Turn off MathJax
Article Contents
Ming-Tian Pan, Han Zhang, Xiao-Jiang Li, Xiang-Yu Guo. Genetically modified non-human primate models for research on neurodegenerative diseases. Zoological Research, 2024, 45(2): 263-274. doi: 10.24272/j.issn.2095-8137.2023.197
Citation: Ming-Tian Pan, Han Zhang, Xiao-Jiang Li, Xiang-Yu Guo. Genetically modified non-human primate models for research on neurodegenerative diseases. Zoological Research, 2024, 45(2): 263-274. doi: 10.24272/j.issn.2095-8137.2023.197

Genetically modified non-human primate models for research on neurodegenerative diseases

doi: 10.24272/j.issn.2095-8137.2023.197
The authors declare that they have no competing interests.
X.J.L. and X.Y.G.: Conceived the idea for this review. M.T.P., H.Z., and X.Y.G.: Drafted the manuscript. X.J.L.: Revised the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the National Key Research and Development Program of China (2021YFF0702201), National Natural Science Foundation of China (81873736, 31872779, 81830032), Guangzhou Key Research Program on Brain Science (202007030008), Department of Science and Technology of Guangdong Province (2021ZT09Y007, 2020B121201006, 2018B030337001, 2021A1515012526), and Natural Science Foundation of Guangdong Province (2021A1515012526, 2022A1515012651)
More Information
  • Corresponding author: E-mail: guosapphire@jnu.edu.cn
  • Received Date: 2023-11-25
  • Accepted Date: 2024-01-25
  • Published Online: 2024-01-25
  • Neurodegenerative diseases (NDs) are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Currently, there are no therapies available that can delay, stop, or reverse the pathological progression of NDs in clinical settings. As the population ages, NDs are imposing a huge burden on public health systems and affected families. Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments. While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms, the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap. Old World non-human primates (NHPs), such as rhesus, cynomolgus, and vervet monkeys, are phylogenetically, physiologically, biochemically, and behaviorally most relevant to humans. This is particularly evident in the similarity of the structure and function of their central nervous systems, rendering such species uniquely valuable for neuroscience research. Recently, the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms. This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained, as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
  • The authors declare that they have no competing interests.
    X.J.L. and X.Y.G.: Conceived the idea for this review. M.T.P., H.Z., and X.Y.G.: Drafted the manuscript. X.J.L.: Revised the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    No authors]. 2021. Alzheimer's disease facts and figures. Alzheimer’s & Dementia, 17(3): 327−406. doi: 10.1002/alz.12328.Epub2021Mar23
    [2]
    Ackert-Bicknell CL, Anderson LC, Sheehan S, et al. 2015. Aging research using mouse models. Current Protocols in Mouse Biology, 5(2): 95−133. doi: 10.1002/9780470942390.mo140195
    [3]
    Akeret K, Van Niftrik CHB, Sebök M, et al. 2021. Topographic volume-standardization atlas of the human brain. Brain Structure and Function, 226(6): 1699−1711. doi: 10.1007/s00429-021-02280-1
    [4]
    Allen NJ, Lyons DA. 2018. Glia as architects of central nervous system formation and function. Science, 362(6411): 181−185. doi: 10.1126/science.aat0473
    [5]
    Amiez C, Sallet J, Hopkins WD, et al. 2019. Sulcal organization in the medial frontal cortex provides insights into primate brain evolution. Nature Communications, 10(1): 3437. doi: 10.1038/s41467-019-11347-x
    [6]
    Armstrong MJ, Okun MS. 2020. Diagnosis and treatment of parkinson disease: a review. JAMA, 323(6): 548−560. doi: 10.1001/jama.2019.22360
    [7]
    Arnsten AFT, Datta D, Leslie S, et al. 2019. Alzheimer's-like pathology in aging rhesus macaques: unique opportunity to study the etiology and treatment of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 116(52): 26230−26238.
    [8]
    Arnsten AFT, Datta D, Preuss TM. 2021. Studies of aging nonhuman primates illuminate the etiology of early-stage Alzheimer's-like neuropathology: an evolutionary perspective. American Journal of Primatology, 83(11): e23254. doi: 10.1002/ajp.23254
    [9]
    Arvanitakis Z, Shah RC, Bennett DA. 2019. Diagnosis and management of dementia: review. JAMA, 322(16): 1589−1599. doi: 10.1001/jama.2019.4782
    [10]
    Asadi Shahmirzadi A, Edgar D, Liao CY, et al. 2020. Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metabolism, 32(3): 447−456.e446. doi: 10.1016/j.cmet.2020.08.004
    [11]
    Barres BA. 2008. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron, 60(3): 430−440. doi: 10.1016/j.neuron.2008.10.013
    [12]
    Bates GP, Dorsey R, Gusella JF, et al. 2015. Huntington disease. Nature Reviews Disease Primers, 1: 15005. doi: 10.1038/nrdp.2015.5
    [13]
    Baxa M, Hruska-Plochan M, Juhas S, et al. 2013. A transgenic minipig model of Huntington's Disease. Journal of Huntington's Disease, 2(1): 47−68. doi: 10.3233/JHD-130001
    [14]
    Beckman D, Chakrabarty P, Ott S, et al. 2021. A novel tau-based rhesus monkey model of Alzheimer's pathogenesis. Alzheimer’s & Dementia, 17(6): 933−945.
    [15]
    Beckman D, Morrison JH. 2021. Towards developing a rhesus monkey model of early Alzheimer's disease focusing on women's health. American Journal of Primatology, 83(11): e23289. doi: 10.1002/ajp.23289
    [16]
    Beckman D, Ott S, Donis-Cox K, et al. 2019. Oligomeric Aβ in the monkey brain impacts synaptic integrity and induces accelerated cortical aging. Proceedings of the National Academy of Sciences of the United States of America, 116(52): 26239−26246.
