Citation: | Jia-Jia Chen, Kai Lei. The known, unknown, and unknown unknowns of cell-cell communication in planarian regeneration. Zoological Research, 2023, 44(5): 981-992. doi: 10.24272/j.issn.2095-8137.2023.044 |
[1] |
Agata K, Saito Y, Nakajima E. 2007. Unifying principles of regeneration I: Epimorphosis versus morphallaxis. Development, Growth & Differentiation, 49(2): 73−78.
|
[2] |
Alibardi L. 2018. Tail regeneration reduction in lizards after repetitive amputation or cauterization reflects an increase of immune cells in blastemas.
|
[3] |
Arnold CP, Benham-Pyle BW, Lange JJ, et al. 2019. Wnt and TGFβ coordinate growth and patterning to regulate size-dependent behaviour.
|
[4] |
Arnold CP, Lozano AM, Mann FG Jr, et al. 2021. Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals.
|
[5] |
Baguñà J, Saló E, Auladell C. 1989a. Regeneration and pattern formation in planarians: III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells.
|
[6] |
Baguñà J, Saló E, Romero R. 1989b. Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. International Journal of Developmental Biology, 33(2): 261−266.
|
[7] |
Baguñà J, Saló E, Romero R, et al. 1994. Regeneration and pattern-formation in planarians - cells, molecules and genes. Zoological Science, 11(6): 781−795.
|
[8] |
Barberán S, Fraguas S, Cebrià F. 2016. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis. Development, 143(12): 2089−2102.
|
[9] |
Bardeen CR. 1902. Embryonic and Regenerative Development in Planarians.
|
[10] |
Bardeen CR, Baetjer FH. 1904. The inhibitive action of the Roentgen rays on regeneration in planarians.
|
[11] |
Bautz A, Schilt J. 1986. Somatostatin-like peptide and regeneration capacities in planarians.
|
[12] |
Bely AE, Nyberg KG. 2010. Evolution of animal regeneration: re-emergence of a field. Trends in Ecology & Evolution, 25(3): 161−170.
|
[13] |
Benham-Pyle BW, Brewster CE, Kent AM, et al. 2021. Identification of rare, transient post-mitotic cell states that are induced by injury and required for whole-body regeneration in Schmidtea mediterranea. Nature Cell Biology, 23(9): 939–952.
|
[14] |
Benham-Pyle BW, Mann FG Jr, Brewster CE, et al. 2023. Planarians employ diverse and dynamic stem cell microenvironments to support whole-body regeneration. bioRxiv,doi: 10.1101/2022.03.20.485025.
|
[15] |
Best JB, Goodman AB, Pigon A. 1969. Fissioning in planarians: control by the brain.
|
[16] |
Brøndsted HV. 1955. Planarian regeneration.
|
[17] |
Cebrià F, Vispo M, Newmark P, et al. 1997. Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina.
|
[18] |
Cebrià F, Kobayashi C, Umesono Y, et al. 2002. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians.
|
[19] |
Chan A, Ma S, Pearson BJ, et al. 2021. Collagen IV differentially regulates planarian stem cell potency and lineage progression. Proceedings of the National Academy of Sciences of the United States of America, 118(16): e2021251118.
|
[20] |
Chandebois R. 1979. The dynamics of wound closure and its role in the programming of planarian regeneration I-blastema emergence. Development, Growth & Differentiation, 21(3): 195−204.
|
[21] |
Cheng LC, Tu KC, Seidel CW, et al. 2018. Cellular, ultrastructural and molecular analyses of epidermal cell development in the planarian Schmidtea mediterranea. Developmental Biology, 433(2): 357–373.
|
[22] |
Child CM. 1903. Studies on regulation. Archiv für Entwicklungsmechanik der Organismen, 17(1): 1−40.
|
[23] |
Child CM. 1911. Studies on the dynamics of morphogenesis and inheritance in experimental reproduction. I. The axial gradient in planaria dorotocephala as a limiting factor in regulation.
|
[24] |
Child CM. 1913. Studies on the dynamics of morphogenesis and inheritance in experimental reproduction. Archiv für Entwicklungsmechanik der Organismen, 37(1): 108−158.
