project of Chongqing Talent Plan (cstc2022ycjh-bgzxm0147)
More Information
  • Corresponding author: E-mail: chern@cqnu.edu.cn
  • Received Date: 2023-08-21
  • Accepted Date: 2023-10-30
  • Published Online: 2023-10-31
  • Publish Date: 2023-11-18
  • Since the late 2010s, Artificial Intelligence (AI) including machine learning, boosted through deep learning, has boomed as a vital tool to leverage computer vision, natural language processing and speech recognition in revolutionizing zoological research. This review provides an overview of the primary tasks, core models, datasets, and applications of AI in zoological research, including animal classification, resource conservation, behavior, development, genetics and evolution, breeding and health, disease models, and paleontology. Additionally, we explore the challenges and future directions of integrating AI into this field. Based on numerous case studies, this review outlines various avenues for incorporating AI into zoological research and underscores its potential to enhance our understanding of the intricate relationships that exist within the animal kingdom. As we build a bridge between beast and byte realms, this review serves as a resource for envisioning novel AI applications in zoological research that have not yet been explored.
  • Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    Y.J.Z. and Z.C. conceived the review. Y.J.Z., Y.S., J.L., Z.L, and Z.C. prepared the manuscript, figures, and tables. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Abduljabbar K, Castillo SP, Hughes K, et al. 2023. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nature Communications, 14(1): 2408. doi: 10.1038/s41467-023-37879-x
    [2]
    Abinaya NS, Susan D, Kumar SR. 2021. Naive Bayesian fusion based deep learning networks for multisegmented classification of fishes in aquaculture industries. Ecological Informatics, 61: 101248. doi: 10.1016/j.ecoinf.2021.101248
    [3]
    Achour B, Belkadi M, Filali I, et al. 2020. Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on Convolutional Neural Networks (CNN). Biosystems Engineering, 198: 31−49. doi: 10.1016/j.biosystemseng.2020.07.019
    [4]
    Ahmad A, Asif M, Ali SR. 2018. Review paper on shallow learning and deep learning methods for network security. International Journal of Scientific Research in Computer Science and Engineering, 6(5): 45−54. doi: 10.26438/ijsrcse/v6i5.4554
    [5]
    Alroy J, Aberhan M, Bottjer DJ, et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science, 321(5885): 97−100. doi: 10.1126/science.1156963
    [6]
    Alzubaidi L, Zhang JL, Humaidi AJ, et al. 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1): 53. doi: 10.1186/s40537-021-00444-8
    [7]
    Arac A, Zhao PP, Dobkin BH, et al. 2019. DeepBehavior: a deep learning toolbox for automated analysis of animal and human behavior imaging data. Frontiers in Systems Neuroscience, 13: 20. doi: 10.3389/fnsys.2019.00020
    [8]
    Babayan SA, Orton RJ, Streicker DG. 2018. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science, 362(6414): 577−580. doi: 10.1126/science.aap9072
    [9]
    Badia-I-Mompel P, Wessels L, Müller-Dott S, et al. 2023. Gene regulatory network inference in the era of single-cell multi-omics. Nature Reviews Genetics, 24(11): 739−754. doi: 10.1038/s41576-023-00618-5
    [10]
    Bai YT, Jones A, Ndousse K, et al. 2022. Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv, doi: https://doi.org/10.48550/arXiv.2204.05862.
    [11]
    Bakoev S, Getmantseva L, Kolosova M, et al. 2020. PigLeg: prediction of swine phenotype using machine learning. PeerJ, 8: e8764. doi: 10.7717/peerj.8764
    [12]
    Barrow LN, da Fonseca EM, Thompson CEP, et al. 2021. Predicting amphibian intraspecific diversity with machine learning: challenges and prospects for integrating traits, geography, and genetic data. Molecular Ecology Resources, 21(8): 2818−2831. doi: 10.1111/1755-0998.13303
    [13]
    Bath DE, Stowers JR, Hörmann D, et al. 2014. FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nature Methods, 11(7): 756–762.
    [14]
    Binta Islam S, Valles D, Hibbitts TJ, et al. 2023. Animal species recognition with deep convolutional neural networks from ecological camera trap images. Animals, 13(9): 1526. doi: 10.3390/ani13091526
    [15]
    Bochkovskiy A, Wang CY, Liao HYM. 2020. YOLOv4: optimal speed and accuracy of object detection. arXiv, doi: https://doi.org/10.48550/arXiv.2004.10934.
    [16]
    Bommasani R, Hudson DA, Adeli E, et al. 2021. On the opportunities and risks of foundation models. arXiv, doi: https://doi.org/10.48550/arXiv.2108.07258.