    [17]
    Beckstead MJ, Howell RD. 2021. Progressive parkinsonism due to mitochondrial impairment: lessons from the MitoPark mouse model. Experimental Neurology, 341: 113707. doi: 10.1016/j.expneurol.2021.113707
    [18]
    Bjerke IE, Cullity ER, Kjelsberg K, et al. 2022. DOPAMAP, high-resolution images of dopamine 1 and 2 receptor expression in developing and adult mouse brains. Scientific Data, 9(1): 175. doi: 10.1038/s41597-022-01268-8
    [19]
    Blesa J, Przedborski S. 2014. Parkinson's disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8: 155.
    [20]
    Bloem BR, Okun MS, Klein C. 2021. Parkinson's disease. The Lancet, 397(10291): 2284−2303. doi: 10.1016/S0140-6736(21)00218-X
    [21]
    Buée L, Bussière T, Buée-Scherrer V, et al. 2000. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews, 33(1): 95−130. doi: 10.1016/S0165-0173(00)00019-9
    [22]
    Chan AW, Xu Y, Jiang J, et al. 2014. A two years longitudinal study of a transgenic Huntington disease monkey. BMC Neuroscience, 15: 36. doi: 10.1186/1471-2202-15-36
    [23]
    Chen A, Sun YD, Lei Y, et al. 2023. Single-cell spatial transcriptome reveals cell-type organization in the macaque cortex. Cell, 186(17): 3726−3743.e24. doi: 10.1016/j.cell.2023.06.009
    [24]
    Chen ZZ, Wang JY, Kang Y, et al. 2021. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zoological Research, 42(4): 469−477. doi: 10.24272/j.issn.2095-8137.2021.023
    [25]
    Chen-Plotkin AS, Lee VMY, Trojanowski JQ. 2010. TAR DNA-binding protein 43 in neurodegenerative disease. Nature Reviews Neurology, 6(4): 211−220. doi: 10.1038/nrneurol.2010.18
    [26]
    Collier TJ, Redmond DE Jr, Steece-Collier K, et al. 2016. Is Alpha-synuclein loss-of-function a contributor to parkinsonian pathology?. Evidence from Non-human primates. Frontiers in Neuroscience, 10: 12.
    [27]
    Da Cruz S, Cleveland DW. 2011. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Current Opinion in Neurobiology, 21(6): 904−919. doi: 10.1016/j.conb.2011.05.029
    [28]
    D'Amours G, Bureau G, Boily MJ, et al. 2011. Differential gene expression profiling in the mouse brain during motor skill learning: focus on the striatum structure. Behavioural Brain Research, 221(1): 108−117. doi: 10.1016/j.bbr.2011.02.030
    [29]
    Deng H, Wang P, Jankovic J. 2018. The genetics of Parkinson disease. Ageing Research Reviews, 42: 72−85. doi: 10.1016/j.arr.2017.12.007
    [30]
    Ding SL. 2013. Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. Journal of Comparative Neurology, 521(18): 4145−4162. doi: 10.1002/cne.23416
    [31]
    Dorus S, Vallender EJ, Evans PD, et al. 2004. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell, 119(7): 1027−1040. doi: 10.1016/j.cell.2004.11.040
    [32]
    Drachman DA. 2005. Do we have brain to spare?. Neurology, 64(12): 2004−2005. doi: 10.1212/01.WNL.0000166914.38327.BB
    [33]
    Drummond E, Wisniewski T. 2017. Alzheimer's disease: experimental models and reality. Acta Neuropathologica, 133(2): 155−175. doi: 10.1007/s00401-016-1662-x
    [34]
    Dubois B, Feldman HH, Jacova C, et al. 2014. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. The Lancet Neurology, 13(6): 614−629. doi: 10.1016/S1474-4422(14)70090-0
    [35]
    Elder GA, Gama Sosa MA, De Gasperi R, et al. 2010. Presenilin transgenic mice as models of Alzheimer's disease. Brain Structure and Function, 214(2-3): 127−143. doi: 10.1007/s00429-009-0227-3
    [36]
    Endo F, Kasai A, Soto JS, et al. 2022. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, 378(6619): eadc9020. doi: 10.1126/science.adc9020
    [37]
    Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. 1998. Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11): 1313−1317. doi: 10.1038/3305
    [38]
    Erö C, Gewaltig MO, Keller D, et al. 2018. A cell atlas for the mouse brain. Frontiers in Neuroinformatics, 12: 84. doi: 10.3389/fninf.2018.00084
    [39]
    Eskandari-Sedighi G, Daude N, Gapeshina H, et al. 2017. The CNS in inbred transgenic models of 4-repeat Tauopathy develops consistent tau seeding capacity yet focal and diverse patterns of protein deposition. Molecular Neurodegeneration, 12(1): 72. doi: 10.1186/s13024-017-0215-7
    [40]
    Eslamboli A, Romero-Ramos M, Burger C, et al. 2007. Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain, 130(Pt 3): 799–815.
    [41]
    Esquerda-Canals G, Montoliu-Gaya L, Güell-Bosch J, et al. 2017. Mouse models of Alzheimer's disease. Journal of Alzheimer's Disease, 57(4): 1171−1183. doi: 10.3233/JAD-170045
    [42]
    Falcone C, Wolf-Ochoa M, Amina S, et al. 2019. Cortical interlaminar astrocytes across the therian mammal radiation. Journal of Comparative Neurology, 527(10): 1654−1674. doi: 10.1002/cne.24605
    [43]
    Farshim PP, Bates GP. 2018. Mouse models of huntington's disease. In: Precious SV, Rosser AE, Dunnett SB. Huntington’s Disease. New York: Humana Press, 97–120.
