Volume 44 Issue 3
May  2023
Turn off MathJax
Article Contents
Dan Yang, Xiao-Jing Li, De-Zhen Tu, Xiu-Li Li, Bin Wei. Advances in viral encephalitis: Viral transmission, host immunity, and experimental animal models. Zoological Research, 2023, 44(3): 525-542. doi: 10.24272/j.issn.2095-8137.2023.025
Citation: Dan Yang, Xiao-Jing Li, De-Zhen Tu, Xiu-Li Li, Bin Wei. Advances in viral encephalitis: Viral transmission, host immunity, and experimental animal models. Zoological Research, 2023, 44(3): 525-542. doi: 10.24272/j.issn.2095-8137.2023.025

Advances in viral encephalitis: Viral transmission, host immunity, and experimental animal models

doi: 10.24272/j.issn.2095-8137.2023.025
The authors declare that they have no competing interests.
D.Y., X.J.L., and D.Z.T. wrote the original draft and constructed the figures and tables. X.L.L. and B.W. conceptualized, wrote, and edited the manuscript. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This work was supported by the National Natural Science Foundation of China (81825011, 81930038, 81961160738), Program of Shanghai Academic/Technology Research Leader (22XD1400800), and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19030200)
More Information
  • Viral infections have led to many public health crises and pandemics in the last few centuries. Neurotropic virus infection-induced viral encephalitis (VE), especially the symptomatic inflammation of the meninges and brain parenchyma, has attracted growing attention due to its high mortality and disability rates. Understanding the infectious routes of neurotropic viruses and the mechanism underlying the host immune response is critical to reduce viral spread and improve antiviral therapy outcomes. In this review, we summarize the common categories of neurotropic viruses, viral transmission routes in the body, host immune responses, and experimental animal models used for VE study to gain a deeper understanding of recent progress in the pathogenic and immunological mechanisms under neurotropic viral infection. This review should provide valuable resources and perspectives on how to cope with pandemic infections.
  • The authors declare that they have no competing interests.
    D.Y., X.J.L., and D.Z.T. wrote the original draft and constructed the figures and tables. X.L.L. and B.W. conceptualized, wrote, and edited the manuscript. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, et al. 2018. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nature Medicine, 24(3): 368−374. doi: 10.1038/nm.4485
    [2]
    Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, et al. 2016. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nature Medicine, 22(11): 1256−1259. doi: 10.1038/nm.4193
    [3]
    Agut H, Bonnafous P, Gautheret-Dejean A. 2015. Laboratory and clinical aspects of human herpesvirus 6 infections. Clinical Microbiology Reviews, 28(2): 313−335. doi: 10.1128/CMR.00122-14
    [4]
    Aguzzi A, Heikenwalder M, Polymenidou M. 2007. Insights into prion strains and neurotoxicity. Nature Reviews Molecular Cell Biology, 8(7): 552−561. doi: 10.1038/nrm2204
    [5]
    Albe JR, Boyles DA, Walters AW, et al. 2019. Neutrophil and macrophage influx into the central nervous system are inflammatory components of lethal Rift Valley fever encephalitis in rats. PLoS Pathogens, 15(6): e1007833. doi: 10.1371/journal.ppat.1007833
    [6]
    Alexaki A, Wigdahl B. 2008. HIV-1 infection of bone marrow hematopoietic progenitor cells and their role in trafficking and viral dissemination. PLoS Pathogens, 4(12): e1000215. doi: 10.1371/journal.ppat.1000215
    [7]
    Aleyas AG, George JA, Han YW, et al. 2009. Functional modulation of dendritic cells and macrophages by Japanese encephalitis virus through MyD88 adaptor molecule-dependent and -independent pathways. The Journal of Immunology, 183(4): 2462−2474. doi: 10.4049/jimmunol.0801952