    [17]
    Bouteldja N, Klinkhammer BM, Bülow RD, et al. 2021. Deep learning–based segmentation and quantification in experimental kidney histopathology. Journal of the American Society of Nephrology, 32(1): 52−68. doi: 10.1681/ASN.2020050597
    [18]
    Bravo Sanchez FJ, Hossain R, English NB, et al. 2021. Bioacoustic classification of avian calls from raw sound waveforms with an open-source deep learning architecture. Scientific Reports, 11(1): 15733. doi: 10.1038/s41598-021-95076-6
    [19]
    Brouard JS, Schenkel F, Marete A, et al. 2019. The GATK joint genotyping workflow is appropriate for calling variants in RNA-seq experiments. Journal of Animal Science and Biotechnology, 10(1): 44. doi: 10.1186/s40104-019-0359-0
    [20]
    Cao ZJ, Gao G. 2022. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nature Biotechnology, 40(10): 1458−1466. doi: 10.1038/s41587-022-01284-4
    [21]
    Chai JY, Zeng H, Li AM, et al. 2021. Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Machine Learning with Applications, 6: 100134. doi: 10.1016/j.mlwa.2021.100134
    [22]
    Chang CC, Wang JH, Wu JL, et al. 2021. Applying artificial intelligence (AI) techniques to implement a practical smart cage aquaculture management system. Journal of Medical and Biological Engineering, 41(5): 652−658.
    [23]
    Chen C, Tang YJ, Tan Y, et al. 2023a. Three-dimensional cerebral vasculature topological parameter extraction of transgenic zebrafish embryos with a filling-enhancement deep learning network. Biomedical Optics Express, 14(2): 971−984. doi: 10.1364/BOE.484351
    [24]
    Chen C, Zhu WX, Steibel J, et al. 2020. Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method. Computers and Electronics in Agriculture, 176: 105642. doi: 10.1016/j.compag.2020.105642
    [25]
    Chen W, Liu Y, Wang WP, et al. 2023b. Deep learning for instance retrieval: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6): 7270−7292. doi: 10.1109/TPAMI.2022.3218591
    [26]
    Choi SR, Lee M. 2023. Transformer architecture and attention mechanisms in genome data analysis: a comprehensive review. Biology, 12(7): 1033. doi: 10.3390/biology12071033
    [27]
    Chung J, Gulcehre C, Cho K, et al. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv, doi: https://doi.org/10.48550/arXiv.1412.3555.
    [28]
    Cockburn M. 2020. Review: application and prospective discussion of machine learning for the management of dairy farms. Animals, 10(9): 1690. doi: 10.3390/ani10091690
    [29]
    Coffey KR, Marx RE, Neumaier JF. 2019. DeepSqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology, 44(5): 859−868. doi: 10.1038/s41386-018-0303-6
    [30]
    Cohen GH. 1997. ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions. Journal of Applied Crystallography, 30(6): 1160−1161. doi: 10.1107/S0021889897006729
    [31]
    Courtenay LA, Herranz-Rodrigo D, González-Aguilera D, et al. 2021. Developments in data science solutions for carnivore tooth pit classification. Scientific Reports, 11(1): 10209. doi: 10.1038/s41598-021-89518-4
    [32]
    de Souza Filho EM, de Amorim Fernandes F, de Abreu Soares C, et al. 2020. Inteligência artificial em cardiologia: conceitos, ferramentas e desafios – “quem corre é o cavalo, você precisa ser o jóquei”. Arquivos Brasileiros de Cardiologia, 114(4): 718−725.
    [33]
    Derkarabetian S, Castillo S, Koo PK, et al. 2019. A demonstration of unsupervised machine learning in species delimitation. Molecular Phylogenetics and Evolution, 139: 106562. doi: 10.1016/j.ympev.2019.106562
    [34]
    Devlin J, Chang MW, Lee K, et al. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: ACL, 4171–4186.
    [35]
    Domínguez-Rodrigo M, Cifuentes-Alcobendas G, Jiménez-García B, et al. 2020. Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications. Scientific Reports, 10(1): 18862. doi: 10.1038/s41598-020-75994-7
    [36]
    Dönmez P. 2013. Introduction to Machine Learning, 2nd ed., by Ethem Alpaydın. Cambridge, MA: The MIT Press2010. ISBN: 978-0-262-01243-0. $54/£ 39.95 + 584 pages. Natural Language Engineering, 19(2): 285−288. doi: 10.1017/S1351324912000290
    [37]
    Durward-Akhurst SA, Schaefer RJ, Grantham B, et al. 2021. Genetic variation and the distribution of variant types in the horse. Frontiers in Genetics, 12: 758366. doi: 10.3389/fgene.2021.758366
    [38]
    Ezanno P, Picault S, Beaunée G, et al. 2021. Research perspectives on animal health in the era of artificial intelligence. Veterinary Research, 52(1): 40. doi: 10.1186/s13567-021-00902-4
    [39]
    Farahbakhsh E, Chandra R, Olierook HKH, et al. 2020. Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. International Journal of Remote Sensing, 41(5): 1760−1787. doi: 10.1080/01431161.2019.1674462
    [40]
    Fergus P, Chalmers C, Longmore S, et al. 2023. Empowering wildlife guardians: an equitable digital stewardship and reward system for biodiversity conservation using deep learning and 3/4G camera traps. Remote Sensing, 15(11): 2730. doi: 10.3390/rs15112730
    [41]
    Foglio M, Semeria L, Muscioni G, et al. 2019. Animal wildlife population estimation using social media images collections. arXiv, doi: https://doi.org/10.48550/arXiv.1908.01875.
