Volume 44 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Jia-Jia Chen, Kai Lei. The known, unknown, and unknown unknowns of cell-cell communication in planarian regeneration. Zoological Research, 2023, 44(5): 981-992. doi: 10.24272/j.issn.2095-8137.2023.044
Citation: Jia-Jia Chen, Kai Lei. The known, unknown, and unknown unknowns of cell-cell communication in planarian regeneration. Zoological Research, 2023, 44(5): 981-992. doi: 10.24272/j.issn.2095-8137.2023.044

The known, unknown, and unknown unknowns of cell-cell communication in planarian regeneration

doi: 10.24272/j.issn.2095-8137.2023.044
The authors declare that they have no competing interests.
J.J.C. and K.L. wrote the manuscript and constructed the figures. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the Westlake Education Foundation and National Natural Science Foundation of China (32122032 and 31970750 to K.L.)
More Information
  • Corresponding author: E-mail: leikai@westlake.edu.cn
  • Received Date: 2023-06-02
  • Accepted Date: 2023-06-02
  • Published Online: 2023-09-12
  • Publish Date: 2023-09-18
  • Planarians represent the most primitive bilateral triploblastic animals. Most planarian species exhibit mechanisms for whole-body regeneration, exemplified by the regeneration of their cephalic ganglion after complete excision. Given their robust whole-body regeneration capacity, planarians have been model organisms in regenerative research for more than 240 years. Advancements in research tools and techniques have progressively elucidated the mechanisms underlying planarian regeneration. Accurate cell-cell communication is recognized as a fundamental requirement for regeneration. In recent decades, mechanisms associated with such communication have been revealed at the cellular level. Notably, stem cells (neoblasts) have been identified as the source of all new cells during planarian homeostasis and regeneration. The interplay between neoblasts and somatic cells affects the identities and proportions of various tissues during homeostasis and regeneration. Here, this review outlines key discoveries regarding communication between stem cell compartments and other cell types in planarians, as well as the impact of communication on planarian regeneration. Additionally, this review discusses the challenges and potential directions of future planarian research, emphasizing the sustained impact of this field on our understanding of animal regeneration.
  • The authors declare that they have no competing interests.
    J.J.C. and K.L. wrote the manuscript and constructed the figures. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Agata K, Saito Y, Nakajima E. 2007. Unifying principles of regeneration I: Epimorphosis versus morphallaxis. Development, Growth & Differentiation, 49(2): 73−78.
    [2]
    Alibardi L. 2018. Tail regeneration reduction in lizards after repetitive amputation or cauterization reflects an increase of immune cells in blastemas. Zoological Research, 39(6): 413−423. doi: 10.24272/j.issn.2095-8137.2018.050
    [3]
    Arnold CP, Benham-Pyle BW, Lange JJ, et al. 2019. Wnt and TGFβ coordinate growth and patterning to regulate size-dependent behaviour. Nature, 572(7771): 655−659. doi: 10.1038/s41586-019-1478-7
    [4]
    Arnold CP, Lozano AM, Mann FG Jr, et al. 2021. Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals. Nature Communications, 12(1): 6706. doi: 10.1038/s41467-021-26986-2
    [5]
    Baguñà J, Saló E, Auladell C. 1989a. Regeneration and pattern formation in planarians: III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development, 107(1): 77−86. doi: 10.1242/dev.107.1.77
    [6]
    Baguñà J, Saló E, Romero R. 1989b. Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. International Journal of Developmental Biology, 33(2): 261−266.
    [7]
    Baguñà J, Saló E, Romero R, et al. 1994. Regeneration and pattern-formation in planarians - cells, molecules and genes. Zoological Science, 11(6): 781−795.
    [8]
    Barberán S, Fraguas S, Cebrià F. 2016. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis. Development, 143(12): 2089−2102.