    [44]
    Fischl B, Dale AM. 2000. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20): 11050−11055.
    [45]
    Flood DG, Lin YG, Lang DM, et al. 2009. A transgenic rat model of Alzheimer's disease with extracellular Aβ deposition. Neurobiology of Aging, 30(7): 1078−1090. doi: 10.1016/j.neurobiolaging.2007.10.006
    [46]
    Forman MS, Trojanowski JQ, Lee VMY. 2007. TDP-43: a novel neurodegenerative proteinopathy. Current Opinion in Neurobiology, 17(5): 548−555. doi: 10.1016/j.conb.2007.08.005
    [47]
    Forny-Germano L, Lyra E Silva NM, Batista AF, et al. 2014. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. The Journal of Neuroscience, 34(41): 13629−13643. doi: 10.1523/JNEUROSCI.1353-14.2014
    [48]
    Freire-Cobo C, Edler MK, Varghese M, et al. 2021. Comparative neuropathology in aging primates: a perspective. American Journal of Primatology, 83(11): e23299. doi: 10.1002/ajp.23299
    [49]
    Frye BM, Craft S, Register TC, et al. 2022. Early Alzheimer's disease-like reductions in gray matter and cognitive function with aging in nonhuman primates. Alzheimer's & Dementia, 8(1): e12284.
    [50]
    Gambardella JC, Schoephoerster W, Bondarenko V, et al. 2023. Expression of tau and phosphorylated tau in the brain of normal and hemiparkinsonian rhesus macaques. Journal of Comparative Neurology, 531(11): 1198−1216. doi: 10.1002/cne.25490
    [51]
    Garin CM, Hori Y, Everling S, et al. 2022. An evolutionary gap in primate default mode network organization. Cell Reports, 39(2): 110669. doi: 10.1016/j.celrep.2022.110669
    [52]
    Geirsdottir L, David E, Keren-Shaul H, et al. 2020. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell, 181(3): 746. doi: 10.1016/j.cell.2020.04.002
    [53]
    Glasser MF, Coalson TS, Robinson EC, et al. 2016. A multi-modal parcellation of human cerebral cortex. Nature, 536(7615): 171−178. doi: 10.1038/nature18933
    [54]
    Goertsen D, Flytzanis NC, Goeden N, et al. 2022. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nature Neuroscience, 25(1): 106−115. doi: 10.1038/s41593-021-00969-4
    [55]
    González-Rodríguez P, Zampese E, Stout KA, et al. 2021. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature, 599(7886): 650−656. doi: 10.1038/s41586-021-04059-0
    [56]
    Götz J, Gladbach A, Pennanen L, et al. 2010. Animal models reveal role for tau phosphorylation in human disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802(10): 860−871. doi: 10.1016/j.bbadis.2009.09.008
    [57]
    Götz J, Ittner LM. 2008. Animal models of Alzheimer's disease and frontotemporal dementia. Nature Reviews Neuroscience, 9(7): 532−544. doi: 10.1038/nrn2420
    [58]
    Grad LI, Rouleau GA, Ravits J, et al. 2017. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harbor Perspectives in Medicine, 7(8): a024117. doi: 10.1101/cshperspect.a024117
    [59]
    Guo YT, Shao Y, Bi XP, et al. 2023. Harvesting the fruits of the first stage of the primate genome project. Zoological Research, 44(4): 725−728. doi: 10.24272/j.issn.2095-8137.2023.172
    [60]
    Hammelrath L, Škokić S, Khmelinskii A, et al. 2016. Morphological maturation of the mouse brain: an in vivo MRI and histology investigation. NeuroImage, 125: 144−152. doi: 10.1016/j.neuroimage.2015.10.009
    [61]
    Han JJ. 2023. FDA Modernization Act 2.0 allows for alternatives to animal testing. Artificial Organs, 47(3): 449−450. doi: 10.1111/aor.14503
    [62]
    Han L, Wei XY, Liu CY, et al. 2022. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature, 604(7907): 723–731.
    [63]
    Hao ZZ, Wei JR, Xiao DC, et al. 2022. Single-cell transcriptomics of adult macaque hippocampus reveals neural precursor cell populations. Nature Neuroscience, 25(6): 805−817. doi: 10.1038/s41593-022-01073-x
    [64]
    Hara Y, Rapp PR, Morrison JH. 2012. Neuronal and morphological bases of cognitive decline in aged rhesus monkeys. AGE, 34(5): 1051−1073. doi: 10.1007/s11357-011-9278-5
    [65]
    Herndon JG, Moss MB, Rosene DL, et al. 1997. Patterns of cognitive decline in aged rhesus monkeys. Behavioural Brain Research, 87(1): 25−34. doi: 10.1016/S0166-4328(96)02256-5
    [66]
    Heuer E, Rosen RF, Cintron A, et al. 2012. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Current Pharmaceutical Design, 18(8): 1159−1169. doi: 10.2174/138161212799315885
    [67]
    Hickman S, Izzy S, Sen P, et al. 2018. Microglia in neurodegeneration. Nature Neuroscience, 21(10): 1359−1369. doi: 10.1038/s41593-018-0242-x
    [68]
    Huang BH, Wu SH, Wang ZB, et al. 2018. Phosphorylated α-synuclein accumulations and lewy body-like pathology distributed in Parkinson's disease-related brain areas of aged rhesus monkeys treated with MPTP. Neuroscience, 379: 302−315. doi: 10.1016/j.neuroscience.2018.03.026
    [69]
    Huang C, Tong JB, Bi FF, et al. 2012. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. Journal of Clinical Investigation, 122(1): 107−118. doi: 10.1172/JCI59130
    [70]
    Hurley PJ, Elsworth JD, Whittaker MC, et al. 2011. Aged monkeys as a partial model for Parkinson's disease. Pharmacology Biochemistry and Behavior, 99(3): 324−332. doi: 10.1016/j.pbb.2011.05.007
    [71]
    Iaccarino L, Tammewar G, Ayakta N, et al. 2018. Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer's Disease. NeuroImage:Clinical, 17: 452−464. doi: 10.1016/j.nicl.2017.09.016
    [72]
    Jakobsen JE, Johansen MG, Schmidt M, et al. 2013. Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Research, 22(4): 709−723. doi: 10.1007/s11248-012-9671-6
    [73]
    Jensen TL, Kiersgaard MK, Sørensen DB, et al. 2013. Fasting of mice: a review. Laboratory Animals, 47(4): 225−240. doi: 10.1177/0023677213501659
    [74]
    Johnson GA, Tian YQ, Ashbrook DG, et al. 2023. Merged magnetic resonance and light sheet microscopy of the whole mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 120(17): e2218617120.