    [42]
    Frankenhuis WE, Panchanathan K, Barto AG. 2019. Enriching behavioral ecology with reinforcement learning methods. Behavioural Processes, 161: 94−100. doi: 10.1016/j.beproc.2018.01.008
    [43]
    Gardiner LJ, Carrieri AP, Wilshaw J, et al. 2020. Using human in vitro transcriptome analysis to build trustworthy machine learning models for prediction of animal drug toxicity. Scientific Reports, 10(1): 9522. doi: 10.1038/s41598-020-66481-0
    [44]
    Geldenhuys DS, Josias S, Brink W, et al. 2023. Deep learning approaches to landmark detection in tsetse wing images. PLoS Computational Biology, 19(6): e1011194. doi: 10.1371/journal.pcbi.1011194
    [45]
    Genest D, Puybareau E, Léonard M, et al. 2019. High throughput automated detection of axial malformations in Medaka embryo. Computers in Biology and Medicine, 105: 157−168. doi: 10.1016/j.compbiomed.2018.12.016
    [46]
    Gomes B, Ashley EA. 2023. Artificial intelligence in molecular medicine. The New England Journal of Medicine, 388(26): 2456−2465. doi: 10.1056/NEJMra2204787
    [47]
    Gore AL. 2022. Measure emissions to manage emissions. Science, 378(6619): 455. doi: 10.1126/science.adf5788
    [48]
    Gouda HF, Hassan FAM, El-Araby EE, et al. 2022. Comparison of machine learning models for bluetongue risk prediction: a seroprevalence study on small ruminants. BMC Veterinary Research, 18(1): 394. doi: 10.1186/s12917-022-03486-z
    [49]
    Gower G, Picazo PI, Fumagalli M, et al. 2021. Detecting adaptive introgression in human evolution using convolutional neural networks. eLife, 10: e64669. doi: 10.7554/eLife.64669
    [50]
    Gozalo-Brizuela R, Garrido-Merchan EC. 2023. ChatGPT is not all you need. A state of the art review of large generative AI models. arXiv, doi: https://doi.org/10.48550/arXiv.2301.04655.
    [51]
    Graving JM, Chae D, Naik H, et al. 2019. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. eLife, 8: e47994. doi: 10.7554/eLife.47994
    [52]
    Grinsztajn L, Oyallon E, Varoquaux G. 2022. Why do tree-based models still outperform deep learning on typical tabular data?. In: Proceedings of the 36th Conference on Neural Information Processing Systems. New Orleans.
    [53]
    He KM, Zhang XY, Ren SQ, et al. 2015. Deep residual learning for image recognition. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE.
    [54]
    He YQ, Tiezzi F, Howard J, et al. 2021. Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms. Computers and Electronics in Agriculture, 184: 106085. doi: 10.1016/j.compag.2021.106085
    [55]
    Hinton GE, Osindero S, Teh YW. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18(7): 1527−1554. doi: 10.1162/neco.2006.18.7.1527
    [56]
    Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735−1780. doi: 10.1162/neco.1997.9.8.1735
    [57]
    Hoyal Cuthill JF, Guttenberg N, Budd GE. 2020. Impacts of speciation and extinction measured by an evolutionary decay clock. Nature, 588(7839): 636−641. doi: 10.1038/s41586-020-3003-4
    [58]
    Høye TT, Ärje J, Bjerge K, et al. 2021. Deep learning and computer vision will transform entomology. Proceedings of the National Academy of Sciences of the United States of America, 118(2): e2002545117.
    [59]
    Jaiswal A, Babu AR, Zadeh MZ, et al. 2021. A survey on contrastive self-supervised learning. Technologies, 9(1): 2.
    [60]
    Janiesch C, Zschech P, Heinrich K. 2021. Machine learning and deep learning. Electronic Markets, 31(3): 685−695. doi: 10.1007/s12525-021-00475-2
    [61]
    Jiang SY, Zhang S, Kang XP, et al. 2023. Risk assessment of the possible intermediate host role of pigs for coronaviruses with a deep learning predictor. Viruses, 15(7): 1556. doi: 10.3390/v15071556
    [62]
    Jiang T, Gradus JL, Rosellini AJ. 2020. Supervised machine learning: a brief primer. Behavior Therapy, 51(5): 675−687. doi: 10.1016/j.beth.2020.05.002
    [63]
    Jing XY, Zhang XY, Zhu XK, et al. 2021. Multiset feature learning for highly imbalanced data classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1): 139−156. doi: 10.1109/TPAMI.2019.2929166
    [64]
    Jordan MI, Mitchell TM. 2015. Machine learning: trends, perspectives, and prospects. Science, 349(6245): 255−260. doi: 10.1126/science.aaa8415
    [65]
    Kaplow IM, Lawler AJ, Schäffer DE, et al. 2023. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science, 380(6643): eabm7993. doi: 10.1126/science.abm7993
    [66]
    Karras T, Laine S, Aila T. 2019. A style-based generator architecture for generative adversarial networks. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE.