    [8]
    Aleyas AG, Han YW, Patil AM, et al. 2012. Impaired cross-presentation of CD8α+CD11c+ dendritic cells by Japanese encephalitis virus in a TLR2/MyD88 signal pathway-dependent manner. European Journal of Immunology, 42(10): 2655−2666. doi: 10.1002/eji.201142052
    [9]
    Aliota MT, Caine EA, Walker EC, et al. 2016. Characterization of Lethal Zika Virus Infection in AG129 Mice. PLoS Neglected Tropical Diseases, 10(4): e0004682. doi: 10.1371/journal.pntd.0004682
    [10]
    Al-Obaidi MMJ, Bahadoran A, Har LS, et al. 2017. Japanese encephalitis virus disrupts blood-brain barrier and modulates apoptosis proteins in THBMEC cells. Virus Research, 233: 17−28. doi: 10.1016/j.virusres.2017.02.012
    [11]
    An J, Kimura-Kuroda J, Hirabayashi Y, et al. 1999. Development of a novel mouse model for dengue virus infection. Virology, 263(1): 70−77. doi: 10.1006/viro.1999.9887
    [12]
    Ancuta P, Wang JB, Gabuzda D. 2006. CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells. Journal of Leukocyte Biology, 80(5): 1156−1164. doi: 10.1189/jlb.0206125
    [13]
    Antonucci J, Gehrke L. 2019. Cerebral organoid models for neurotropic viruses. ACS Infectious Diseases, 5(12): 1976−1979. doi: 10.1021/acsinfecdis.9b00339
    [14]
    Arjona A, Foellmer HG, Town T, et al. 2007. Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. Journal of Clinical Investigation, 117(10): 3059−3066. doi: 10.1172/JCI32218
    [15]
    Bai FW, Kong KF, Dai JF, et al. 2010. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. The Journal of Infectious Diseases, 202(12): 1804−1812. doi: 10.1086/657416
    [16]
    Bale JF Jr. 2015. Virus and immune-mediated encephalitides: epidemiology, diagnosis, treatment, and prevention. Pediatric Neurology, 53(1): 3−12. doi: 10.1016/j.pediatrneurol.2015.03.013
    [17]
    Ballabh P, Braun A, Nedergaard M. 2004. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of Disease, 16(1): 1−13. doi: 10.1016/j.nbd.2003.12.016
    [18]
    Bao LL, Deng W, Huang BY, et al. 2020. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 583(7818): 830−833. doi: 10.1038/s41586-020-2312-y
    [19]
    Beier KT, Saunders A, Oldenburg IA, et al. 2011. Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proceedings of the National Academy of Sciences of the United States of America, 108(37): 15414−15419. doi: 10.1073/pnas.1110854108
    [20]
    Bergmann CC, Altman JD, Hinton D, et al. 1999. Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system. The Journal of Immunology, 163(6): 3379−3387. doi: 10.4049/jimmunol.163.6.3379
    [21]
    Bergmann CC, Lane TE, Stohlman SA. 2006. Coronavirus infection of the central nervous system: host-virus stand-off. Nature Reviews Microbiology, 4(2): 121−132. doi: 10.1038/nrmicro1343
    [22]
    Bergmann CC, Parra B, Hinton DR, et al. 2003. Perforin-mediated effector function within the central nervous system requires IFN-γ-mediated MHC up-regulation. The Journal of Immunology, 170(6): 3204−3213. doi: 10.4049/jimmunol.170.6.3204
    [23]
    Bergström T, Svennerholm B, Conradi N, et al. 1991. Discrimination of herpes simplex virus types 1 and 2 cerebral infections in a rat model. Acta Neuropathologica, 82(5): 395−401. doi: 10.1007/BF00296551
    [24]
    Biswas L, Chen JY, De Angelis J, et al. 2023. Lymphatic vessels in bone support regeneration after injury. Cell, 186(2): 382−397.e24. doi: 10.1016/j.cell.2022.12.031
    [25]
    Boorman JPT, Porterfield JS. 1956. A simple technique for infection of mosquitoes with viruses transmission of Zika virus. Transactions of the Royal Society of Tropical Medicine and Hygiene, 50(3): 238−242. doi: 10.1016/0035-9203(56)90029-3
    [26]
    Boutros T, Croze E, Yong VW. 1997. Interferon-beta is a potent promoter of nerve growth factor production by astrocytes. Journal of Neurochemistry, 69(3): 939−946.