    [75]
    Joseph X, Akhil V, Arathi A, et al. 2022. Comprehensive development in organ-on-a-chip technology. Journal of Pharmaceutical Sciences, 111(1): 18−31. doi: 10.1016/j.xphs.2021.07.014
    [76]
    Joutsa J, Moussawi K, Siddiqi SH, et al. 2022. Brain lesions disrupting addiction map to a common human brain circuit. Nature Medicine, 28(6): 1249−1255. doi: 10.1038/s41591-022-01834-y
    [77]
    Kabir MT, Uddin MS, Abdeen A, et al. 2020. Evidence linking protein misfolding to quality control in progressive neurodegenerative diseases. Current Topics in Medicinal Chemistry, 20(23): 2025−2043. doi: 10.2174/1568026620666200618114924
    [78]
    Kanthaswamy S, Ng J, Satkoski Trask J, et al. 2013. The genetic composition of populations of cynomolgus macaques (Macaca fascicularis) used in biomedical research. Journal of Medical Primatology, 42(3): 120−131. doi: 10.1111/jmp.12043
    [79]
    Khampang S, Parnpai R, Mahikul W, et al. 2021. CAG repeat instability in embryonic stem cells and derivative spermatogenic cells of transgenic Huntington's disease monkey. Journal of Assisted Reproduction and Genetics, 38(5): 1215−1229. doi: 10.1007/s10815-021-02106-3
    [80]
    Khrameeva E, Kurochkin I, Han DD, et al. 2020. Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains. Genome Research, 30(5): 776−789. doi: 10.1101/gr.256958.119
    [81]
    King A. 2018. The search for better animal models of Alzheimer's disease. Nature, 559(7715): S13−S15. doi: 10.1038/d41586-018-05722-9
    [82]
    Kirik D, Annett LE, Burger C, et al. 2003. Nigrostriatal α-synucleinopathy induced by viral vector-mediated overexpression of human α-synuclein: a new primate model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 100(5): 2884−2889.
    [83]
    Kirova AM, Bays RB, Lagalwar S. 2015. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer's disease. BioMed Research International, 2015: 748212.
    [84]
    Knox EG, Aburto MR, Clarke G, et al. 2022. The blood-brain barrier in aging and neurodegeneration. Molecular Psychiatry, 27(6): 2659−2673. doi: 10.1038/s41380-022-01511-z
    [85]
    Kocerha J, Liu YH, Willoughby D, et al. 2013. Longitudinal transcriptomic dysregulation in the peripheral blood of transgenic Huntington's disease monkeys. BMC Neuroscience, 14: 88. doi: 10.1186/1471-2202-14-88
    [86]
    Koo BB, Schettler SP, Murray DE, et al. 2012. Age-related effects on cortical thickness patterns of the Rhesus monkey brain. Neurobiology of Aging, 33(1): 200.e23−200.e31. doi: 10.1016/j.neurobiolaging.2010.07.010
    [87]
    Koprich JB, Johnston TH, Reyes G, et al. 2016. Towards a non-human primate model of alpha-synucleinopathy for development of therapeutics for Parkinson's disease: optimization of AAV1/2 delivery parameters to drive sustained expression of alpha synuclein and dopaminergic degeneration in Macaque. PLoS One, 11(11): e0167235. doi: 10.1371/journal.pone.0167235
    [88]
    Kordower JH, Olanow CW, Dodiya HB, et al. 2013. Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain, 136(Pt 8): 2419–2431.
    [89]
    Kragh PM, Nielsen AL, Li J, et al. 2009. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Research, 18(4): 545−558. doi: 10.1007/s11248-009-9245-4
    [90]
    Kumar S, Hedges SB. 2011. TimeTree2: species divergence times on the iPhone. Bioinformatics, 27(14): 2023−2024. doi: 10.1093/bioinformatics/btr315
    [91]
    Kunkle BW, Grenier-Boley B, Sims R, et al. 2019. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 51(3): 414−430. doi: 10.1038/s41588-019-0358-2
    [92]
    Labzin LI, Heneka MT, Latz E. 2018. Innate immunity and neurodegeneration. Annual Review of Medicine, 69: 437−449. doi: 10.1146/annurev-med-050715-104343
    [93]
    Lagier-Tourenne C, Cleveland DW. 2009. Rethinking ALS: the FUS about TDP-43. Cell, 136(6): 1001−1004. doi: 10.1016/j.cell.2009.03.006
    [94]
    Lanciego JL, Vázquez A. 2012. The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Structure and Function, 217(2): 613−666. doi: 10.1007/s00429-011-0370-5
    [95]
    Lee H, Heiman M. 2022. Back-to-BACs in Huntington's disease modeling. Neuron, 110(7): 1087−1089. doi: 10.1016/j.neuron.2022.02.022
    [96]
    Lee HG, Wheeler MA, Quintana FJ. 2022. Function and therapeutic value of astrocytes in neurological diseases. Nature Reviews Drug Discovery, 21(5): 339−358. doi: 10.1038/s41573-022-00390-x
    [97]
    Lee Y, Dawson VL, Dawson TM. 2012. Animal models of Parkinson's disease: vertebrate genetics. Cold Spring Harbor Perspectives in Medicine, 2(10): a009324.