    [67]
    Kaushik AC, Mehmood A, Peng SL, et al. 2021. A-CaMP: a tool for anti-cancer and antimicrobial peptide generation. Journal of Biomolecular Structure and Dynamics, 39(1): 285−293. doi: 10.1080/07391102.2019.1708796
    [68]
    Kellenberger B, Marcos D, Tuia D. 2018. Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning. Remote Sensing of Environment, 216: 139−153. doi: 10.1016/j.rse.2018.06.028
    [69]
    Khan A, Sohail A, Zahoora U, et al. 2020. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8): 5455−5516. doi: 10.1007/s10462-020-09825-6
    [70]
    Khan YF, Kaushik B, Rahmani MKI, et al. 2022. HSI-LFS-BERT: novel hybrid swarm intelligence based linguistics feature selection and computational intelligent model for Alzheimer’s prediction using audio transcript. IEEE Access, 10: 126990−127004. doi: 10.1109/ACCESS.2022.3223681
    [71]
    Kim T, Cha M, Kim H, et al. 2017. Learning to discover cross-domain relations with generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney: PMLR, 1857–1865.
    [72]
    Klasen M, Ahrens D, Eberle J, et al. 2022. Image-based automated species identification: can virtual data augmentation overcome problems of insufficient sampling?. Systematic Biology, 71(2): 320−333. doi: 10.1093/sysbio/syab048
    [73]
    Klibaite U, Berman GJ, Cande J, et al. 2017. An unsupervised method for quantifying the behavior of paired animals. Physical Biology, 14(1): 015006. doi: 10.1088/1478-3975/aa5c50
    [74]
    Kopperud BT, Lidgard S, Liow LH. 2019. Text-mined fossil biodiversity dynamics using machine learning. Proceedings of the Royal Society B:Biological Sciences, 286(1901): 20190022. doi: 10.1098/rspb.2019.0022
    [75]
    Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84−90. doi: 10.1145/3065386
    [76]
    Kulkarni S, Gadot T, Luo C, et al. 2020. Unifying data for fine-grained visual species classification. arXiv, doi: https://doi.org/10.48550/arXiv.2009.11433.
    [77]
    Lahat D, Adali T, Jutten C. 2015. Multimodal data fusion: an overview of methods, challenges, and prospects. Proceedings of the IEEE, 103(9): 1449−1477. doi: 10.1109/JPROC.2015.2460697
    [78]
    Lallensack JN, Romilio A, Falkingham PL. 2022. A machine learning approach for the discrimination of theropod and ornithischian dinosaur tracks. Journal of the Royal Society Interface, 19(196): 20220588. doi: 10.1098/rsif.2022.0588
    [79]
    Layton KKS, Snelgrove PVR, Dempson JB, et al. 2021. Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nature Climate Change, 11(2): 158−165. doi: 10.1038/s41558-020-00959-7
    [80]
    LeCun Y, Boser B, Denker JS, et al. 1989. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4): 541−551. doi: 10.1162/neco.1989.1.4.541
    [81]
    Lee K, Ray J, Safta C. 2021. The predictive skill of convolutional neural networks models for disease forecasting. PLoS One, 16(7): e0254319. doi: 10.1371/journal.pone.0254319
    [82]
    Lee S, Kim H, Cho BK. 2023. Deep learning-based image classification for major mosquito species inhabiting korea. Insects, 14(6): 526. doi: 10.3390/insects14060526
    [83]
    Leung ET, Raboin MJ, McKelvey J, et al. 2019. Modelling disease risk for amyloid A (AA) amyloidosis in non-human primates using machine learning. Amyloid, 26(3): 139−147. doi: 10.1080/13506129.2019.1625038
    [84]
    Li CX, Xiao ZF, Li YR, et al. 2023. Deep learning-based activity recognition and fine motor identification using 2D skeletons of cynomolgus monkeys. Zoological Research, 44(5): 967−980. doi: 10.24272/j.issn.2095-8137.2022.449
    [85]
    Li H, Gong XJ, Yu H, et al. 2018. Deep neural network based predictions of protein interactions using primary sequences. Molecules, 23(8): 1923. doi: 10.3390/molecules23081923
    [86]
    Li WY, Ji ZT, Wang L, et al. 2017a. Automatic individual identification of Holstein dairy cows using tailhead images. Computers and Electronics in Agriculture, 142: 622−631. doi: 10.1016/j.compag.2017.10.029
    [87]
    Li XY, Xiong XS, Yi CQ. 2017b. Epitranscriptome sequencing technologies: decoding RNA modifications. Nature Methods, 14(1): 23−31. doi: 10.1038/nmeth.4110
    [88]
    Li YX. 2017c. Deep reinforcement learning: an overview. arXiv, doi: https://doi.org/10.48550/arXiv.1701.07274.
