Volume 44 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Runchu Zhao, Sheng Niu, Pu Han, Yue Gao, Dezhi Liu, Chunliang Luo, Honghui Liu, Bo Liu, Yanli Xu, Jianxun Qi, Zhihai Chen, Weifeng Shi, Lili Wu, George F. Gao, Qihui Wang. Cross-species recognition of bat coronavirus RsYN04 and cross-reaction of SARS-CoV-2 antibodies against the virus. Zoological Research, 2023, 44(6): 1015-1025. doi: 10.24272/j.issn.2095-8137.2023.187
Citation: Runchu Zhao, Sheng Niu, Pu Han, Yue Gao, Dezhi Liu, Chunliang Luo, Honghui Liu, Bo Liu, Yanli Xu, Jianxun Qi, Zhihai Chen, Weifeng Shi, Lili Wu, George F. Gao, Qihui Wang. Cross-species recognition of bat coronavirus RsYN04 and cross-reaction of SARS-CoV-2 antibodies against the virus. Zoological Research, 2023, 44(6): 1015-1025. doi: 10.24272/j.issn.2095-8137.2023.187

Cross-species recognition of bat coronavirus RsYN04 and cross-reaction of SARS-CoV-2 antibodies against the virus

doi: 10.24272/j.issn.2095-8137.2023.187
The atomic coordinates for the RsYN04 RBD-S43 complex crystal structure were deposited in the Protein Data Bank (www.rcsb.org) (PDB ID code 8J5J).
Supplementary data to this article can be found online.
Q.W., G.F.G., H.L., B.L., and L.W. are listed as coinventors of the patent for the antibody S43. G.F.G. is the holder of the patent intellectual property for the ZF2001® vaccine.
G.F.G. and Q.W. initiated and coordinated the project and designed the experiments. R.Z., Y.G., and D.L. performed the SPR and FACS analyses with help from L.W. and C.L. R.Z. and S.N. prepared the RsYN04 RBD-S43 crystals with help from H.L. and B.L. P.H. and J.Q. solved the structure. Z.C. and Y.X. provided the serum samples. W.S. provided the ACE2 sequence of R. stheno. R.Z., S.N., L.W., G.F.G., and Q.W. analyzed the data and wrote the manuscript. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This work was supported by the National Key R&D Program of China (2022YFC2303403) and National Natural Science Foundation of China (82225021). Q.W. was supported by the Chinese Academy of Sciences (YSBR-010 and Y2022037)
More Information
  • Corresponding author: E-mail: wulili@im.ac.cnwangqihui@im.ac.cn
  • Received Date: 2023-08-24
  • Accepted Date: 2023-08-25
  • Published Online: 2023-09-13
  • Publish Date: 2023-11-18
  • Following the outbreak of coronavirus disease 2019 (COVID-19), several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronaviruses have been discovered. Previous research has identified a novel lineage of SARS-CoV-2-related CoVs in bats, including RsYN04, which recognizes human angiotensin-converting enzyme 2 (ACE2) and thus poses a potential threat to humans. Here, we screened the binding of the RsYN04 receptor-binding domain (RBD) to ACE2 orthologs from 52 animal species and found that the virus showed a narrower ACE2-binding spectrum than SARS-CoV-2. However, the presence of the T484W mutation in the RsYN04 RBD broadened its range. We also evaluated 44 SARS-CoV-2 antibodies targeting seven epitope communities in the SARS-CoV-2 RBD, together with serum obtained from COVID-19 convalescents and vaccinees, to determine their cross-reaction against RsYN04. Results showed that no antibodies, except for the RBD-6 and RBD-7 classes, bound to the RsYN04 RBD, indicating substantial immune differences from SARS-CoV-2. Furthermore, the structure of the RsYN04 RBD in complex with cross-reactive antibody S43 in RBD-7 revealed a potently broad epitope for the development of therapeutics and vaccines. Our findings suggest RsYN04 and other viruses belonging to the same clade have the potential to infect several species, including humans, highlighting the necessity for viral surveillance and development of broad anti-coronavirus countermeasures.
  • The atomic coordinates for the RsYN04 RBD-S43 complex crystal structure were deposited in the Protein Data Bank (www.rcsb.org) (PDB ID code 8J5J).
    Supplementary data to this article can be found online.
    Q.W., G.F.G., H.L., B.L., and L.W. are listed as coinventors of the patent for the antibody S43. G.F.G. is the holder of the patent intellectual property for the ZF2001® vaccine.