    [9]
    Bardeen CR. 1902. Embryonic and Regenerative Development in Planarians. Biological Bulletin, 3(6): 262−288. doi: 10.2307/1535546
    [10]
    Bardeen CR, Baetjer FH. 1904. The inhibitive action of the Roentgen rays on regeneration in planarians. Journal of Experimental Zoology, 1(1): 191−195. doi: 10.1002/jez.1400010107
    [11]
    Bautz A, Schilt J. 1986. Somatostatin-like peptide and regeneration capacities in planarians. General and Comparative Endocrinology, 64(2): 267−272. doi: 10.1016/0016-6480(86)90013-4
    [12]
    Bely AE, Nyberg KG. 2010. Evolution of animal regeneration: re-emergence of a field. Trends in Ecology & Evolution, 25(3): 161−170.
    [13]
    Benham-Pyle BW, Brewster CE, Kent AM, et al. 2021. Identification of rare, transient post-mitotic cell states that are induced by injury and required for whole-body regeneration in Schmidtea mediterranea. Nature Cell Biology, 23(9): 939–952.
    [14]
    Benham-Pyle BW, Mann FG Jr, Brewster CE, et al. 2023. Planarians employ diverse and dynamic stem cell microenvironments to support whole-body regeneration. bioRxiv,doi: 10.1101/2022.03.20.485025.
    [15]
    Best JB, Goodman AB, Pigon A. 1969. Fissioning in planarians: control by the brain. Science, 164(3879): 565−566. doi: 10.1126/science.164.3879.565
    [16]
    Brøndsted HV. 1955. Planarian regeneration. Biological Reviews, 30(1): 65−126. doi: 10.1111/j.1469-185X.1955.tb00649.x
    [17]
    Cebrià F, Vispo M, Newmark P, et al. 1997. Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina. Development Genes and Evolution, 207(5): 306−316. doi: 10.1007/s004270050118
    [18]
    Cebrià F, Kobayashi C, Umesono Y, et al. 2002. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature, 419(6907): 620−624. doi: 10.1038/nature01042
    [19]
    Chan A, Ma S, Pearson BJ, et al. 2021. Collagen IV differentially regulates planarian stem cell potency and lineage progression. Proceedings of the National Academy of Sciences of the United States of America, 118(16): e2021251118.
    [20]
    Chandebois R. 1979. The dynamics of wound closure and its role in the programming of planarian regeneration I-blastema emergence. Development, Growth & Differentiation, 21(3): 195−204.
    [21]
    Cheng LC, Tu KC, Seidel CW, et al. 2018. Cellular, ultrastructural and molecular analyses of epidermal cell development in the planarian Schmidtea mediterranea. Developmental Biology, 433(2): 357–373.
    [22]
    Child CM. 1903. Studies on regulation. Archiv für Entwicklungsmechanik der Organismen, 17(1): 1−40.
    [23]
    Child CM. 1911. Studies on the dynamics of morphogenesis and inheritance in experimental reproduction. I. The axial gradient in planaria dorotocephala as a limiting factor in regulation. Journal of Experimental Zoology, 10: 265−320. doi: 10.1002/jez.1400100304
    [24]
    Child CM. 1913. Studies on the dynamics of morphogenesis and inheritance in experimental reproduction. Archiv für Entwicklungsmechanik der Organismen, 37(1): 108−158.
    [25]
    Child CM. 1932. Experimental studies on a Japanese Planarian. 1. Fission and differential susceptibility. Science Reports of the Tohoku University, Series, 4. Biology 7: 313-345.
    [26]
    Child CM, Watanabe Y. 1935. The Head Frequency Gradient in Euplanaria dorotocephala. Physiological Zoology, 8(1): 1−40. doi: 10.1086/physzool.8.1.30151240
    [27]
    Cloutier JK, Mcmann CL, Oderberg IM, et al. 2021. activin-2 is required for regeneration of polarity on the planarian anterior-posterior axis. PLoS Genetics, 17(3): e1009466. doi: 10.1371/journal.pgen.1009466
    [28]
    Cote LE, Simental E, Reddien PW. 2019. Muscle functions as a connective tissue and source of extracellular matrix in planarians. Nature Communications, 10(1): 1592. doi: 10.1038/s41467-019-09539-6
    [29]
    Cui GS, Zhou JY, Ge XY, et al. 2023. m6A promotes planarian regeneration. Cell Proliferation, 56(5): e13481. doi: 10.1111/cpr.13481
    [30]
    Currie KW, Brown DDR, Zhu SJ, et al. 2016a. HOX gene complement and expression in the planarian Schmidtea mediterranea. EvoDevo, 7: 7.