|
[25] |
Child CM. 1932. Experimental studies on a Japanese Planarian. 1. Fission and differential susceptibility. Science Reports of the Tohoku University, Series, 4. Biology 7: 313-345.
|
[26] |
Child CM, Watanabe Y. 1935. The Head Frequency Gradient in Euplanaria dorotocephala.
|
[27] |
Cloutier JK, Mcmann CL, Oderberg IM, et al. 2021. activin-2 is required for regeneration of polarity on the planarian anterior-posterior axis.
|
[28] |
Cote LE, Simental E, Reddien PW. 2019. Muscle functions as a connective tissue and source of extracellular matrix in planarians.
|
[29] |
Cui GS, Zhou JY, Ge XY, et al. 2023. m6A promotes planarian regeneration.
|
[30] |
Currie KW, Brown DDR, Zhu SJ, et al. 2016a. HOX gene complement and expression in the planarian Schmidtea mediterranea. EvoDevo, 7: 7.
|
[31] |
Currie KW, Molinaro AM, Pearson BJ. 2016b. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain.
|
[32] |
Dagan Y, Yesharim Y, Bonneau AR, et al. 2022. m6A is required for resolving progenitor identity during planarian stem cell differentiation.
|
[33] |
Darnet S, Dragalzew AC, Amaral DB, et al. 2019. Deep evolutionary origin of limb and fin regeneration. Proceedings of the National Academy of Sciences of the United States of America, 116(30): 15106−15115.
|
[34] |
Davies EL, Lei K, Seidel CW, et al. 2017. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration.
|
[35] |
De Simone A, Evanitsky MN, Hayden L, et al. 2021. Control of osteoblast regeneration by a train of Erk activity waves.
|
[36] |
Dingwall CB, King RS. 2016. Muscle-derived matrix metalloproteinase regulates stem cell proliferation in planarians.
|
[37] |
Dubey VK, Sarkar SR, Lakshmanan V, et al. 2022. S. mediterranea ETS-1 regulates the function of cathepsin-positive cells and the epidermal lineage landscape via basement membrane remodeling.
|
[38] |
Dubois F, Wolff E. 1947. Sur une methode d’irradiation localisee permettant de mettre en evidence la migration des cellules do regeneration chcz les planaires. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 141: 903−906.
|
[39] |
Eisenhoffer GT, Kang H, Sánchez Alvarado A. 2008. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell, 3(3): 327–339.
|
[40] |
Fincher CT, Wurtzel O, De Hoog T, et al. 2018. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science, 360(6391): eaaq1736.
|
[41] |
Fire A, Xu S, Montgomery MK, et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.
|
[42] |
Flores NM, Oviedo NJ, Sage J. 2016. Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration.
|
[43] |
Forsthoefel DJ, Cejda NI, Khan UW, et al. 2020. Cell-type diversity and regionalized gene expression in the planarian intestine.
|
[44] |
Forsthoefel DJ, James NP, Escobar DJ, et al. 2012. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians.
|
[45] |
Gaviño MA, Reddien PW. 2011. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians.
|
[46] |
Gaviño MA, Wenemoser D, Wang IE, et al. 2013. Tissue absence initiates regeneration through follistatin-mediated inhibition of activin signaling.
|
[47] |
Gittin DI, Petersen CP. 2022. A Wnt11 and dishevelled signaling pathway acts prior to injury to control wound polarization for the onset of planarian regeneration.
|
[48] |
Goldman JA, Poss KD. 2020. Gene regulatory programmes of tissue regeneration.
|
[49] |
Guo TX, Peters AHFM, Newmark PA. 2006. A Bruno-like gene is required for stem cell maintenance in planarians.
|
[50] |
Hall RN, Weill U, Drees L, et al. 2022. Heterologous reporter expression in the planarian Schmidtea mediterranea through somatic mRNA transfection.
|
[51] |
Henderson JM, Nisperos SV, Weeks J, et al. 2015. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians.
|
[52] |
Hill EM, Petersen CP. 2015. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain. Development, 142(24): 4217−4229.