    [27]
    Bradshaw MJ, Venkatesan A. 2016. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics, 13(3): 493−508. doi: 10.1007/s13311-016-0433-7
    [28]
    Brewoo JN, Kinney RM, Powell TD, et al. 2012. Immunogenicity and efficacy of chimeric dengue vaccine (DENVax) formulations in interferon-deficient AG129 mice. Vaccine, 30(8): 1513−1520. doi: 10.1016/j.vaccine.2011.11.072
    [29]
    Brioschi S, Wang WL, Peng V, et al. 2021. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science, 373(6553): eabf9277. doi: 10.1126/science.abf9277
    [30]
    Brownell AD, Reynolds TQ, Livingston B, et al. 2015. Human parechovirus-3 encephalitis in two neonates: acute and follow-up magnetic resonance imaging and evaluation of central nervous system markers of inflammation. Pediatric Neurology, 52(2): 245−249. doi: 10.1016/j.pediatrneurol.2014.09.019
    [31]
    Buescher EL, Scherer WF, Rosenberg MZ, et al. 1959. Ecologic studies of Japanese encephalitis virus in Japan. II. Mosquito infection. The American Journal of Tropical Medicine and Hygiene, 8(6): 651−664. doi: 10.4269/ajtmh.1959.8.651
    [32]
    Byrne AB, García AG, Brahamian JM, et al. 2021. A murine model of dengue virus infection in suckling C57BL/6 and BALB/c mice. Animal Models and Experimental Medicine, 4(1): 16−26. doi: 10.1002/ame2.12145
    [33]
    Byrnes AP, Durbin JE, Griffin DE. 2000. Control of Sindbis virus infection by antibody in interferon-deficient mice. Journal of Virology, 74(8): 3905−3908. doi: 10.1128/JVI.74.8.3905-3908.2000
    [34]
    Cabre P, Smadja D, Cabié A, et al. 2000. HTLV-1 and HIV infections of the central nervous system in tropical areas. Journal of Neurology, Neurosurgery & Psychiatry, 68(5): 550−557.
    [35]
    Casiraghi C, Dorovini-Zis K, Horwitz MS. 2011. Epstein-Barr virus infection of human brain microvessel endothelial cells: a novel role in multiple sclerosis. Journal of Neuroimmunology, 230(1–2): 173–177.
    [36]
    Chan JFW, Zhang AJ, Yuan SF, et al. 2020. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden syrian hamster model: implications for disease pathogenesis and transmissibility. Clinical Infectious Diseases, 71(9): 2428−2446.
    [37]
    Chapagain ML, Nerurkar VR. 2010. Human polyomavirus JC (JCV) infection of human B lymphocytes: a possible mechanism for JCV transmigration across the blood-brain barrier. The Journal of Infectious Diseases, 202(2): 184−191. doi: 10.1086/653823
    [38]
    Cheeran MCJ, Hu SX, Sheng WS, et al. 2005. Differential responses of human brain cells to West Nile virus infection. Journal of Neurovirology, 11(6): 512−524. doi: 10.1080/13550280500384982
    [39]
    Cheeran MCJ, Lokensgard JR, Schleiss MR. 2009. Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clinical Microbiology Reviews, 22(1): 99−126. doi: 10.1128/CMR.00023-08
    [40]
    Chen BP, Kuziel WA, Lane TE. 2001. Lack of CCR2 results in increased mortality and impaired leukocyte activation and trafficking following infection of the central nervous system with a neurotropic coronavirus. The Journal of Immunology, 167(8): 4585−4592. doi: 10.4049/jimmunol.167.8.4585
    [41]
    Chen JM, Wang LM, Xu H, et al. 2020. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nature Communications, 11(1): 3159. doi: 10.1038/s41467-020-16851-z
    [42]
    Chen SY, Deng Y, Pan DL. 2022. MicroRNA regulation of human herpesvirus latency. Viruses, 14(6): 1215. doi: 10.3390/v14061215