    [31]
    Currie KW, Molinaro AM, Pearson BJ. 2016b. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. eLife, 5: e19735. doi: 10.7554/eLife.19735
    [32]
    Dagan Y, Yesharim Y, Bonneau AR, et al. 2022. m6A is required for resolving progenitor identity during planarian stem cell differentiation. The EMBO Journal, 41(21): e109895. doi: 10.15252/embj.2021109895
    [33]
    Darnet S, Dragalzew AC, Amaral DB, et al. 2019. Deep evolutionary origin of limb and fin regeneration. Proceedings of the National Academy of Sciences of the United States of America, 116(30): 15106−15115.
    [34]
    Davies EL, Lei K, Seidel CW, et al. 2017. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. eLife, 6: e21052. doi: 10.7554/eLife.21052
    [35]
    De Simone A, Evanitsky MN, Hayden L, et al. 2021. Control of osteoblast regeneration by a train of Erk activity waves. Nature, 590(7844): 129−133. doi: 10.1038/s41586-020-03085-8
    [36]
    Dingwall CB, King RS. 2016. Muscle-derived matrix metalloproteinase regulates stem cell proliferation in planarians. Developmental Dynamics, 245(9): 963−970. doi: 10.1002/dvdy.24428
    [37]
    Dubey VK, Sarkar SR, Lakshmanan V, et al. 2022. S. mediterranea ETS-1 regulates the function of cathepsin-positive cells and the epidermal lineage landscape via basement membrane remodeling. Journal of Cell Science, 135(20): jcs259900. doi: 10.1242/jcs.259900
    [38]
    Dubois F, Wolff E. 1947. Sur une methode d’irradiation localisee permettant de mettre en evidence la migration des cellules do regeneration chcz les planaires. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 141: 903−906.
    [39]
    Eisenhoffer GT, Kang H, Sánchez Alvarado A. 2008. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell, 3(3): 327–339.
    [40]
    Fincher CT, Wurtzel O, De Hoog T, et al. 2018. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science, 360(6391): eaaq1736.
    [41]
    Fire A, Xu S, Montgomery MK, et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669): 806−811. doi: 10.1038/35888
    [42]
    Flores NM, Oviedo NJ, Sage J. 2016. Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration. Developmental Biology, 418(1): 179−188. doi: 10.1016/j.ydbio.2016.08.015
    [43]
    Forsthoefel DJ, Cejda NI, Khan UW, et al. 2020. Cell-type diversity and regionalized gene expression in the planarian intestine. eLife, 9: e52613. doi: 10.7554/eLife.52613
    [44]
    Forsthoefel DJ, James NP, Escobar DJ, et al. 2012. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Developmental Cell, 23(4): 691−704. doi: 10.1016/j.devcel.2012.09.008
    [45]
    Gaviño MA, Reddien PW. 2011. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians. Current Biology, 21(4): 294−299. doi: 10.1016/j.cub.2011.01.017
    [46]
    Gaviño MA, Wenemoser D, Wang IE, et al. 2013. Tissue absence initiates regeneration through follistatin-mediated inhibition of activin signaling. eLife, 2: e00247. doi: 10.7554/eLife.00247
    [47]
    Gittin DI, Petersen CP. 2022. A Wnt11 and dishevelled signaling pathway acts prior to injury to control wound polarization for the onset of planarian regeneration. Current Biology, 32(24): 5262−5273.e2. doi: 10.1016/j.cub.2022.10.071
    [48]
    Goldman JA, Poss KD. 2020. Gene regulatory programmes of tissue regeneration. Nature Reviews Genetics, 21(9): 511−525. doi: 10.1038/s41576-020-0239-7
    [49]
    Guo TX, Peters AHFM, Newmark PA. 2006. A Bruno-like gene is required for stem cell maintenance in planarians. Developmental Cell, 11(2): 159−169. doi: 10.1016/j.devcel.2006.06.004
    [50]
    Hall RN, Weill U, Drees L, et al. 2022. Heterologous reporter expression in the planarian Schmidtea mediterranea through somatic mRNA transfection. Cell Reports Methods, 2(10): 100298. doi: 10.1016/j.crmeth.2022.100298
    [51]
    Henderson JM, Nisperos SV, Weeks J, et al. 2015. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians. Developmental Biology, 404(2): 21−34. doi: 10.1016/j.ydbio.2015.04.021
    [52]
    Hill EM, Petersen CP. 2015. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain. Development, 142(24): 4217−4229.