|
[53] |
Hill EM, Petersen CP. 2018. Positional information specifies the site of organ regeneration and not tissue maintenance in planarians.
|
[54] |
Hori I. 1991. Role of fixed parenchyma cells in blastema formation of the planarian Dugesia japonica. International Journal of Developmental Biology, 35(2): 101–108.
|
[55] |
Hori I, Kishida Y. 1998. A fine structural study of regeneration after fission in the planarian Dugesia japonica. Hydrobiologia, 383(1): 131−136.
|
[56] |
Jenkins JE, Roberts-Galbraith R. 2023. Heterotrimeric G proteins regulate planarian regeneration and behavior.
|
[57] |
Kenk R. 1937. Sexual and Asexual Reproduction in Euplanaria tigrina (Girard).
|
[58] |
Kennerdell JR, Carthew RW. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway.
|
[59] |
Kim IV, Riedelbauch S, Kuhn CD. 2020. The piRNA pathway in planarian flatworms: new model, new insights.
|
[60] |
Kimura JO, Bolaños DM, Ricci L, et al. 2022. Embryonic origins of adult pluripotent stem cells.
|
[61] |
Koinuma S, Umesono Y, Watanabe K, et al. 2003. The expression of planarian brain factor homologs, DjFoxG and DjFoxD. Gene Expression Patterns, 3(1): 21–27.
|
[62] |
Krichinskaya EB. 1986. Asexual reproduction, regeneration, and somatic embryogenesis in the planarian Dugesia tigrina (Turbellaria).
|
[63] |
Lakshmanan V, Bansal D, Kulkarni J, et al. 2016. Genome-wide analysis of polyadenylation events in Schmidtea mediterranea. G3 Genes| Genomes| Genetics, 6(10): 3035–3048.
|
[64] |
Lei K, Thi-Kim Vu H, Mohan RD, et al. 2016. Egf signaling directs neoblast repopulation by regulating asymmetric cell division in planarians.
|
[65] |
Lei K, Zhang WY, Chen JJ, et al. 2023. Pluripotency retention and exogenous mRNA introduction in planarian stem cells in culture.
|
[66] |
Liu SY, Selck C, Friedrich B, et al. 2013. Reactivating head regrowth in a regeneration-deficient planarian species.
|
[67] |
Malinowski PT, Cochet-Escartin O, Kaj KJ, et al. 2017. Mechanics dictate where and how freshwater planarians fission. Proceedings of the National Academy of Sciences of the United States of America, 114(41): 10888−10893.
|
[68] |
Martín-Durán JM, Monjo F, Romero R. 2012. Planarian embryology in the era of comparative developmental biology. The International Journal of Developmental Biology, 56(1-3): 39−48.
|
[69] |
Miller CM, Newmark PA. 2012. An insulin-like peptide regulates size and adult stem cells in planarians. The International Journal of Developmental Biology, 56(1-3): 75−82.
|
[70] |
Mohamed Haroon M, Lakshmanan V, Sarkar SR, et al. 2021. Mitochondrial state determines functionally divergent stem cell population in planaria.
|
[71] |
Molina MD, Cebrià F. 2021. Decoding stem cells: an overview on planarian stem cell heterogeneity and lineage progression.
|
[72] |
Molinaro AM, Lindsay-Mosher N, Pearson BJ. 2021. Identification of TOR-responsive slow-cycling neoblasts in planarians.
|
[73] |
Molinaro AM, Pearson BJ. 2016. In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians.
|
[74] |
Morgan TH. 1901. Growth and regeneration in Planaria lugubris. Archiv für Entwicklungsmechanik der Organismen, 13(1-2): 179−212.
|
[75] |
Morgan TH. 1905. “Polarity” considered as a phenomenon of gradation of materials.
|
[76] |
Neiro J, Sridhar D, Dattani A, et al. 2022. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells.
|
[77] |
Nentwig MR. 1978. Comparative morphological studies of head development after decapitation and after fission in the planarian Dugesia dorotocephala. Transactions of the American Microscopical Society, 97(3): 297–310.
|
[78] |
Newmark PA, Sánchez Alvarado A. 2000. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians.