    [43]
    Chen YL, Li H, Yang JX, et al. 2021. A hSCARB2-transgenic mouse model for Coxsackievirus A16 pathogenesis. Virology Journal, 18(1): 84. doi: 10.1186/s12985-021-01557-5
    [44]
    Chen ZZ, Zhong D, Li GZ. 2019. The role of microglia in viral encephalitis: a review. Journal of Neuroinflammation, 16(1): 76. doi: 10.1186/s12974-019-1443-2
    [45]
    Chiou SS, Liu H, Chuang CK, et al. 2005. Fitness of Japanese encephalitis virus to Neuro-2a cells is determined by interactions of the viral envelope protein with highly sulfated glycosaminoglycans on the cell surface. Journal of Medical Virology, 76(4): 583−592. doi: 10.1002/jmv.20406
    [46]
    Choy MM, Ng DHL, Siriphanitchakorn T, et al. 2020. A non-structural 1 protein G53D substitution attenuates a clinically tested live dengue vaccine. Cell Reports, 31(6): 107617. doi: 10.1016/j.celrep.2020.107617
    [47]
    Christian KM, Song HJ, Ming GL. 2019. Pathophysiology and mechanisms of Zika virus infection in the nervous system. Annual Review of Neuroscience, 42: 249−269. doi: 10.1146/annurev-neuro-080317-062231
    [48]
    Clay CC, Rodrigues DS, Ho YS, et al. 2007. Neuroinvasion of fluorescein-positive monocytes in acute simian immunodeficiency virus infection. Journal of Virology, 81(21): 12040−12048. doi: 10.1128/JVI.00133-07
    [49]
    Constantine DG. 1962. Rabies transmission by nonbite route. Public Health Reports, 77(4): 287−289. doi: 10.2307/4591470
    [50]
    Cox J, Mota J, Sukupolvi-Petty S, et al. 2012. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. Journal of Virology, 86(14): 7637−7649. doi: 10.1128/JVI.00534-12
    [51]
    Cserr HF, Knopf PM. 1992. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunology Today, 13(12): 507−512. doi: 10.1016/0167-5699(92)90027-5
    [52]
    Cugurra A, Mamuladze T, Rustenhoven J, et al. 2021. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science, 373(6553): eabf7844. doi: 10.1126/science.abf7844
    [53]
    Cvjetković IH, Cvjetković D, Patić A, et al. 2016. Tick-borne encephalitis virus infection in humans. Medicinski Pregled, 69(3–4): 93–98.
    [54]
    Da Mesquita S, Louveau A, Vaccari A, et al. 2018. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature, 560(7717): 185−191. doi: 10.1038/s41586-018-0368-8
    [55]
    da Silva SR, Gao SJ. 2016. Zika virus: an update on epidemiology, pathology, molecular biology, and animal model. Journal of Medical Virology, 88(8): 1291−1296. doi: 10.1002/jmv.24563
    [56]
    Dai JF, Wang PH, Bai FW, et al. 2008. ICAM-1 participates in the entry of West Nile virus into the central nervous system. Journal of Virology, 82(8): 4164−4168. doi: 10.1128/JVI.02621-07
    [57]
    Daneman R, Prat A. 2015. The blood-brain barrier. Cold Spring Harbor Perspectives in Biology, 7(1): a020412. doi: 10.1101/cshperspect.a020412
    [58]
    Darai G, Schwaier A, Komitowski D, et al. 1978. Experimental infection of Tupaia belangeri (tree shrews) with herpes simplex virus types 1 and 2. The Journal of Infectious Diseases, 137(3): 221−226. doi: 10.1093/infdis/137.3.221
    [59]
    Das T, Hoarau JJ, Bandjee MCJ, et al. 2015. Multifaceted innate immune responses engaged by astrocytes, microglia and resident dendritic cells against Chikungunya neuroinfection. Journal of General Virology, 96(Pt 2): 294–310.