    [98]
    Lei XG, Li H, Huang BH, et al. 2015. 1-Methyl-4-phenylpyridinium stereotactic infusion completely and specifically ablated the nigrostriatal dopaminergic pathway in rhesus macaque. PLoS One, 10(5): e0127953. doi: 10.1371/journal.pone.0127953
    [99]
    Leuzy A, Smith R, Ossenkoppele R, et al. 2020. Diagnostic performance of RO948 F 18 Tau positron emission tomography in the differentiation of Alzheimer Disease from other neurodegenerative disorders. JAMA Neurology, 77(8): 955−965. doi: 10.1001/jamaneurol.2020.0989
    [100]
    Li H, Su LY, Yang LX, et al. 2021a. A cynomolgus monkey with naturally occurring Parkinson's disease. National Science Review, 8(3): nwaa292. doi: 10.1093/nsr/nwaa292
    [101]
    Li H, Wu SH, Ma X, et al. 2021b. Co-editing PINK1 and DJ-1 Genes Via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neuroscience Bulletin, 37(9): 1271−1288. doi: 10.1007/s12264-021-00732-6
    [102]
    Li H, Yao YG, Hu XT. 2021c. Biological implications and limitations of a cynomolgus monkey with naturally occurring Parkinson's disease. Zoological Research, 42(2): 138−140. doi: 10.24272/j.issn.2095-8137.2021.004
    [103]
    Li Y, Xu NN, Hao ZZ, et al. 2023. Adult neurogenesis in the primate hippocampus. Zoological Research, 44(2): 315−322. doi: 10.24272/j.issn.2095-8137.2022.399
    [104]
    Liu H, Jin HJ, Yue XY, et al. 2016. Comparison of [11C]TZ1964B and [18F]MNI659 for PET imaging brain PDE10A in nonhuman primates. Pharmacology Research & Perspectives, 4(5): e00253.
    [105]
    Liu XJ, Eickhoff SB, Caspers S, et al. 2021. Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate. NeuroImage, 235: 118006. doi: 10.1016/j.neuroimage.2021.118006
    [106]
    Liu Z, Cai YJ, Liao ZD, et al. 2019. Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer. National Science Review, 6(1): 101−108. doi: 10.1093/nsr/nwz003
    [107]
    Liu Z, Cai YJ, Wang Y, et al. 2018. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell, 172(4): 881−887.e7. doi: 10.1016/j.cell.2018.01.020
    [108]
    Liu Z, Wang XJ, Newman N, et al. 2020. Anatomical and diffusion MRI brain atlases of the fetal rhesus macaque brain at 85, 110 and 135 days gestation. NeuroImage, 206: 116310. doi: 10.1016/j.neuroimage.2019.116310
    [109]
    Ma C, Peng YS, Li HT, et al. 2021. Organ-on-a-Chip: a new paradigm for drug development. Trends in Pharmacological Sciences, 42(2): 119−133. doi: 10.1016/j.tips.2020.11.009
    [110]
    Mahley RW, Weisgraber KH, Huang YD. 2006. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 103(15): 5644−5651.
    [111]
    Mahley RW, Weisgraber KH, Huang YD. 2009. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS. J Lipid Res, 50 Suppl(Suppl): S183–S188.
    [112]
    Masters CL, Bateman R, Blennow K, et al. 2015. Alzheimer's disease. Nature Reviews Disease Primers, 1(1): 15056. doi: 10.1038/nrdp.2015.56
    [113]
    Mattison JA, Vaughan KL. 2017. An overview of nonhuman primates in aging research. Experimental Gerontology, 94: 41−45. doi: 10.1016/j.exger.2016.12.005
    [114]
    Matyash V, Kettenmann H. 2010. Heterogeneity in astrocyte morphology and physiology. Brain Research Reviews, 63(1-2): 2−10. doi: 10.1016/j.brainresrev.2009.12.001
    [115]
    Mazid MA, Ward C, Luo ZW, et al. 2022. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature, 605(7909): 315−324. doi: 10.1038/s41586-022-04625-0
    [116]
    McGowan E, Eriksen J, Hutton M. 2006. A decade of modeling Alzheimer's disease in transgenic mice. Trends in Genetics, 22(5): 281−289. doi: 10.1016/j.tig.2006.03.007
    [117]
    McMillan P, Korvatska E, Poorkaj P, et al. 2008. Tau isoform regulation is region- and cell-specific in mouse brain. Journal of Comparative Neurology, 511(6): 788−803. doi: 10.1002/cne.21867
    [118]
    Meng L, Ely JJ, Stouffer RL, et al. 1997. Rhesus monkeys produced by nuclear transfer. Biology of Reproduction, 57(2): 454−459. doi: 10.1095/biolreprod57.2.454
    [119]
    Mitchell JC, Constable R, So E, et al. 2015. Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS. Acta Neuropathologica Communications, 3: 36. doi: 10.1186/s40478-015-0212-4
    [120]
    Moqri M, Herzog C, Poganik JR, et al. 2023. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell, 186(18): 3758−3775. doi: 10.1016/j.cell.2023.08.003
    [121]
    Moran S, Chi T, Prucha MS, et al. 2015. Germline transmission in transgenic Huntington's disease monkeys. Theriogenology, 84(2): 277−285. doi: 10.1016/j.theriogenology.2015.03.016
    [122]
    Myers A, McGonigle P. 2019. Overview of transgenic mouse models for Alzheimer's disease. Current Protocols in Neuroscience, 89(1): e81. doi: 10.1002/cpns.81
    [123]
    Neumann M, Sampathu DM, Kwong LK, et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796): 130−133. doi: 10.1126/science.1134108
    [124]
    Niu YY, Guo XY, Chen YC, et al. 2015. Early Parkinson's disease symptoms in α-synuclein transgenic monkeys. Human Molecular Genetics, 24(8): 2308−2317. doi: 10.1093/hmg/ddu748
    [125]
    Oberheim NA, Wang XH, Goldman S, et al. 2006. Astrocytic complexity distinguishes the human brain. Trends in Neurosciences, 29(10): 547−553. doi: 10.1016/j.tins.2006.08.004
    [126]
    O'Kusky J, Colonnier M. 1982. A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurology, 210(3): 278−290. doi: 10.1002/cne.902100307
    [127]
    Paspalas CD, Carlyle BC, Leslie S, et al. 2018. The aged rhesus macaque manifests Braak stage III/IV Alzheimer's-like pathology. Alzheimer’s & Dementia, 14(5): 680−691.