    [53]
    Hill EM, Petersen CP. 2018. Positional information specifies the site of organ regeneration and not tissue maintenance in planarians. eLife, 7: e33680. doi: 10.7554/eLife.33680
    [54]
    Hori I. 1991. Role of fixed parenchyma cells in blastema formation of the planarian Dugesia japonica. International Journal of Developmental Biology, 35(2): 101–108.
    [55]
    Hori I, Kishida Y. 1998. A fine structural study of regeneration after fission in the planarian Dugesia japonica. Hydrobiologia, 383(1): 131−136.
    [56]
    Jenkins JE, Roberts-Galbraith R. 2023. Heterotrimeric G proteins regulate planarian regeneration and behavior. Genetics, 223(4): iyad019. doi: 10.1093/genetics/iyad019
    [57]
    Kenk R. 1937. Sexual and Asexual Reproduction in Euplanaria tigrina (Girard). Biological Bulletin, 73(2): 280−294. doi: 10.2307/1537589
    [58]
    Kennerdell JR, Carthew RW. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95(7): 1017−1026. doi: 10.1016/S0092-8674(00)81725-0
    [59]
    Kim IV, Riedelbauch S, Kuhn CD. 2020. The piRNA pathway in planarian flatworms: new model, new insights. Biological Chemistry, 401(10): 1123−1141. doi: 10.1515/hsz-2019-0445
    [60]
    Kimura JO, Bolaños DM, Ricci L, et al. 2022. Embryonic origins of adult pluripotent stem cells. Cell, 185(25): 4756−4769.e13. doi: 10.1016/j.cell.2022.11.008
    [61]
    Koinuma S, Umesono Y, Watanabe K, et al. 2003. The expression of planarian brain factor homologs, DjFoxG and DjFoxD. Gene Expression Patterns, 3(1): 21–27.
    [62]
    Krichinskaya EB. 1986. Asexual reproduction, regeneration, and somatic embryogenesis in the planarian Dugesia tigrina (Turbellaria). Hydrobiologia, 132(1): 195−200. doi: 10.1007/BF00046248
    [63]
    Lakshmanan V, Bansal D, Kulkarni J, et al. 2016. Genome-wide analysis of polyadenylation events in Schmidtea mediterranea. G3 Genes| Genomes| Genetics, 6(10): 3035–3048.
    [64]
    Lei K, Thi-Kim Vu H, Mohan RD, et al. 2016. Egf signaling directs neoblast repopulation by regulating asymmetric cell division in planarians. Developmental Cell, 38(4): 413−429. doi: 10.1016/j.devcel.2016.07.012
    [65]
    Lei K, Zhang WY, Chen JJ, et al. 2023. Pluripotency retention and exogenous mRNA introduction in planarian stem cells in culture. iScience, 26(2): 106001. doi: 10.1016/j.isci.2023.106001
    [66]
    Liu SY, Selck C, Friedrich B, et al. 2013. Reactivating head regrowth in a regeneration-deficient planarian species. Nature, 500(7460): 81−84. doi: 10.1038/nature12414
    [67]
    Malinowski PT, Cochet-Escartin O, Kaj KJ, et al. 2017. Mechanics dictate where and how freshwater planarians fission. Proceedings of the National Academy of Sciences of the United States of America, 114(41): 10888−10893.
    [68]
    Martín-Durán JM, Monjo F, Romero R. 2012. Planarian embryology in the era of comparative developmental biology. The International Journal of Developmental Biology, 56(1-3): 39−48.
    [69]
    Miller CM, Newmark PA. 2012. An insulin-like peptide regulates size and adult stem cells in planarians. The International Journal of Developmental Biology, 56(1-3): 75−82.