    [60]
    de Alcantara BN, Imbeloni AA, de Brito Simith Durans D, et al. 2021. Histopathological lesions of congenital Zika syndrome in newborn squirrel monkeys. Scientific Reports, 11(1): 6099. doi: 10.1038/s41598-021-85571-1
    [61]
    de Lima KA, Rustenhoven J, Kipnis J. 2020. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annual Review of Immunology, 38: 597−620. doi: 10.1146/annurev-immunol-102319-103410
    [62]
    Delhaye S, Paul S, Blakqori G, et al. 2006. Neurons produce type I interferon during viral encephalitis. Proceedings of the National Academy of Sciences of the United States of America, 103(20): 7835−7840. doi: 10.1073/pnas.0602460103
    [63]
    Depla JA, Mulder LA, de Sá RV, et al. 2022. Human brain organoids as models for central nervous system viral infection. Viruses, 14(3): 634. doi: 10.3390/v14030634
    [64]
    Diagne CT, Diallo D, Faye O, et al. 2015. Potential of selected senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infectious Diseases, 15: 492. doi: 10.1186/s12879-015-1231-2
    [65]
    Diamond MS, Shrestha B, Marri A, et al. 2003a. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. Journal of Virology, 77(4): 2578−2586. doi: 10.1128/JVI.77.4.2578-2586.2003
    [66]
    Diamond MS, Sitati EM, Friend LD, et al. 2003b. A critical role for induced IgM in the protection against West Nile virus infection. Journal of Experimental Medicine, 198(12): 1853−1862. doi: 10.1084/jem.20031223
    [67]
    Dietzschold B, Kao M, Zheng YM, et al. 1992. Delineation of putative mechanisms involved in antibody-mediated clearance of rabies virus from the central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 89(15): 7252−7256. doi: 10.1073/pnas.89.15.7252
    [68]
    Ding SW. 2010. RNA-based antiviral immunity. Nature Reviews Immunology, 10(9): 632−644. doi: 10.1038/nri2824
    [69]
    Duchemin JB, Mee PT, Lynch SE, et al. 2017. Zika vector transmission risk in temperate Australia: a vector competence study. Virology Journal, 14(1): 108. doi: 10.1186/s12985-017-0772-y
    [70]
    Dudley DM, Aliota MT, Mohr EL, et al. 2016. A rhesus macaque model of Asian-lineage Zika virus infection. Nature Communications, 7: 12204. doi: 10.1038/ncomms12204
    [71]
    Dudley DM, Van Rompay KK, Coffey LL, et al. 2018. Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nature Medicine, 24(8): 1104−1107. doi: 10.1038/s41591-018-0088-5
    [72]
    Erickson MA, Rhea EM, Knopp RC, et al. 2021. Interactions of SARS-CoV-2 with the Blood-Brain barrier. International Journal of Molecular Sciences, 22(5): 2681. doi: 10.3390/ijms22052681
    [73]
    Falasco RF, Robinson E, Faja BW. 1990. Problems encountered by recent graduates in establishing dental practices. The Journal of the Michigan Dental Association, 72(1): 15−19.
    [74]
    Fan Y, Yu DD, Yao YG. 2014. Tree shrew database (TreeshrewDB): a genomic knowledge base for the Chinese tree shrew. Scientific Reports, 4: 7145. doi: 10.1038/srep07145
    [75]
    Fan YC, Liang JJ, Chen JM, et al. 2019. NS2B/NS3 mutations enhance the infectivity of genotype I Japanese encephalitis virus in amplifying hosts. PLoS Pathogens, 15(8): e1007992. doi: 10.1371/journal.ppat.1007992
    [76]
    Fang Y, Liu ZZ, Qiu Y, et al. 2021. Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity, 54(10): 2231–2244. e6.
    [77]
    Fekadu M, Shaddock JH, Baer GM. 1982. Excretion of rabies virus in the saliva of dogs. The Journal of Infectious Diseases, 145(5): 715−719. doi: 10.1093/infdis/145.2.715
    [78]
    Fekete R, Cserép C, Lénárt N, et al. 2018. Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathologica, 136(3): 461−482. doi: 10.1007/s00401-018-1885-0
    [79]
    Ferenczy MW, Marshall LJ, Nelson CDS, et al. 2012. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clinical Microbiology Reviews, 25(3): 471−506. doi: 10.1128/CMR.05031-11
    [80]
    Fiette L, Aubert C, Müller U, et al. 1995. Theiler's virus infection of 129Sv mice that lack the interferon α/β or interferon γ receptors. Journal of Experimental Medicine, 181(6): 2069−2076. doi: 10.1084/jem.181.6.2069
    [81]
    Fillatre P, Crabol Y, Morand P, et al. 2017. Infectious encephalitis: management without etiological diagnosis 48 hours after onset. Médecine et Maladies Infectieuses, 47(3): 236−251.
