Volume 44 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
William R. Jeffery, Li Ma, Ya-hui Zhao. Cavefish as biological models in the laboratory and in the wild. Zoological Research, 2023, 44(4): 834-836. doi: 10.24272/j.issn.2095-8137.2023.186
Citation: William R. Jeffery, Li Ma, Ya-hui Zhao. Cavefish as biological models in the laboratory and in the wild. Zoological Research, 2023, 44(4): 834-836. doi: 10.24272/j.issn.2095-8137.2023.186

Cavefish as biological models in the laboratory and in the wild

doi: 10.24272/j.issn.2095-8137.2023.186
The authors declare that they have no competing interests.
W.R.J. conceived the review and wrote the draft. All authors read and approved the final version of the manuscript.
  • Received Date: 2023-06-14
  • Accepted Date: 2023-07-17
  • Published Online: 2023-07-18
  • Publish Date: 2023-07-18
  • The authors declare that they have no competing interests.
    W.R.J. conceived the review and wrote the draft. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Breder CM Jr. 1942. Descriptive ecology of La Cueva Chica, with special reference to the blind fish, Anoptichthys. Zoologica: Scientific Contributions of the New York Zoological Society. 27 (3): 7;15.
    [2]
    Chen HY, Li CQ, Chen SY, et al. 2023. Metagenomic analysis reveals hidden links between gut microbes and habitat adaptation among cave and surface dwelling Sinocyclocheilus species. Zoological Research, 44(4): 793−807.
    [3]
    Culver DC, Sket B. 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62 (1): 11-17.
    [4]
    Čupić M, Marčić Z, Lukić M, et al. 2023. The first cave fish in the Dinaric Karst? Cave colonisation made possible by phenotypic plasticity in Telestes karsticus. Zoological Research, 40(6): 821–833.
    [5]
    Espinasa L, Diamant R, Vinepinsky E, et al. 2023a. Evolutionary modifications of Astyanax’s larval prey capture (LPC) in a dark environment. Zoological Research, 44(4): 750−760. doi: 10.24272/j.issn.2095-8137.2022.466
    [6]
    Espinasa L, Rohner N, Rétaux S. 2023b. Reproductive seasonality of Astyanax mexicanus cavefish. Zoological Research, 44(4): 698−700. doi: 10.24272/j.issn.2095-8137.2022.164
    [7]
    Fumey J, Hinaux H, Noirot C, et al. 2018. Evidence for Late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evolutionary Biology, 18(1): 43. doi: 10.1186/s12862-018-1156-7
    [8]
    Garduño-Sánchez MAA, de Jesus-Bonilla V, Perea S, et al. 2023. Mitochondrial phylogeography and molecular evolution of the rhodopsin visual pigment in troglobitic populations of Astyanax mexicanus (De Filippi, 1853). Zoological Research, 44(4): 761−775.
    [9]
    Jeffery WR. 2020. Astyanax surface and cave fish morphs. EvoDevo, 11: 14. doi: 10.1186/s13227-020-00159-6
    [10]
    Jiang WS, Li J, Lei XZ, et al. 2019. Sinocyclocheilus sanxiaensis, a new blind fish from the Three Gorges of Yangtze River provides insights into speciation of Chinese cavefish. Zoological Research, 40(6): 552−557. doi: 10.24272/j.issn.2095-8137.2019.065
    [11]
    Jiang WS, Li J, Xiang HM, et al. 2023. Comparative analysis and phylogenetic and evolutionary implications of mitogenomes of Chinese Sinocyclocheilus cavefish (Cypriniformes: Cyprinidae). Zoological Research, 44(4): 779−781.
    [12]
    Kowalko JE, Rohner N, Linden TA, et al. 2013. Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proceedings of the National Academy of Sciences of the United States of America, 110(42): 16933–16938.
    [13]
    Legendre L, Rode J, Germon I, et al. 2023. Genetic identification and reiterated captures suggest that the Astyanax mexicanus El Pachón cavefish population is closed and declining. Zoological Research, 44(4): 701−711. doi: 10.24272/j.issn.2095-8137.2022.481
    [14]
    Luo T, Yang Q, Wu L, et al. 2023. Phylogenetic relationships of nemacheilidae cavefish (Heminoemacheilus, Oreonectes, Yunnanilus, Paranemachilus, and Troglonectes) revealed by analysis of mitochondrial genome and seven nuclear genes. Zoological Research, 44(4): 693−697. doi: 10.24272/j.issn.2095-8137.2022.266
    [15]
    Ma L, Yang JX, Lei FK, et al. 2023. Protection and exploration of the scientific potential of Chinese cavefish. Zoological Research, 44(4): 675−677. doi: 10.24272/j.issn.2095-8137.2022.484
    [16]
    Ma L, Zhao YH, Yang JX. 2019. Chapter 28 - Cavefish of China. In: White WB, Culver DC, Pipan T. Encyclopedia of Caves. 3rd ed. Amsterdam: Elsevier, 237–254.
    [17]
    Mitchell RW, Russell WH, Elliott WR. 1977. Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution. Lubbock: Texas Tech Press.
    [18]
    Olsen L, Hassan H, Xia FN, et al. 2023. Cavefish mount a rapid and sustained regenerative response following skeletal muscle injury. Zoological Research, 44(4): 776−778.
    [19]
    Patton P, Windsor S, Coombs S. 2010. Active wall following by Mexican blind cavefish (Astyanax mexicanus). Journal of Comparative Physiology A, 196(11): 853−867. doi: 10.1007/s00359-010-0567-8
    [20]
    Poss KD, Wilson LG, Keating MT. 2002. Heart regeneration in zebrafish. Science, 298(5601): 2188−2190. doi: 10.1126/science.1077857
    [21]
    Proudlove GR. 2015. Checklist of troglobitic subterranean fishes of the world to February 2015. cave-registry. org. uk.
    [22]
    Santacruz A, Hernández-Mena D, Miranda-Gamboa R, et al. 2023. Host-parasite interactions in perpetual darkness: Macroparasite diversity in Astyanax mexicanus cavefish. Zoological Research, 44(4): 782−792.
    [23]
    Stockdale WT, Lemieux ME, Killen AC, et al. 2018. Heart regeneration in the Mexican cavefish. Cell Reports, 25(8): 1997−2007.e7. doi: 10.1016/j.celrep.2018.10.072
    [24]
    Swanson NE, Gluesenkamp AG, Donny AE, et al. 2023. Developmental environment contributes to rapid trait shifts among newly colonized subterranean habitats. Zoological Research, 44(4): 808−820.
    [25]
    Yoshizawa M, Gorički Š, Soares D, et al. 2010. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Current Biology, 20(18): 1631−1636. doi: 10.1016/j.cub.2010.07.017
    [26]
    Zhang JH, Long R, Jing YY, et al. 2023. Loss of behavioral stress response in blind cavefish reduces energy expenditure. Zoological Research, 44(4): 678−692. doi: 10.24272/j.issn.2095-8137.2022.354
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (800) PDF downloads(228) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return