    G.F.G. and Q.W. initiated and coordinated the project and designed the experiments. R.Z., Y.G., and D.L. performed the SPR and FACS analyses with help from L.W. and C.L. R.Z. and S.N. prepared the RsYN04 RBD-S43 crystals with help from H.L. and B.L. P.H. and J.Q. solved the structure. Z.C. and Y.X. provided the serum samples. W.S. provided the ACE2 sequence of R. stheno. R.Z., S.N., L.W., G.F.G., and Q.W. analyzed the data and wrote the manuscript. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Adams PD, Grosse-Kunstleve RW, Hung LW, et al. 2002. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallographica Section D: Biological Crystallography, 58(Pt 11): 1948–1954.
    [2]
    Bridger JC, Caul EO, Egglestone SI. 1978. Replication of an enteric bovine coronavirus in intestinal organ cultures. Archives of Virology, 57(1): 43−51. doi: 10.1007/BF01315636
    [3]
    Castiglione GM, Zhou LL, Xu ZH, et al. 2021. Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2. PLoS Biology, 19(12): e3001510. doi: 10.1371/journal.pbio.3001510
    [4]
    Damas J, Hughes GM, Keough KC, et al. 2020. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 117(36): 22311−22322.
    [5]
    Delaune D, Hul V, Karlsson EA, et al. 2021. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nature Communications, 12(1): 6563. doi: 10.1038/s41467-021-26809-4
    [6]
    Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallographica Section D: Biological Crystallography, 60(Pt 12 Pt 1): 2126–2132.
    [7]
    Erles K, Toomey C, Brooks HW, et al. 2003. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology, 310(2): 216−223. doi: 10.1016/S0042-6822(03)00160-0
    [8]
    Fabricant J. 1998. The early history of infectious bronchitis. Avian Diseases, 42(4): 648−650. doi: 10.2307/1592697
    [9]
    Gao GF. 2018. From "A"IV to "Z"IKV: attacks from emerging and re-emerging pathogens. Cell, 172(6): 1157−1159. doi: 10.1016/j.cell.2018.02.025
    [10]
    Guo H, Hu B, Si HR, et al. 2021. Identification of a novel lineage bat SARS-related coronaviruses that use bat ACE2 receptor. Emerging Microbes & Infections, 10(1): 1507−1514.
    [11]
    Hastie KM, Li HY, Bedinger D, et al. 2021. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: a global consortium study. Science, 374(6566): 472−478. doi: 10.1126/science.abh2315
    [12]
    He QW, Wu LL, Xu ZP, et al. 2023. An updated atlas of antibody evasion by SARS-CoV-2 Omicron sub-variants including BQ.1.1 and XBB. Cell Reports Medicine, 4(4): 100991. doi: 10.1016/j.xcrm.2023.100991
    [13]
    Hu Y, Liu KF, Han P, et al. 2023. Host range and structural analysis of bat-origin RshSTT182/200 coronavirus binding to human ACE2 and its animal orthologs. The EMBO Journal, 42(4): e111737. doi: 10.15252/embj.2022111737
    [14]
    Huang M, Wu LL, Zheng AQ, et al. 2022. Atlas of currently available human neutralizing antibodies against SARS-CoV-2 and escape by Omicron sub-variants BA. 1/BA. 1.1/BA. 2/BA. 3. Immunity, 55(8): 1501−1514.e3. doi: 10.1016/j.immuni.2022.06.005
    [15]
    Jia YF, Niu S, Hu Y, et al. 2022. Cross-reaction of current available SARS-CoV-2 MAbs against the pangolin-origin coronavirus GX/P2V/2017. Cell Reports, 41(11): 111831. doi: 10.1016/j.celrep.2022.111831
    [16]
    Ksiazek TG, Erdman D, Goldsmith CS, et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. The New England Journal of Medicine, 348(20): 1953−1966. doi: 10.1056/NEJMoa030781
    [17]
    Lam TTY, Jia N, Zhang YW, et al. 2020. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815): 282−285. doi: 10.1038/s41586-020-2169-0
    [18]
    Liu HH, Wu LL, Liu B, et al. 2023. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice. Cell Reports Medicine, 4(2): 100918. doi: 10.1016/j.xcrm.2023.100918
    [19]
    Liu KF, Pan XQ, Li LJ, et al. 2021a. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell, 184(13): 3438−3451.e10. doi: 10.1016/j.cell.2021.05.031
    [20]
    Liu YH, Hu GW, Wang YY, et al. 2021b. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 118(12): e2025373118.