    [70]
    Mohamed Haroon M, Lakshmanan V, Sarkar SR, et al. 2021. Mitochondrial state determines functionally divergent stem cell population in planaria. Stem Cell Reports, 16(5): 1302−1316. doi: 10.1016/j.stemcr.2021.03.022
    [71]
    Molina MD, Cebrià F. 2021. Decoding stem cells: an overview on planarian stem cell heterogeneity and lineage progression. Biomolecules, 11(10): 1532. doi: 10.3390/biom11101532
    [72]
    Molinaro AM, Lindsay-Mosher N, Pearson BJ. 2021. Identification of TOR-responsive slow-cycling neoblasts in planarians. EMBO Reports, 22(3): e50292. doi: 10.15252/embr.202050292
    [73]
    Molinaro AM, Pearson BJ. 2016. In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians. Genome Biology, 17: 87. doi: 10.1186/s13059-016-0937-9
    [74]
    Morgan TH. 1901. Growth and regeneration in Planaria lugubris. Archiv für Entwicklungsmechanik der Organismen, 13(1-2): 179−212.
    [75]
    Morgan TH. 1905. “Polarity” considered as a phenomenon of gradation of materials. Journal of Experimental Zoology, 2: 495−506. doi: 10.1002/jez.1400020404
    [76]
    Neiro J, Sridhar D, Dattani A, et al. 2022. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells. eLife, 11: e79675. doi: 10.7554/eLife.79675
    [77]
    Nentwig MR. 1978. Comparative morphological studies of head development after decapitation and after fission in the planarian Dugesia dorotocephala. Transactions of the American Microscopical Society, 97(3): 297–310.
    [78]
    Newmark PA, Sánchez Alvarado A. 2000. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Developmental Biology, 220(2): 142−153. doi: 10.1006/dbio.2000.9645
    [79]
    Newmark PA, Sánchez Alvarado A. 2002. Not your father's planarian: a classic model enters the era of functional genomics. Nature Reviews Genetics, 3(3): 210−219. doi: 10.1038/nrg759
    [80]
    Newmark PA, Sánchez Alvarado A. 2022. Schmidtea happens: Re-establishing the planarian as a model for studying the mechanisms of regeneration. Current Topics in Developmental Biology, 147: 307−344.
    [81]
    Pan XY, Zeng YY, Liu YM, et al. 2023. Resolving vertebrate brain evolution through salamander brain development and regeneration. Zoological Research, 44(1): 219−222.
    [82]
    Pascual-Carreras E, Marín-Barba M, Castillo-Lara S, et al. 2023. Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration. Nature Communications, 14(1): 298. doi: 10.1038/s41467-023-35937-y
    [83]
    Pascual-Carreras E, Marin-Barba M, Herrera-Úbeda C, et al. 2020. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Development, 147(7): dev184044.
    [84]
    Pascual-Carreras E, Sureda-Gómez M, Barrull-Mascaró R, et al. 2021. WNT-FRIZZLED-LRP5/6 signaling mediates posterior fate and proliferation during planarian regeneration. Genes, 12(1): 101. doi: 10.3390/genes12010101
    [85]
    Pearson BJ. 2022. Finding the potency in planarians. Communications Biology, 5(1): 970. doi: 10.1038/s42003-022-03905-9
    [86]
    Pearson BJ, Eisenhoffer GT, Gurley KA, et al. 2009. Formaldehyde-based whole-mount in situ hybridization method for planarians. Developmental Dynamics, 238(2): 443−450. doi: 10.1002/dvdy.21849
    [87]
    Pearson BJ, Sánchez Alvarado A. 2010. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development, 137(2): 213−221. doi: 10.1242/dev.044297
    [88]
    Pedersen KJ. 1959. Cytological studies on the planarian neoblast. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 50(6): 799−817.
    [89]
    Peng ZL, Yin BX, Ren RM, et al. 2021. Altered metabolic state impedes limb regeneration in salamanders. Zoological Research, 42(6): 772−782. doi: 10.24272/j.issn.2095-8137.2021.186
    [90]
    Petersen CP, Reddien PW. 2008. Smedcatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science, 319(5861): 327−330. doi: 10.1126/science.1149943
    [91]
    Petersen CP, Reddien PW. 2009. A wound-induced Wnt expression program controls planarian regeneration polarity. Proceedings of the National Academy of Sciences of the United States of America, 106(40): 17061−17066.