|
[79] |
Newmark PA, Sánchez Alvarado A. 2002. Not your father's planarian: a classic model enters the era of functional genomics.
|
[80] |
Newmark PA, Sánchez Alvarado A. 2022. Schmidtea happens: Re-establishing the planarian as a model for studying the mechanisms of regeneration. Current Topics in Developmental Biology, 147: 307−344.
|
[81] |
Pan XY, Zeng YY, Liu YM, et al. 2023. Resolving vertebrate brain evolution through salamander brain development and regeneration. Zoological Research, 44(1): 219−222.
|
[82] |
Pascual-Carreras E, Marín-Barba M, Castillo-Lara S, et al. 2023. Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration.
|
[83] |
Pascual-Carreras E, Marin-Barba M, Herrera-Úbeda C, et al. 2020. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Development, 147(7): dev184044.
|
[84] |
Pascual-Carreras E, Sureda-Gómez M, Barrull-Mascaró R, et al. 2021. WNT-FRIZZLED-LRP5/6 signaling mediates posterior fate and proliferation during planarian regeneration.
|
[85] |
Pearson BJ. 2022. Finding the potency in planarians.
|
[86] |
Pearson BJ, Eisenhoffer GT, Gurley KA, et al. 2009. Formaldehyde-based whole-mount in situ hybridization method for planarians.
|
[87] |
Pearson BJ, Sánchez Alvarado A. 2010. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.
|
[88] |
Pedersen KJ. 1959. Cytological studies on the planarian neoblast. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 50(6): 799−817.
|
[89] |
Peng ZL, Yin BX, Ren RM, et al. 2021. Altered metabolic state impedes limb regeneration in salamanders.
|
[90] |
Petersen CP, Reddien PW. 2008. Smed-βcatenin-1 is required for anteroposterior blastema polarity in planarian regeneration.
|
[91] |
Petersen CP, Reddien PW. 2009. A wound-induced Wnt expression program controls planarian regeneration polarity. Proceedings of the National Academy of Sciences of the United States of America, 106(40): 17061−17066.
|
[92] |
Petersen CP, Reddien PW. 2011. Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration.
|
[93] |
Qin T, Zhang GK, Zheng Y, et al. 2023. A population of stem cells with strong regenerative potential discovered in deer antlers.
|
[94] |
Randolph H. 1892. The regeneration of the tail in lumbriculus.
|
[95] |
Randolph H. 1897. Observations and experiments on regeneration in Planarians. Archiv für Entwicklungsmechanik der Organismen, 5(2): 352−372.
|
[96] |
Raz AA, Wurtzel O, Reddien PW. 2021. Planarian stem cells specify fate yet retain potency during the cell cycle.
|
[97] |
Reddien PW. 2018. The cellular and molecular basis for planarian regeneration.
|
[98] |
Reddien PW. 2022. Positional information and stem cells combine to result in planarian regeneration. Cold Spring Harbor Perspectives in Biology, 14(4): a040717.
|
[99] |
Reddien PW, Bermange AL, Kicza AM, et al. 2007. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration.
|
[100] |
Reddien PW, Oviedo NJ, Jennings JR, et al. 2005. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells.
|
[101] |
Roberts-Galbraith RH, Newmark PA. 2013. Follistatin antagonizes activin signaling and acts with notum to direct planarian head regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(4): 1363−1368.
|
[102] |
Rossi L, Iacopetti P, Salvetti A. 2012. Stem cells and neural signalling: the case of neoblast recruitment and plasticity in low dose X-ray treated planarians. The International Journal of Developmental Biology, 56(1-3): 135−142.
|
[103] |
Rossi L, Salvetti A, Lena A, et al. 2006. DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells.
|
[104] |
Sakurai T, Lee H, Kashima M, et al. 2012. The planarian P2X homolog in the regulation of asexual reproduction. The International Journal of Developmental Biology, 56(1-3): 173−182.
|
[105] |
Sánchez Alvarado A. 2006. Planarian regeneration: its end is its beginning.
