Volume 44 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Xue-Yang Wang, Huang-Wei Song, Tian Yi, Ying-Bo Shen, Chong-Shan Dai, Cheng-Tao Sun, De-Jun Liu, Jian-Zhong Shen, Cong-Ming Wu, Yang Wang. Dihydroartemisinin inhibits plasmid transfer in drug-resistant Escherichia coli via limiting energy supply. Zoological Research, 2023, 44(5): 894-904. doi: 10.24272/j.issn.2095-8137.2023.084
Citation: Xue-Yang Wang, Huang-Wei Song, Tian Yi, Ying-Bo Shen, Chong-Shan Dai, Cheng-Tao Sun, De-Jun Liu, Jian-Zhong Shen, Cong-Ming Wu, Yang Wang. Dihydroartemisinin inhibits plasmid transfer in drug-resistant Escherichia coli via limiting energy supply. Zoological Research, 2023, 44(5): 894-904. doi: 10.24272/j.issn.2095-8137.2023.084

Dihydroartemisinin inhibits plasmid transfer in drug-resistant Escherichia coli via limiting energy supply

doi: 10.24272/j.issn.2095-8137.2023.084
All raw RNA-seq data were deposited in the National Center for Biotechnology Information (NCBI) sequence read archive (SRA) under BioProjectID PRJNA971775, Genome Sequence Archive under Accession No. CRA011728, and Science Data Bank under DOI: 10.57760/sciencedb.j00139.00055. All data generated in this study are available within the article and the Supplementary Data files.
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
The study was conceived and supervised by Y.W. X.Y.W., H.W.S. and T.Y. performed all the experiments. X.Y.W. analyzed the data under the guidance of Y.B.S., C.S.D., C.T.S., D.J.L., C.M.W. and J.Z.S.. Y.W. and X.Y.W. drafted most of the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This work was supported in part by grants from the Laboratory of Lingnan Modern Agriculture Project (NT2021006) and National Key Research and Development Program of China (2022YFD1800400)
More Information
  • Corresponding author: E-mail: wangyang@cau.edu.cn
  • Received Date: 2023-06-09
  • Accepted Date: 2023-06-10
  • Published Online: 2023-07-27
  • Publish Date: 2023-09-18
  • Conjugative transfer of antibiotic resistance genes (ARGs) by plasmids is an important route for ARG dissemination. An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs, highlighting potential challenges for controlling this type of horizontal transfer. Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance. Although such inhibitors are rare, they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood. Here, we studied the effects of dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, on conjugation. DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene (mcr-1) by more than 160-fold in vitro in Escherichia coli, and more than two-fold (IncI2 plasmid) in vivo in a mouse model. It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene blaNDM-5 by more than two-fold in vitro. Detection of intracellular adenosine triphosphate (ATP) and proton motive force (PMF), in combination with transcriptomic and metabolomic analyses, revealed that DHA impaired the function of the electron transport chain (ETC) by inhibiting the tricarboxylic acid (TCA) cycle pathway, thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer. Furthermore, expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure, indicating that the transfer apparatus for conjugation may be inhibited. Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.
  • All raw RNA-seq data were deposited in the National Center for Biotechnology Information (NCBI) sequence read archive (SRA) under BioProjectID PRJNA971775, Genome Sequence Archive under Accession No. CRA011728, and Science Data Bank under DOI: 10.57760/sciencedb.j00139.00055. All data generated in this study are available within the article and the Supplementary Data files.
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    The study was conceived and supervised by Y.W. X.Y.W., H.W.S. and T.Y. performed all the experiments. X.Y.W. analyzed the data under the guidance of Y.B.S., C.S.D., C.T.S., D.J.L., C.M.W. and J.Z.S.. Y.W. and X.Y.W. drafted most of the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Altman FP. 1976. Tetrazolium salts and formazans. Progress in Histochemistry and Cytochemistry, 9(3): III–VI, 1–51.
    [2]
    Ansari MT, Saify ZS, Sultana N, et al. 2013. Malaria and artemisinin derivatives: an updated review. Mini-Reviews in Medicinal Chemistry, 13(13): 1879−1902. doi: 10.2174/13895575113136660097
    [3]
    Beaber JW, Hochhut B, Waldor MK. 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature, 427(6969): 72−74. doi: 10.1038/nature02241
    [4]
    Benz F, Huisman JS, Bakkeren E, et al. 2021. Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo. The ISME Journal, 15(3): 862−878. doi: 10.1038/s41396-020-00819-4
    [5]
    Borisov VB, Verkhovsky MI. 2015. Oxygen as acceptor. EcoSal Plus, 6(2),doi: 10.1128/ecosalplus.ESP-0012-2015.
    [6]
    Buckner MMC, Ciusa ML, Piddock LJV. 2018. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. Fems Microbiology Reviews, 42(6): 781−804. doi: 10.1093/femsre/fuy031
    [7]
    Cabezón E, Ripoll-Rozada J, Peña A, et al. 2015. Towards an integrated model of bacterial conjugation. Fems Microbiology Reviews, 39(1): 81−95.