    [92]
    Petersen CP, Reddien PW. 2011. Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science, 332(6031): 852−855. doi: 10.1126/science.1202143
    [93]
    Qin T, Zhang GK, Zheng Y, et al. 2023. A population of stem cells with strong regenerative potential discovered in deer antlers. Science, 379(6634): 840−847. doi: 10.1126/science.add0488
    [94]
    Randolph H. 1892. The regeneration of the tail in lumbriculus. Journal of Morphology, 7(3): 317−344. doi: 10.1002/jmor.1050070304
    [95]
    Randolph H. 1897. Observations and experiments on regeneration in Planarians. Archiv für Entwicklungsmechanik der Organismen, 5(2): 352−372.
    [96]
    Raz AA, Wurtzel O, Reddien PW. 2021. Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell, 28(7): 1307−1322.e5. doi: 10.1016/j.stem.2021.03.021
    [97]
    Reddien PW. 2018. The cellular and molecular basis for planarian regeneration. Cell, 175(2): 327−345. doi: 10.1016/j.cell.2018.09.021
    [98]
    Reddien PW. 2022. Positional information and stem cells combine to result in planarian regeneration. Cold Spring Harbor Perspectives in Biology, 14(4): a040717.
    [99]
    Reddien PW, Bermange AL, Kicza AM, et al. 2007. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development, 134(22): 4043−4051. doi: 10.1242/dev.007138
    [100]
    Reddien PW, Oviedo NJ, Jennings JR, et al. 2005. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science, 310(5752): 1327−1330. doi: 10.1126/science.1116110
    [101]
    Roberts-Galbraith RH, Newmark PA. 2013. Follistatin antagonizes activin signaling and acts with notum to direct planarian head regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(4): 1363−1368.
    [102]
    Rossi L, Iacopetti P, Salvetti A. 2012. Stem cells and neural signalling: the case of neoblast recruitment and plasticity in low dose X-ray treated planarians. The International Journal of Developmental Biology, 56(1-3): 135−142.
    [103]
    Rossi L, Salvetti A, Lena A, et al. 2006. DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Development Genes and Evolution, 216(6): 335−346. doi: 10.1007/s00427-006-0060-0
    [104]
    Sakurai T, Lee H, Kashima M, et al. 2012. The planarian P2X homolog in the regulation of asexual reproduction. The International Journal of Developmental Biology, 56(1-3): 173−182.
    [105]
    Sánchez Alvarado A. 2006. Planarian regeneration: its end is its beginning. Cell, 124(2): 241−245. doi: 10.1016/j.cell.2006.01.012
    [106]
    Sánchez Alvarado A, Newmark PA. 1999. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proceedings of the National Academy of Sciences of the United States of America, 96(9): 5049−5054.
    [107]
    Sánchez Alvarado A, Newmark PA, Robb SM, et al. 2002. The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development, 129(24): 5659−5665. doi: 10.1242/dev.00167
    [108]
    Sasidharan V, Lu YC, Bansal D, et al. 2013. Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea. RNA, 19(10): 1394–1404.