|
[106] |
Sánchez Alvarado A, Newmark PA. 1999. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proceedings of the National Academy of Sciences of the United States of America, 96(9): 5049−5054.
|
[107] |
Sánchez Alvarado A, Newmark PA, Robb SM, et al. 2002. The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration.
|
[108] |
Sasidharan V, Lu YC, Bansal D, et al. 2013. Identification of neoblast- and regeneration-specific miRNAs in the planarian Schmidtea mediterranea. RNA, 19(10): 1394–1404.
|
[109] |
Scimone ML, Atabay KD, Fincher CT, et al. 2020. Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration.
|
[110] |
Scimone ML, Cloutier JK, Maybrun CL, et al. 2022. The planarian wound epidermis gene equinox is required for blastema formation in regeneration.
|
[111] |
Scimone ML, Cote LE, Rogers T, et al. 2016. Two FGFRL-Wnt circuits organize the planarian anteroposterior axis.
|
[112] |
Scimone ML, Wurtzel O, Malecek K, et al. 2018. foxF-1 controls specification of non-body wall muscle and phagocytic cells in planarians.
|
[113] |
Sikes JM, Newmark PA. 2013. Restoration of anterior regeneration in a planarian with limited regenerative ability.
|
[114] |
Solana J, Irimia M, Ayoub S, et al. 2016. Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians.
|
[115] |
Solana J, Kao DM, Mihaylova Y, et al. 2012. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach.
|
[116] |
Sun F, Ou JH, Shoffner AR, et al. 2022. Enhancer selection dictates gene expression responses in remote organs during tissue regeneration.
|
[117] |
Takeo M, Chou WC, Sun Q, et al. 2013. Wnt activation in nail epithelium couples nail growth to digit regeneration.
|
[118] |
Tanaka EM, Reddien PW. 2011. The cellular basis for animal regeneration.
|
[119] |
Tomasso A, Koopmans T, Lijnzaad P, et al. 2023. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice (Acomys).
|
[120] |
Tu KC, Cheng LC, Tk Vu H, et al. 2015. Egr-5 is a post-mitotic regulator of planarian epidermal differentiation.
|
[121] |
Turner CD. 1935. The effects of x-rays on anterior regeneration in Lumbriculus inconstans.
|
[122] |
Van Wolfswinkel JC, Wagner DE, Reddien PW. 2014. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment.
|
[123] |
Vogg MC, Galliot B, Tsiairis CD. 2019. Model systems for regeneration: hydra. Development, 146(21): dev177212.
|
[124] |
Wagner DE, Wang IE, Reddien PW. 2011. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration.
|
[125] |
Wang W, Hu CK, Zeng A, et al. 2020. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates.
|
[126] |
Wei XY, Fu SL, Li HB, et al. 2022. Single-cell stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration.
|
[127] |
Wenemoser D, Lapan SW, Wilkinson AW, et al. 2012. A molecular wound response program associated with regeneration initiation in planarians. Genes & Development, 26(9): 988−1002.
|
[128] |
Wenemoser D, Reddien PW. 2010. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence.
|
[129] |
Witchley JN, Mayer M, Wagner DE, et al. 2013. Muscle cells provide instructions for planarian regeneration.
|
[130] |
Wong LL, Bruxvoort CG, Cejda NI, et al. 2022. Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians.
|
[131] |
Wurtzel O, Cote LE, Poirier A, et al. 2015. A generic and cell-type-specific wound response precedes regeneration in planarians.
|
[132] |
Wurtzel O, Oderberg IM, Reddien PW. 2017. Planarian epidermal stem cells respond to positional cues to promote cell-type diversity.
|
[133] |
Wyss LS, Bray SR, Wang B. 2022. Cellular diversity and developmental hierarchy in the planarian nervous system. Current Opinion in Genetics & Development, 76: 101960.
|
[134] |
Zeng A, Li H, Guo LH, et al. 2018. Prospectively isolated tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration.
|
[135] |
Ziman B, Karabinis P, Barghouth P, et al. 2020. Sirtuin-1 regulates organismal growth by altering feeding behavior and intestinal morphology in planarians. Journal of Cell Science, 133(10): jcs239467.
|