    [89]
    Liao YH, Zhou CW, Liu WZ, et al. 2021. 3DPhenoFish: application for two- and three-dimensional fish morphological phenotype extraction from point cloud analysis. Zoological Research, 42(4): 492−501. doi: 10.24272/j.issn.2095-8137.2021.141
    [90]
    Lin YL, Chang PC, Hsu C, et al. 2022a. Comparison of GATK and DeepVariant by trio sequencing. Scientific Reports, 12(1): 1809. doi: 10.1038/s41598-022-05833-4
    [91]
    Lin ZM, Akin H, Rao RS, et al. 2022b. Evolutionary-scale prediction of atomic level protein structure with a language model. BioRxiv, doi: https://doi.org/10.1101/2022.07.20.500902.
    [92]
    Lin ZM, Akin H, Rao RS, et al. 2023. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637): 1123−1130. doi: 10.1126/science.ade2574
    [93]
    Lipton ZC, Berkowitz J, Elkan C. 2015. A critical review of recurrent neural networks for sequence learning. arXiv, doi: https://doi.org/10.48550/arXiv.1506.00019.
    [94]
    Liu MS, Gao JQ, Hu GY, et al. 2022. MonkeyTrail: a scalable video-based method for tracking macaque movement trajectory in daily living cages. Zoological Research, 43(3): 343−351. doi: 10.24272/j.issn.2095-8137.2021.353
    [95]
    Liu XH, Gan L, Zhang ZT, et al. 2023. Probing the processing of facial expressions in monkeys via time perception and eye tracking. Zoological Research, 44(5): 882−893. doi: 10.24272/j.issn.2095-8137.2023.003
    [96]
    Lorente Ò, Riera I, Rana A. 2021. Image classification with classic and deep learning techniques. arXiv, doi: https://doi.org/10.48550/arXiv.2105.04895.
    [97]
    Luo ZT, Lou LL, Qiu WR, et al. 2022. Predicting N6-methyladenosine sites in multiple tissues of mammals through ensemble deep learning. International Journal of Molecular Sciences, 23(24): 15490. doi: 10.3390/ijms232415490
    [98]
    Mao YF, Yuan XG, Cun YP. 2021. A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data. Zoological Research, 42(2): 246−249. doi: 10.24272/j.issn.2095-8137.2021.014
    [99]
    Marcé-Nogué J, Püschel TA, Daasch A, et al. 2020. Broad-scale morpho-functional traits of the mandible suggest no hard food adaptation in the hominin lineage. Scientific Reports, 10(1): 6793. doi: 10.1038/s41598-020-63739-5
    [100]
    Mashayekhi S, Sedaghat S. 2023. Study the genetic variation using Eta functions. Computational and Applied Mathematics, 42(2): 95. doi: 10.1007/s40314-023-02242-9
    [101]
    Mathis A, Mamidanna P, Cury KM, et al. 2018. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 21(9): 1281−1289. doi: 10.1038/s41593-018-0209-y
    [102]
    Meir Y, Tevet O, Tzach Y, et al. 2023. Efficient shallow learning as an alternative to deep learning. Scientific Reports, 13(1): 5423. doi: 10.1038/s41598-023-32559-8
    [103]
    Moor M, Banerjee O, Abad ZSH, et al. 2023. Foundation models for generalist medical artificial intelligence. Nature, 616(7956): 259−265. doi: 10.1038/s41586-023-05881-4
    [104]
    Moulin TC, Covill LE, Itskov PM, et al. 2021. Rodent and fly models in behavioral neuroscience: an evaluation of methodological advances, comparative research, and future perspectives. Neuroscience & Biobehavioral Reviews, 120: 1−12.
    [105]
    Nandutu I, Atemkeng M, Okouma P, et al. 2022. Creating awareness about security and safety on highways to mitigate wildlife-vehicle collisions by detecting and recognizing wildlife fences using deep learning and drone technology. arXiv, doi: https://doi.org/10.48550/arXiv.2301.07174.
    [106]
    Neethirajan S. 2021a. Happy cow or thinking pig? WUR wolf—facial coding platform for measuring emotions in farm animals. AI, 2(3): 342–354.
    [107]
    Neethirajan S. 2021b. Is seeing still believing? Leveraging deepfake technology for livestock farming. Frontiers in Veterinary Science, 8: 740253. doi: 10.3389/fvets.2021.740253
    [108]
    Norouzzadeh MS, Nguyen A, Kosmala M, et al. 2018. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences of the United States of America, 115(25): E5716−E5725.