    [8]
    Cen TY, Zhang XY, Xie SS, et al. 2020. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms. Environment International, 138: 105544. doi: 10.1016/j.envint.2020.105544
    [9]
    Centers for Disease Control and Prevention (U. S. ), National Center for Emerging Zoonotic and Infectious Diseases (U. S. ), National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (U. S. ), et al. 2013. Antibiotic Resistance Threats in the United States, 2013. Atlanta: CDC.
    [10]
    Chee-Sanford JC, Mackie RI, Koike S, et al. 2009. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 38(3): 1086−1108. doi: 10.2134/jeq2008.0128
    [11]
    Chen I, Christie PJ, Dubnau D. 2005. The ins and outs of DNA transfer in bacteria. Science, 310(5753): 1456−1460. doi: 10.1126/science.1114021
    [12]
    Chen SF, Zhou YQ, Chen YR, et al. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
    [13]
    Domenech A, Brochado AR, Sender V, et al. 2020. Proton motive force disruptors block bacterial competence and horizontal gene transfer. Cell Host & Microbe, 27(4): 544−555.e3.
    [14]
    Efferth T. 2017. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Seminars in Cancer Biology, 46: 65−83. doi: 10.1016/j.semcancer.2017.02.009
    [15]
    EUCAST. 2020. Breakpoint tables for interpretation of MICs and zone diameters, version 11.0. The European Committee on Antimicrobial Susceptibility Testing.
    [16]
    Feng GQ, Huang HN, Chen YG. 2021. Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: a review. Journal of Hazardous Materials, 420: 126602. doi: 10.1016/j.jhazmat.2021.126602
    [17]
    Getino M, de la Cruz F. 2018. Natural and artificial strategies to control the conjugative transmission of plasmids. Microbiology Spectrum, 6(1),doi: 10.1128/microbiolspec.MTBP-0015-2016.
    [18]
    Getino M, Sanabria-Ríos DJ, Fernández-López R, et al. 2015. Synthetic fatty acids prevent plasmid-mediated horizontal gene transfer. mBio, 6(5): e01032−15.
    [19]
    He T, Wang R, Liu DJ, et al. 2019. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology, 4(9): 1450−1456. doi: 10.1038/s41564-019-0445-2
    [20]
    Huang HN, Liao JQ, Zheng X, et al. 2019. Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus. Water Research, 158: 383−391. doi: 10.1016/j.watres.2019.04.046
    [21]
    Jia YQ, Yang BQ, Shi JR, et al. 2022. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force. Pharmacological Research, 175: 105978. doi: 10.1016/j.phrs.2021.105978
    [22]
    Jiao JY, Yang YQ, Liu MJ, et al. 2018. Artemisinin and Artemisia annua leaves alleviate Eimeria tenella infection by facilitating apoptosis of host cells and suppressing inflammatory response. Veterinary Parasitology, 254: 172−177. doi: 10.1016/j.vetpar.2018.03.017
    [23]
    Kaila VRI, Wikström M. 2021. Architecture of bacterial respiratory chains. Nature Reviews Microbiology, 19(5): 319−330. doi: 10.1038/s41579-020-00486-4
    [24]
    Kiani BH, Kayani WK, Khayam AU, et al. 2020. Artemisinin and its derivatives: a promising cancer therapy. Molecular Biology Reports, 47(8): 6321−6336. doi: 10.1007/s11033-020-05669-z
    [25]
    Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [26]
    Kopylova E, Noé L, Touzet H. 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24): 3211−3217. doi: 10.1093/bioinformatics/bts611
    [27]
    Lerminiaux NA, Cameron ADS. 2019. Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 65(1): 34−44. doi: 10.1139/cjm-2018-0275
    [28]
    Li G, Xia LJ, Zhou SY, et al. 2021. Linoleic acid and α-linolenic acid inhibit conjugative transfer of an IncX4 plasmid carrying mcr-1. Journal of Applied Microbiology, 130(6): 1893–1901.
    [29]
    Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7): 923−930. doi: 10.1093/bioinformatics/btt656
    [30]
    Ling ZR, Yin WJ, Shen ZQ, et al. 2020. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. Journal of Antimicrobial Chemotherapy, 75(11): 3087–3095.
    [31]
    Liu YY, Wang Y, Walsh TR, et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2): 161−168. doi: 10.1016/S1473-3099(15)00424-7
    [32]
    Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [33]
    Lu J, Wang Y, Li J, et al. 2018. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environment International, 121: 1217−1226. doi: 10.1016/j.envint.2018.10.040
    [34]
    Meinersmann RJ. 2019. The biology of IncI2 plasmids shown by whole-plasmid multi-locus sequence typing. Plasmid, 106: 102444. doi: 10.1016/j.plasmid.2019.102444
    [35]
    Mooney JP, Galloway LJ, Riley EM. 2019. Malaria, anemia, and invasive bacterial disease: a neutrophil problem?. Journal of Leukocyte Biology, 105(4): 645−655. doi: 10.1002/JLB.3RI1018-400R
    [36]
    Niu B, Qin WW, Guo WZ, et al. 2018. Study on anticoccidial efficacy of artemisia annua powder. China Animal Husbandry & Veterinary Medicine, 45(6): 1683−1691. (in Chinese)
    [37]
    Nolfi-Donegan D, Braganza A, Shiva S. 2020. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology, 37: 101674. doi: 10.1016/j.redox.2020.101674
    [38]
    O’Neill J. 2016. Tackling drug-resistant infections globally: final report and recommendations.