    [128]
    Perrin RJ, Fagan AM, Holtzman DM. 2009. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature, 461(7266): 916−922. doi: 10.1038/nature08538
    [129]
    Petersen RC, Lopez O, Armstrong MJ, et al. 2018. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology, 90(3): 126−135. doi: 10.1212/WNL.0000000000004826
    [130]
    Phillips KA, Bales KL, Capitanio JP, et al. 2014. Why primate models matter. American Journal of Primatology, 76(9): 801−827. doi: 10.1002/ajp.22281
    [131]
    Pike VW. 2009. PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends in Pharmacological Sciences, 30(8): 431−440. doi: 10.1016/j.tips.2009.05.005
    [132]
    Poduri A, Gearing M, Rebeck GW, et al. 1994. Apolipoprotein E4 and beta amyloid in senile plaques and cerebral blood vessels of aged rhesus monkeys. The American Journal of Pathology, 144(6): 1183−1187.
    [133]
    Porras G, Li Q, Bezard E. 2012. Modeling Parkinson's disease in primates: the MPTP model. Cold Spring Harbor Perspectives in Medicine, 2(3): a009308.
    [134]
    Putkhao K, Kocerha J, Cho IK, et al. 2013. Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington's disease. Stem Cells and Development, 22(8): 1198−1205. doi: 10.1089/scd.2012.0469
    [135]
    Qiang W, Yau WM, Lu JX, et al. 2017. Structural variation in amyloid-β fibrils from Alzheimer's disease clinical subtypes. Nature, 541(7636): 217−221. doi: 10.1038/nature20814
    [136]
    Qin DD, Chu XX, Feng XL, et al. 2015. The first observation of seasonal affective disorder symptoms in Rhesus macaque. Behavioural Brain Research, 292: 463−469. doi: 10.1016/j.bbr.2015.07.005
    [137]
    Rai M, Curley M, Coleman Z, et al. 2022. Contribution of proteases to the hallmarks of aging and to age-related neurodegeneration. Aging Cell, 21(5): e13603. doi: 10.1111/acel.13603
    [138]
    Ransohoff RM. 2016. How neuroinflammation contributes to neurodegeneration. Science, 353(6301): 777−783. doi: 10.1126/science.aag2590
    [139]
    Rash BG, Duque A, Morozov YM, et al. 2019. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proceedings of the National Academy of Sciences of the United States of America, 116(14): 7089−7094.
    [140]
    Redmond DE, Roth RH, Elsworth JD, et al. 1986. Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine. The Lancet, 327(8490): 1125−1127. doi: 10.1016/S0140-6736(86)91839-8
    [141]
    Reveley C, Gruslys A, Ye FQ, et al. 2017. Three-dimensional digital template atlas of the macaque brain. Cerebral Cortex, 27(9): 4463−4477.
    [142]
    Robertson JM. 2014. Astrocytes and the evolution of the human brain. Medical Hypotheses, 82(2): 236−239. doi: 10.1016/j.mehy.2013.12.004
    [143]
    Saberi S, Stauffer JE, Schulte DJ, et al. 2015. Neuropathology of amyotrophic lateral sclerosis and its variants. Neurologic Clinics, 33(4): 855−876. doi: 10.1016/j.ncl.2015.07.012
    [144]
    Sakakibara Y, Sekiya M, Saito T, et al. 2019. Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease. BMC Neuroscience, 20(1): 13. doi: 10.1186/s12868-019-0496-6
    [145]
    Sanford AM. 2017. Mild cognitive impairment. Clinics in Geriatric Medicine, 33(3): 325−337. doi: 10.1016/j.cger.2017.02.005
    [146]
    Sasaguri H, Hashimoto S, Watamura N, et al. 2022. Recent advances in the modeling of Alzheimer's disease. Frontiers in Neuroscience, 16: 807473. doi: 10.3389/fnins.2022.807473
    [147]
    Sasseville VG, Mansfield KG. 2010. Overview of known non-human primate pathogens with potential to affect colonies used for toxicity testing. Journal of Immunotoxicology, 7(2): 79−92. doi: 10.3109/15476910903213521
    [148]
    Scheiblich H, Trombly M, Ramirez A, et al. 2020. Neuroimmune connections in aging and neurodegenerative diseases. Trends in Immunology, 41(4): 300−312. doi: 10.1016/j.it.2020.02.002
    [149]
    Scheltens P, De Strooper B, Kivipelto M, et al. 2021. Alzheimer's disease. The Lancet, 397(10284): 1577−1590. doi: 10.1016/S0140-6736(20)32205-4
    [150]
    Schuldenzucker V, Schubert R, Muratori LM, et al. 2017. Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study. PLoS One, 12(10): e0185970. doi: 10.1371/journal.pone.0185970
    [151]
    Schüz A, Palm G. 1989. Density of neurons and synapses in the cerebral cortex of the mouse. Journal of Comparative Neurology, 286(4): 442−455. doi: 10.1002/cne.902860404
    [152]
    Semedo JD, Zandvakili A, Machens CK, et al. 2019. Cortical areas interact through a communication subspace. Neuron, 102(1): 249−259.e4. doi: 10.1016/j.neuron.2019.01.026
    [153]
    Shan X, Chiang PM, Price DL, et al. 2010. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 107(37): 16325−16330.