    [21]
    Murakami S, Kitamura T, Suzuki J, et al. 2020. Detection and characterization of bat sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerging Infectious Diseases, 26(12): 3025−3029. doi: 10.3201/eid2612.203386
    [22]
    Niu S, Wang J, Bai B, et al. 2021. Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. The EMBO Journal, 40(16): e107786. doi: 10.15252/embj.2021107786
    [23]
    Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, 276: 307−326.
    [24]
    Pedersen NC, Evermann JF, McKeirnan AJ, et al. 1984. Pathogenicity studies of feline coronavirus isolates 79–1146 and 79–1683. American Journal of Veterinary Research, 45(12): 2580−2585.
    [25]
    Peng MS, Li JB, Cai ZF, et al. 2021. The high diversity of SARS-CoV-2-related coronaviruses in pangolins alerts potential ecological risks. Zoological Research, 42(6): 834−844.
    [26]
    Pensaert MB, de Bouck P. 1978. A new coronavirus-like particle associated with diarrhea in swine. Archives of Virology, 58(3): 243−247. doi: 10.1007/BF01317606
    [27]
    Sharun K, Dhama K, Pawde AM, et al. 2021. SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications. Veterinary Quarterly, 41(1): 181−201. doi: 10.1080/01652176.2021.1921311
    [28]
    Shi JZ, Wen ZY, Zhong GX, et al. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 368(6494): 1016−1020. doi: 10.1126/science.abb7015
    [29]
    Starr TN, Zepeda SK, Walls AC, et al. 2022. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. Nature, 603(7903): 913−918. doi: 10.1038/s41586-022-04464-z
    [30]
    Temmam S, Vongphayloth K, Baquero E, et al. 2022. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature, 604(7905): 330−336. doi: 10.1038/s41586-022-04532-4
    [31]
    Wacharapluesadee S, Tan CW, Maneeorn P, et al. 2021. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nature Communications, 12(1): 972. doi: 10.1038/s41467-021-21240-1
    [32]
    Wang QH, Zhang YF, Wu LL, et al. 2020. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4): 894−904.e9. doi: 10.1016/j.cell.2020.03.045
    [33]
    Wang ZL, Huang GP, Huang MP, et al. 2023. Global patterns of phylogenetic diversity and transmission of bat coronavirus. Science China Life sciences, 66(4): 861−874. doi: 10.1007/s11427-022-2221-5
    [34]
    Weiner LP. 1973. Pathogenesis of demyelination induced by a mouse hepatitis. Archives of Neurology, 28(5): 298−303. doi: 10.1001/archneur.1973.00490230034003
    [35]
    Williams CJ, Headd JJ, Moriarty NW, et al. 2018. MolProbity: more and better reference data for improved all-atom structure validation. Protein Science, 27(1): 293−315. doi: 10.1002/pro.3330
    [36]
    Wong G, Bi YH, Wang QH, et al. 2020. Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important?. Zoological Research, 41(3): 213−219. doi: 10.24272/j.issn.2095-8137.2020.031
    [37]
    Wu LL, Chen Q, Liu KF, et al. 2020. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discovery, 6: 68.
    [38]
    Wu LL, Zheng AQ, Tang YM, et al. 2023. A pan-coronavirus peptide inhibitor prevents SARS-CoV-2 infection in mice by intranasal delivery. Science China Life sciences,doi: 10. 1007/s11427-023-2410-5.
    [39]
    Xiao KP, Zhai JQ, Feng YY, et al. 2020. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 583(7815): 286−289. doi: 10.1038/s41586-020-2313-x
    [40]
    Zaki AM, van Boheemen S, Bestebroer TM, et al. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 367(19): 1814−1820. doi: 10.1056/NEJMoa1211721
    [41]
    Zhou H, Chen X, Hu T, et al. 2020a. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology, 30(11): 2196−2203.e3. doi: 10.1016/j.cub.2020.05.023
    [42]
    Zhou H, Ji JK, Chen X, et al. 2021. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell, 184(17): 4380−4391.e14. doi: 10.1016/j.cell.2021.06.008
    [43]
    Zhou P, Yang XL, Wang XG, et al. 2020b. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270−273. doi: 10.1038/s41586-020-2012-7
    [44]
    Zhu N, Zhang DY, Wang WL, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8): 727−733. doi: 10.1056/NEJMoa2001017
  • ZR-2023-187-Supplementary Materials -WLL.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (586) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return