    [109]
    Perera P, Patel VM. 2019. Deep transfer learning for multiple class novelty detection. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 11544–11552.
    [110]
    Perrett A, Pollard H, Barnes C, et al. 2022. DeepVerge: classification of roadside verge biodiversity and conservation potential. Computers, Environment and Urban Systems, 102: 101968.
    [111]
    Pilehvar MT, Camacho-Collados J. 2021. Embeddings in natural language processing: theory and advances in vector representations of meaning. Computational Linguistics, 47(3): 699−701. doi: 10.1162/coli_r_00410
    [112]
    Püschel TA, Marcé-Nogué J, Gladman JT, et al. 2018. Inferring locomotor behaviours in Miocene New World monkeys using finite element analysis, geometric morphometrics and machine-learning classification techniques applied to talar morphology. Journal of the Royal Society Interface, 15(146): 20180520. doi: 10.1098/rsif.2018.0520
    [113]
    Qiu ZM, Xu TD, Langerman J, et al. 2021. A deep learning approach for segmentation, classification, and visualization of 3-D high-frequency ultrasound images of mouse embryos. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(7): 2460−2471. doi: 10.1109/TUFFC.2021.3068156
    [114]
    Radford A, Kim JW, Hallacy C, et al. 2021. Learning transferable visual models from natural language supervision. In: Proceedings of the 38th International Conference on Machine Learning. PMLR, 8748–8763.
    [115]
    Richards BA, Lillicrap TP, Beaudoin P, et al. 2019. A deep learning framework for neuroscience. Nature Neuroscience, 22(11): 1761−1770. doi: 10.1038/s41593-019-0520-2
    [116]
    Robson JF, Denholm SJ, Coffey M. 2021. Automated processing and phenotype extraction of ovine medical images using a combined generative adversarial network and computer vision pipeline. Sensors, 21(21): 7268. doi: 10.3390/s21217268
    [117]
    Rocha JC, Passalia FJ, Matos FD, et al. 2017. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images. Scientific Reports, 7(1): 7659. doi: 10.1038/s41598-017-08104-9
    [118]
    Rodríguez Alvarez J, Arroqui M, Mangudo P, et al. 2019. Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques. Agronomy, 9(2): 90. doi: 10.3390/agronomy9020090
    [119]
    Romero-Ferrero F, Bergomi MG, Hinz RC, et al. 2019. idtracker. ai: tracking all individuals in small or large collectives of unmarked animals. Nature Methods, 16(2): 179−182. doi: 10.1038/s41592-018-0295-5
    [120]
    Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back-propagating errors. Nature, 323(6088): 533−536. doi: 10.1038/323533a0
    [121]
    Sainburg T, Gentner TQ. 2021. Toward a computational neuroethology of vocal communication: from bioacoustics to neurophysiology, emerging tools and future directions. Frontiers in Behavioral Neuroscience, 15: 811737. doi: 10.3389/fnbeh.2021.811737
    [122]
    Salekin S, Mostavi M, Chiu YC, et al. 2020. Predicting sites of epitranscriptome modifications using unsupervised representation learning based on generative adversarial networks. Frontiers in Physics, 8: 196. doi: 10.3389/fphy.2020.00196
    [123]
    Sarker IH. 2021. Machine learning: algorithms, real-world applications and research directions. SN Computer Science, 2(3): 160. doi: 10.1007/s42979-021-00592-x
    [124]
    Scaplen KM, Mei NJ, Bounds HA, et al. 2019. Automated real-time quantification of group locomotor activity in Drosophila melanogaster. Scientific Reports, 9(1): 4427.
    [125]
    Shabbir J, Anwer T. 2018. Artificial intelligence and its role in near future. arXiv, doi: https://doi.org/10.48550/arXiv.1804.01396
    [126]
    Shafiullah AZ, Werner J, Kennedy E, et al. 2019. Machine learning based prediction of insufficient herbage allowance with automated feeding behaviour and activity data. Sensors, 19(20): 4479. doi: 10.3390/s19204479
    [127]
    Shen C, Lamba A, Zhu M, et al. 2022a. Stain-free detection of embryo polarization using deep learning. Scientific Reports, 12(1): 2404. doi: 10.1038/s41598-022-05990-6
    [128]
    Shen WZ, Hu HQ, Dai BS, et al. 2020. Individual identification of dairy cows based on convolutional neural networks. Multimedia Tools and Applications, 79(21-22): 14711−14724. doi: 10.1007/s11042-019-7344-7
    [129]
    Shen Y, Ding LF, Yang CY, et al. 2022b. Mapping big brains at subcellular resolution in the era of big data in zoology. Zoological Research, 43(4): 597−599. doi: 10.24272/j.issn.2095-8137.2022.138
    [130]
    Shine P, Murphy MD. 2022. Over 20 years of machine learning applications on dairy farms: a comprehensive mapping study. Sensors, 22(1): 52.