    [154]
    Snyder JS, Soumier A, Brewer M, et al. 2011. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476(7361): 458−461. doi: 10.1038/nature10287
    [155]
    Søndergaard LV, Ladewig J, Dagnæs-Hansen F, et al. 2012. Object recognition as a measure of memory in 1–2 years old transgenic minipigs carrying the APPsw mutation for Alzheimer's disease. Transgenic Research, 21(6): 1341−1348. doi: 10.1007/s11248-012-9620-4
    [156]
    Sorrells SF, Paredes MF, Cebrian-Silla A, et al. 2018. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555(7696): 377−381. doi: 10.1038/nature25975
    [157]
    Sousa AMM, Meyer KA, Santpere G, et al. 2017. Evolution of the human nervous system function, structure, and development. Cell, 170(2): 226−247. doi: 10.1016/j.cell.2017.06.036
    [158]
    Souter V, Painter I, Sitcov K, et al. 2019. Maternal and newborn outcomes with elective induction of labor at term. American Journal of Obstetrics and Gynecology, 220(3): 273.e1−273.e11. doi: 10.1016/j.ajog.2019.01.223
    [159]
    Stephenson J, Nutma E, Van Der Valk P, et al. 2018. Inflammation in CNS neurodegenerative diseases. Immunology, 154(2): 204−219. doi: 10.1111/imm.12922
    [160]
    Taber KH, Hurley RA. 2008. Astroglia: not just glue. The Journal of Neuropsychiatry and Clinical Neurosciences, 20(2): iv−129. doi: 10.1176/jnp.2008.20.2.iv
    [161]
    Talbott EO, Malek AM, Lacomis D. 2016. The epidemiology of amyotrophic lateral sclerosis. Handbook of Clinical Neurology, 138: 225−238.
    [162]
    Terstappen GC, Meyer AH, Bell RD, et al. 2021. Strategies for delivering therapeutics across the blood-brain barrier. Nature Reviews Drug Discovery, 20(5): 362−383. doi: 10.1038/s41573-021-00139-y
    [163]
    Tieu K. 2011. A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harbor Perspectives in Medicine, 1(1): a009316.
    [164]
    Tsurugizawa T, Tamada K, Ono N, et al. 2020. Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. Science Advances, 6(6): eaav4520. doi: 10.1126/sciadv.aav4520
    [165]
    Tu ZC, Yang WL, Yan S, et al. 2015. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Molecular Neurodegeneration, 10: 35. doi: 10.1186/s13024-015-0031-x
    [166]
    Uchida A, Sasaguri H, Kimura N, et al. 2012. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain, 135(Pt 3): 833–846.
    [167]
    Ulland TK, Colonna M. 2018. TREM2 - a key player in microglial biology and Alzheimer disease. Nature Reviews Neurology, 14(11): 667−675. doi: 10.1038/s41582-018-0072-1
    [168]
    Veitch DP, Weiner MW, Aisen PS, et al. 2019. Understanding disease progression and improving Alzheimer's disease clinical trials: recent highlights from the Alzheimer's disease neuroimaging initiative. Alzheimer's & Dementia, 15(1): 106−152.
    [169]
    Von Bernhardi R, Eugenín-Von Bernhardi L, Eugenín J. 2015. Microglial cell dysregulation in brain aging and neurodegeneration. Frontiers in Aging Neuroscience, 7: 124.
    [170]
    Von Bartheld CS, Bahney J, Herculano-Houzel S. 2016. The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. Journal of Comparative Neurology, 524(18): 3865−3895. doi: 10.1002/cne.24040
    [171]
    Wadman M. 2023. FDA no longer has to require animal testing for new drugs. Science, 379(6628): 127−128. doi: 10.1126/science.adg6276
    [172]
    Wang GH, Yang HQ, Yan S, et al. 2015. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Molecular Neurodegeneration, 10: 42. doi: 10.1186/s13024-015-0036-5
    [173]
    Wang QX, Ding SL, Li Y, et al. 2020. The allen mouse brain common coordinate framework: a 3D reference atlas. Cell, 181(4): 936−953.20. doi: 10.1016/j.cell.2020.04.007
    [174]
    Wareham LK, Liddelow SA, Temple S, et al. 2022. Solving neurodegeneration: common mechanisms and strategies for new treatments. Molecular Neurodegeneration, 17(1): 23. doi: 10.1186/s13024-022-00524-0
    [175]
    Weed MR, Wilcox KM, Ator NA, et al. 2008. Consistent, high-level ethanol consumption in pig-tailed macaques via a multiple-session, limited-intake, oral self-dosing procedure. Alcoholism:Clinical and Experimental Research, 32(6): 942−951. doi: 10.1111/j.1530-0277.2008.00652.x
    [176]
    Weiss AR, Liguore WA, Brandon K, et al. 2022. A novel rhesus macaque model of Huntington's disease recapitulates key neuropathological changes along with motor and cognitive decline. eLife, 11: e77568. doi: 10.7554/eLife.77568
    [177]
    Wils H, Kleinberger G, Janssens J, et al. 2010. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proceedings of the National Academy of Sciences of the United States of America, 107(8): 3858−3863.