    [39]
    Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature, 405(6784): 299−304. doi: 10.1038/35012500
    [40]
    Partridge SR, Kwong SM, Firth N, et al. 2018. Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31(4): e00088−17.
    [41]
    Rendón MA, Saldaña Z, Erdem AL, et al. 2007. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proceedings of the National Academy of Sciences of the United States of America, 104(25): 10637−10642.
    [42]
    Ripoll-Rozada J, García-Cazorla Y, Getino M, et al. 2016. Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation. Molecular Microbiology, 100(5): 912−921. doi: 10.1111/mmi.13359
    [43]
    San Millan A. 2018. Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends in Microbiology, 26(12): 978−985. doi: 10.1016/j.tim.2018.06.007
    [44]
    Schröder G, Lanka E. 2005. The mating pair formation system of conjugative plasmids-a versatile secretion machinery for transfer of proteins and DNA. Plasmid, 54(1): 1−25. doi: 10.1016/j.plasmid.2005.02.001
    [45]
    Sekizuka T, Kawanishi M, Ohnishi M, et al. 2017. Elucidation of quantitative structural diversity of remarkable rearrangement regions, shufflons, in IncI2 plasmids. Scientific Reports, 7(1): 928. doi: 10.1038/s41598-017-01082-y
    [46]
    Slezakova S, Ruda-Kucerova J. 2017. Anticancer activity of artemisinin and its derivatives. Anticancer Research, 37(11): 5995−6003.
    [47]
    Stevenson C, Hall JP, Harrison E, et al. 2017. Gene mobility promotes the spread of resistance in bacterial populations. The ISME Journal, 11(8): 1930−1932. doi: 10.1038/ismej.2017.42
    [48]
    Sun J, Chen C, Cui CY, et al. 2019. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nature Microbiology, 4(9): 1457–1464.
    [49]
    Sun J, Yang RS, Zhang QJ, et al. 2016. Co-transfer of blaNDM-5 and mcr-1 by an IncX3-X4 hybrid plasmid in Escherichia coli. Nature Microbiology, 1(12): 16176.
    [50]
    Tjaden B. 2020. A computational system for identifying operons based on RNA-seq data. Methods, 176: 62−70. doi: 10.1016/j.ymeth.2019.03.026
    [51]
    Tu YY. 2016. Artemisinin-a gift from traditional chinese medicine to the world (Nobel lecture). Angewandte Chemie International Edition, 55(35): 10210−10226. doi: 10.1002/anie.201601967
    [52]
    Wang HG, Qi HC, Gong SJ, et al. 2020. Fe3O4 composited with MoS2 blocks horizontal gene transfer. Colloids and Surfaces B:Biointerfaces, 185: 110569. doi: 10.1016/j.colsurfb.2019.110569
    [53]
    Wang Q, Mao DQ, Luo Y. 2015. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4. Environmental Science & Technology, 49(14): 8731−8740.
    [54]
    Wang XY, Jiang JY, Yang L, et al. 2022. Colistin promotes mcr-1-positive IncI2 plasmid conjugation between Escherichia coli. Scientia Agricultura Sinica, 55(14): 2862–2874. (in Chinese)
    [55]
    Wang Y, Lu J, Zhang S, et al. 2021. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. The ISME Journal, 15(9): 2493−2508. doi: 10.1038/s41396-021-00945-7
    [56]
    WHO. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: WHO.
    [57]
    Wu YJ, Yan HC, Zhu XM, et al. 2022. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via restraining the energy supply for conjugative plasmid transfer. Environmental Science & Technology, 56(17): 12573−12583.
    [58]
    Xiao X, Zeng FX, Li RC, et al. 2022. Subinhibitory concentration of colistin promotes the conjugation frequencies of Mcr-1- and blaNDM-5-positive plasmids. Microbiology Spectrum, 10(2): e0216021. doi: 10.1128/spectrum.02160-21
    [59]
    Yu KQ, Chen FR, Yue L, et al. 2020. CeO2 Nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer. Environmental Science & Technology, 54(16): 10012−10021.
    [60]
    Yu ZG, Wang Y, Lu J, et al. 2021. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. The ISME Journal, 15(7): 2117−2130. doi: 10.1038/s41396-021-00909-x
    [61]
    Zhou YL, Liu BC, Chu XL, et al. 2022. Commercialized artemisinin derivatives combined with colistin protect against critical Gram-negative bacterial infection. Communications Biology, 5(1): 931. doi: 10.1038/s42003-022-03898-5
  • ZR-2023-084-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (501) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return