    [131]
    Shui K, Wang CW, Zhang XD, et al. 2023. Small-sample learning reveals propionylation in determining global protein homeostasis. Nature Communications, 14(1): 2813. doi: 10.1038/s41467-023-38414-8
    [132]
    Singh T, Gangloff H, Pham MT. 2023. Object counting from aerial remote sensing images: application to wildlife and marine mammals. In: Proceedings of 2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE.
    [133]
    Sodhar IH, Jalbani AH, Buller AH. 2020. Tokenization of sindhi text on information retrieval tool. doi: 10.13140/RG.2.2.10555.95529.
    [134]
    Staudemeyer RC, Rothstein Morris E. 2019. Understanding LSTM -- a tutorial into long short-term memory recurrent neural networks. arXiv, doi: https://doi.org/10.48550/arXiv.1909.09586.
    [135]
    Sun XY, Hong PY. 2009. Automatic inference of multicellular regulatory networks using informative priors. International Journal of Computational Biology and Drug Design, 2(2): 115−133. doi: 10.1504/IJCBDD.2009.028820
    [136]
    Svensson E, Williams MJ, Schioth HB. 2018. Neural cotransmission in spinal circuits governing locomotion. Trends in Neurosciences, 41(8): 540−550. doi: 10.1016/j.tins.2018.04.007
    [137]
    Tabak MA, Norouzzadeh MS, Wolfson DW, et al. 2019. Machine learning to classify animal species in camera trap images: applications in ecology. Methods in Ecology and Evolution, 10(4): 585−590. doi: 10.1111/2041-210X.13120
    [138]
    Taylor C, Guy J, Bacardit J. 2023. Estimating individual-level pig growth trajectories from group-level weight time series using machine learning. Computers and Electronics in Agriculture, 208: 107790. doi: 10.1016/j.compag.2023.107790
    [139]
    Thalor MA, Nagabhyrava R, Rajkumar K, et al. 2023. Deep learning insights and methods for classifying wildlife. In: Proceedings of the 3rd International Conference on Advance Computing and Innovative Technologies in Engineering. Greater Noida: IEEE, 403–407.
    [140]
    Tian YT, Suzuki C, Clanuwat T, et al. 2020. Kaokore: a pre-modern japanese art facial expression dataset. arXiv, doi: https://doi.org/10.48550/arXiv.2002.08595.
    [141]
    Turkoz M, Kim S, Son Y, et al. 2020. Generalized support vector data description for anomaly detection. Pattern Recognition, 100: 107119. doi: 10.1016/j.patcog.2019.107119
    [142]
    Turner KE, Sohel F, Harris I, et al. 2023. Lambing event detection using deep learning from accelerometer data. Computers and Electronics in Agriculture, 208: 107787. doi: 10.1016/j.compag.2023.107787
    [143]
    Valletta JJ, Torney C, Kings M, et al. 2017. Applications of machine learning in animal behaviour studies. Animal Behaviour, 124: 203−220. doi: 10.1016/j.anbehav.2016.12.005
    [144]
    Van Horn G, Mac Aodha O, Song Y, et al. 2017. The iNaturalist species classification and detection dataset. arXiv, doi: https://doi.org/10.48550/arXiv.1707.06642.
    [145]
    Vaswani A, Shazeer N, Parmar N, et al. 2017. Attention is all you need. arXiv, doi: https://doi.org/10.48550/arXiv.1706.03762.
    [146]
    Vélez J, Castiblanco-Camacho PJ, Tabak MA, et al. 2022. Choosing an appropriate platform and workflow for processing camera trap data using artificial intelligence. arXiv, doi: https://doi.org/10.48550/arXiv.2202.02283.
    [147]
    Verdonck T, Baesens B, Óskarsdóttir M, et al. 2021. Special issue on feature engineering editorial. Machine Learning,doi: 10.1007/s10994-021-06042-2.
    [148]
    Wagner N, Antoine V, Mialon MM, et al. 2020. Machine learning to detect behavioural anomalies in dairy cows under subacute ruminal acidosis. Computers and Electronics in Agriculture, 170: 105233. doi: 10.1016/j.compag.2020.105233
    [149]
    Wang CY, Yeh IH, Liao HYM. 2021. You only learn one representation: unified network for multiple tasks. arXiv, doi: https://doi.org/10.48550/arXiv.2105.04206.
    [150]
    Wang FY, Zhang JJ, Zheng XH, et al. 2016. Where does AlphaGo go: from church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 3(2): 113−120. doi: 10.1109/JAS.2016.7471613
    [151]
    Wang HC, Fu TF, Du YQ, et al. 2023a. Scientific discovery in the age of artificial intelligence. Nature, 620(7972): 47−60. doi: 10.1038/s41586-023-06221-2
    [152]
    Wang HC, Liu C, Xi NW, et al. 2023b. HuaTuo: tuning LLaMA model with chinese medical knowledge. arXiv, doi: https://doi.org/10.48550/arXiv.2304.06975.