    [178]
    Wyss-Coray T. 2016. Ageing, neurodegeneration and brain rejuvenation. Nature, 539(7628): 180−186. doi: 10.1038/nature20411
    [179]
    Xu R, Zanotti-Fregonara P, Zoghbi SS, et al. 2013. Synthesis and evaluation in monkey of [18F]4-fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzami de ([18F]FIMX): a promising radioligand for PET imaging of brain metabotropic glutamate receptor 1 (mGluR1). Journal of Medicinal Chemistry, 56(22): 9146−9155. doi: 10.1021/jm4012017
    [180]
    Yan L, Smale L, Nunez AA. 2020. Circadian and photic modulation of daily rhythms in diurnal mammals. European Journal of Neuroscience, 51(1): 551−566. doi: 10.1111/ejn.14172
    [181]
    Yan S, Tu ZC, Liu ZM, et al. 2018. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's Disease. Cell, 173(4): 989−1002.e13. doi: 10.1016/j.cell.2018.03.005
    [182]
    Yang DS, Wang CE, Zhao BT, et al. 2010. Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Human Molecular Genetics, 19(20): 3983−3994. doi: 10.1093/hmg/ddq313
    [183]
    Yang HM, Yang S, Jing L, et al. 2020. Truncation of mutant huntingtin in knock-in mice demonstrates exon1 huntingtin is a key pathogenic form. Nature Communications, 11(1): 2582. doi: 10.1038/s41467-020-16318-1
    [184]
    Yang L, Yang B, Chen J. 2019a. One prime for all editing. Cell, 179(7): 1448−1450. doi: 10.1016/j.cell.2019.11.030
    [185]
    Yang MF, Miao JY, Rizak J, et al. 2014. Alzheimer's disease and methanol toxicity (part 2): lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol. Journal of Alzheimer's Disease, 41(4): 1131−1147. doi: 10.3233/JAD-131532
    [186]
    Yang SH, Cheng PH, Banta H, et al. 2008a. Towards a transgenic model of Huntington's disease in a non-human primate. Nature, 453(7197): 921−924. doi: 10.1038/nature06975
    [187]
    Yang SH, Cheng PH, Sullivan RT, et al. 2008b. Lentiviral integration preferences in transgenic mice. Genesis, 46(12): 711−718. doi: 10.1002/dvg.20435
    [188]
    Yang WL, Chen XS, Li SH, et al. 2021. Genetically modified large animal models for investigating neurodegenerative diseases. Cell & Bioscience, 11(1): 218.
    [189]
    Yang WL, Guo XY, Tu ZC, et al. 2022. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis. Protein & Cell, 13(1): 26−46.
    [190]
    Yang WL, Li SH, Li XJ. 2019b. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Molecular Neurodegeneration, 14(1): 17. doi: 10.1186/s13024-019-0321-9
    [191]
    Yang WL, Liu YB, Tu ZC, et al. 2019c. CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Research, 29(4): 334−336. doi: 10.1038/s41422-019-0142-y
    [192]
    Yang WL, Wang GH, Wang CE, et al. 2015. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. The Journal of Neuroscience, 35(21): 8345−8358. doi: 10.1523/JNEUROSCI.0772-15.2015
    [193]
    Yao YG, On Behalf of the Construction Team of the KIZ Primate Facility. 2022. Towards the peak: the 10-year journey of the national research facility for phenotypic and genetic analysis of model animals (Primate Facility) and a call for international collaboration in non-human primate research. Zoological Research, 43(2): 237−240. doi: 10.24272/j.issn.2095-8137.2022.032
    [194]
    Ye H, Robak LA, Yu MG, et al. 2023. Genetics and Pathogenesis of Parkinson's Syndrome. Annual Review of Pathology:Mechanisms of Disease, 18: 95−121. doi: 10.1146/annurev-pathmechdis-031521-034145
    [195]
    Yeh WH, Shubina-Oleinik O, Levy JM, et al. 2020. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Science Translational Medicine, 12(546): eaay9101. doi: 10.1126/scitranslmed.aay9101
    [196]
    Yin P, Guo XY, Yang WL, et al. 2019. Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains. Acta Neuropathologica, 137(6): 919−937. doi: 10.1007/s00401-019-01979-0
    [197]
    Yin P, Li SH, Li XJ, et al. 2022. New pathogenic insights from large animal models of neurodegenerative diseases. Protein & Cell, 13(10): 707−720.
    [198]
    Yin P, Tu ZC, Yin A, et al. 2015. Aged monkey brains reveal the role of ubiquitin-conjugating enzyme UBE2N in the synaptosomal accumulation of mutant huntingtin. Human Molecular Genetics, 24(5): 1350−1362. doi: 10.1093/hmg/ddu544
    [199]
    Yue F, Feng S, Lu CL, et al. 2021. Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer's disease in nonhuman primates. iScience, 24(10): 103207. doi: 10.1016/j.isci.2021.103207
    [200]
    Zhai RW, Rizak J, Zheng N, et al. 2018. Alzheimer's disease-like pathologies and cognitive impairments induced by formaldehyde in non-human primates. Current Alzheimer Research, 15(14): 1304−1321. doi: 10.2174/1567205015666180904150118
    [201]
    Zheng N, Li M, Wu Y, et al. 2022. A novel technology for in vivo detection of cell type-specific neural connection with AQP1-encoding rAAV2-retro vector and metal-free MRI. NeuroImage, 258: 119402. doi: 10.1016/j.neuroimage.2022.119402
    [202]
    Zhou B, Zuo YX, Jiang RT. 2019. Astrocyte morphology: diversity, plasticity, and role in neurological diseases. CNS Neuroscience & Therapeutics, 25(6): 665−673.
    [203]
    Zhu JW, Qiu AQ. 2022. Chinese adult brain atlas with functional and white matter parcellation. Scientific Data, 9(1): 352. doi: 10.1038/s41597-022-01476-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (309) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return