    [109]
    Scimone ML, Atabay KD, Fincher CT, et al. 2020. Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration. Science, 368(6498): eaba3203. doi: 10.1126/science.aba3203
    [110]
    Scimone ML, Cloutier JK, Maybrun CL, et al. 2022. The planarian wound epidermis gene equinox is required for blastema formation in regeneration. Nature Communications, 13(1): 2726. doi: 10.1038/s41467-022-30412-6
    [111]
    Scimone ML, Cote LE, Rogers T, et al. 2016. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis. eLife, 5: e12845. doi: 10.7554/eLife.12845
    [112]
    Scimone ML, Wurtzel O, Malecek K, et al. 2018. foxF-1 controls specification of non-body wall muscle and phagocytic cells in planarians. Current Biology, 28(23): 3787−3801.e6. doi: 10.1016/j.cub.2018.10.030
    [113]
    Sikes JM, Newmark PA. 2013. Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature, 500(7460): 77−80. doi: 10.1038/nature12403
    [114]
    Solana J, Irimia M, Ayoub S, et al. 2016. Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians. eLife, 5: e16797. doi: 10.7554/eLife.16797
    [115]
    Solana J, Kao DM, Mihaylova Y, et al. 2012. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach. Genome Biology, 13(3): R19. doi: 10.1186/gb-2012-13-3-r19
    [116]
    Sun F, Ou JH, Shoffner AR, et al. 2022. Enhancer selection dictates gene expression responses in remote organs during tissue regeneration. Nature Cell Biology, 24(5): 685−696. doi: 10.1038/s41556-022-00906-y
    [117]
    Takeo M, Chou WC, Sun Q, et al. 2013. Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature, 499(7457): 228−232. doi: 10.1038/nature12214
    [118]
    Tanaka EM, Reddien PW. 2011. The cellular basis for animal regeneration. Developmental Cell, 21(1): 172−185. doi: 10.1016/j.devcel.2011.06.016
    [119]
    Tomasso A, Koopmans T, Lijnzaad P, et al. 2023. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice (Acomys). Science Advances, 9(17): eadf2331. doi: 10.1126/sciadv.adf2331
    [120]
    Tu KC, Cheng LC, Tk Vu H, et al. 2015. Egr-5 is a post-mitotic regulator of planarian epidermal differentiation. eLife, 4: e10501. doi: 10.7554/eLife.10501
    [121]
    Turner CD. 1935. The effects of x-rays on anterior regeneration in Lumbriculus inconstans. Journal of Experimental Zoology, 71(1): 53−81. doi: 10.1002/jez.1400710104
    [122]
    Van Wolfswinkel JC, Wagner DE, Reddien PW. 2014. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell, 15(3): 326−339. doi: 10.1016/j.stem.2014.06.007
    [123]
    Vogg MC, Galliot B, Tsiairis CD. 2019. Model systems for regeneration: hydra. Development, 146(21): dev177212.
    [124]
    Wagner DE, Wang IE, Reddien PW. 2011. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science, 332(6031): 811−816. doi: 10.1126/science.1203983
    [125]
    Wang W, Hu CK, Zeng A, et al. 2020. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science, 369(6508): eaaz3090. doi: 10.1126/science.aaz3090
    [126]
    Wei XY, Fu SL, Li HB, et al. 2022. Single-cell stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science, 377(6610): eabp9444. doi: 10.1126/science.abp9444
    [127]
    Wenemoser D, Lapan SW, Wilkinson AW, et al. 2012. A molecular wound response program associated with regeneration initiation in planarians. Genes & Development, 26(9): 988−1002.
    [128]
    Wenemoser D, Reddien PW. 2010. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, 344(2): 979−991. doi: 10.1016/j.ydbio.2010.06.017
    [129]
    Witchley JN, Mayer M, Wagner DE, et al. 2013. Muscle cells provide instructions for planarian regeneration. Cell Reports, 4(4): 633−641. doi: 10.1016/j.celrep.2013.07.022
    [130]
    Wong LL, Bruxvoort CG, Cejda NI, et al. 2022. Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians. Nature Communications, 13(1): 3803. doi: 10.1038/s41467-022-31385-2
    [131]
    Wurtzel O, Cote LE, Poirier A, et al. 2015. A generic and cell-type-specific wound response precedes regeneration in planarians. Developmental Cell, 35(5): 632−645. doi: 10.1016/j.devcel.2015.11.004
    [132]
    Wurtzel O, Oderberg IM, Reddien PW. 2017. Planarian epidermal stem cells respond to positional cues to promote cell-type diversity. Developmental Cell, 40(5): 491−504.e5. doi: 10.1016/j.devcel.2017.02.008
    [133]
    Wyss LS, Bray SR, Wang B. 2022. Cellular diversity and developmental hierarchy in the planarian nervous system. Current Opinion in Genetics & Development, 76: 101960.
    [134]
    Zeng A, Li H, Guo LH, et al. 2018. Prospectively isolated tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration. Cell, 173(7): 1593−1608.e20. doi: 10.1016/j.cell.2018.05.006
    [135]
    Ziman B, Karabinis P, Barghouth P, et al. 2020. Sirtuin-1 regulates organismal growth by altering feeding behavior and intestinal morphology in planarians. Journal of Cell Science, 133(10): jcs239467.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (548) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return