    [153]
    Wang Y, Duan XW. 2021. Research on face recognition algorithm based on deep learning. In: Proceedings of 2021 IEEE 21st International Conference on Communication Technology. Tianjin: IEEE, 1139–1142.
    [154]
    Wang ZB. 2022. Self-supervised learning in computer vision: a review. In: Liu Q, Liu XD, Cheng JR, et al. Proceedings of the 12th International Conference on Computer Engineering and Networks. Singapore: Springer, 1112–1121.
    [155]
    White AG, Lees B, Kao HL, et al. 2013. DevStaR: high-throughput quantification of C. elegans developmental stages. IEEE Transactions on Medical Imaging, 32(10): 1791−1803. doi: 10.1109/TMI.2013.2265092
    [156]
    Wu XP, Zhan C, Lai YK, et al. 2019. IP102: a large-scale benchmark dataset for insect pest recognition. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 8779–8788.
    [157]
    Wulff P, Mientus L, Nowak A, et al. 2023. Correction to: utilizing a pretrained language model (BERT) to classify preservice physics teachers’ written refections. International Journal of Artificial Intelligence in Education,doi: 10.1007/s40593-023-00330-9.
    [158]
    Xiang QC, Huang XN, Huang ZX, et al. 2023. Yolo-pest: an insect pest object detection algorithm via CAC3 module. Sensors, 23(6): 3221. doi: 10.3390/s23063221
    [159]
    Xu JM, Shivakumara P, Lu T, et al. 2016. A new method for multi-oriented graphics-scene-3D text classification in video. Pattern Recognition, 49: 19−42. doi: 10.1016/j.patcog.2015.07.002
    [160]
    Xu YY, Zhou Y, Sekula P, et al. 2021. Machine learning in construction: From shallow to deep learning. Developments in the Built Environment, 6: 100045. doi: 10.1016/j.dibe.2021.100045
    [161]
    Xue AT, Schrider DR, Kern AD, et al. 2021. Discovery of ongoing selective sweeps within anopheles mosquito populations using deep learning. Molecular Biology and Evolution, 38(3): 1168−1183. doi: 10.1093/molbev/msaa259
    [162]
    Yang F, Wang WC, Wang F, et al. 2022. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nature Machine Intelligence, 4(10): 852−866. doi: 10.1038/s42256-022-00534-z
    [163]
    Young T, Hazarika D, Poria S, et al. 2018. Recent trends in deep learning based natural language processing [review article]. IEEE Computational Intelligence Magazine, 13(3): 55−75. doi: 10.1109/MCI.2018.2840738
    [164]
    Yu H, Xu YF, Zhang J, et al. 2021. AP-10K: a benchmark for animal pose estimation in the wild. arXiv, doi: https://doi.org/10.48550/arXiv.2108.12617.
    [165]
    Yu S. 2016. New challenge for bionics-brain-inspired computing. Zoological Research, 37(5): 261−262.
    [166]
    Yun T, Li H, Chang PC, et al. 2020. Accurate, scalable cohort variant calls using DeepVariant and GLnexus. Bioinformatics, 36(24): 5582−5589.
    [167]
    Zhang J, Huo YB, Yang JL, et al. 2022. Automatic counting of retinal ganglion cells in the entire mouse retina based on improved YOLOv5. Zoological Research, 43(5): 738−749. doi: 10.24272/j.issn.2095-8137.2022.025
    [168]
    Zhang SY, Dong LF, Li XY, et al. 2023. Instruction tuning for large language models: a survey. arXiv, doi: https://doi.org/10.48550/arXiv.2308.10792.
    [169]
    Zhang YJ, Zhu CX, Ding YR, et al. 2018. Subcellular stoichiogenomics reveal cell evolution and electrostatic interaction mechanisms in cytoskeleton. BMC Genomics, 19(1): 469. doi: 10.1186/s12864-018-4845-0
    [170]
    Zhou C, Li Q, Li C, et al. 2023. A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT. arXiv, doi: https://doi.org/10.48550/arXiv.2302.09419.
    [171]
    Zhu JY, Park T, Isola P, et al. 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE.
    [172]
    Zhu QY, Zhang RX. 2018. HENet: a highly efficient convolutional neural networks optimized for accuracy, speed and storage. arXiv, doi: https://doi.org/10.48550/arXiv.1803.02742.
    [173]
    Zhu S, Wang JZ, Chen D, et al. 2020. An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nature Communications, 11(1): 1685. doi: 10.1038/s41467-020-15403-9
    [174]
    Zou ZX, Chen KY, Shi ZW, et al. 2023. Object detection in 20 years: a survey. Proceedings of the IEEE, 111(3): 257−276. doi: 10.1109/JPROC.2023.3238524
  • ZR-2023-263--Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (694) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return