    [82]
    Fisher DL, Defres S, Solomon T. 2015. Measles-induced encephalitis. QJM:An International Journal of Medicine, 108(3): 177−182. doi: 10.1093/qjmed/hcu113
    [83]
    Fuchs J, Chu HY, O'Day P, et al. 2014. Investigating the efficacy of monovalent and tetravalent dengue vaccine formulations against DENV-4 challenge in AG129 mice. Vaccine, 32(48): 6537−6543. doi: 10.1016/j.vaccine.2014.08.087
    [84]
    Gao Q, Bao LL, Mao HY, et al. 2020. Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 369(6499): 77−81. doi: 10.1126/science.abc1932
    [85]
    Garber C, Soung A, Vollmer LL, et al. 2019. T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nature Neuroscience, 22(8): 1276−1288. doi: 10.1038/s41593-019-0427-y
    [86]
    García-Nicolás O, Braun RO, Milona P, et al. 2018. Targeting of the nasal mucosa by Japanese encephalitis virus for non-vector-borne transmission. Journal of Virology, 92(24): e01091−18.
    [87]
    Gilden DH, Dueland AN, Cohrs R, et al. 1991. Preherpetic neuralgia. Neurology, 41(8): 1215−1218. doi: 10.1212/WNL.41.8.1215
    [88]
    Glass WG, Lane TE. 2003. Functional expression of chemokine receptor CCR5 on CD4+ T cells during virus-induced central nervous system disease. Journal of Virology, 77(1): 191−198. doi: 10.1128/JVI.77.1.191-198.2003
    [89]
    Glass WG, Lim JK, Cholera R, et al. 2005. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. Journal of Experimental Medicine, 202(8): 1087−1098. doi: 10.1084/jem.20042530
    [90]
    González JM, Bergmann CC, Ramakrishna C, et al. 2006. Inhibition of interferon-γ signaling in oligodendroglia delays coronavirus clearance without altering demyelination. The American Journal of Pathology, 168(3): 796−804. doi: 10.2353/ajpath.2006.050496
    [91]
    González-Scarano F, Martín-García J. 2005. The neuropathogenesis of AIDS. Nature Reviews Immunology, 5(1): 69−81. doi: 10.1038/nri1527
    [92]
    Gori Savellini G, Anichini G, Gandolfo C, et al. 2019. Toscana virus non-structural protein NSs acts as E3 ubiquitin ligase promoting RIG-I degradation. PLoS Pathogens, 15(12): e1008186. doi: 10.1371/journal.ppat.1008186
    [93]
    Griffin DE, Metcalf T. 2011. Clearance of virus infection from the CNS. Current Opinion in Virology, 1(3): 216−221. doi: 10.1016/j.coviro.2011.05.021
    [94]
    Grossberg SE, Scherer WF. 1966. The effect of host age, virus dose and route of inoculation on inapparent infection in mice with Japanese encephalitis virus. Experimental Biology and Medicine, 123(1): 118−124. doi: 10.3181/00379727-123-31418
    [95]
    Guo XX, Li CX, Deng YQ, et al. 2016. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerging Microbes & Infections, 5(9): e102.
    [96]
    Gurung S, Reuter N, Preno A, et al. 2019. Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathogens, 15(1): e1007507. doi: 10.1371/journal.ppat.1007507
    [97]
    Haese NN, Roberts VHJ, Chen A, et al. 2021. Nonhuman primate models of Zika virus infection and disease during pregnancy. Viruses, 13(10): 2088. doi: 10.3390/v13102088
    [98]
    Hameed M, Liu K, Anwar MN, et al. 2019. The emerged genotype I of Japanese encephalitis virus shows an infectivity similar to genotype III in Culex pipiens mosquitoes from China. PLoS Neglected Tropical Diseases, 13(9): e0007716. doi: 10.1371/journal.pntd.0007716
    [99]
    Hameed M, Wahaab A, Nawaz M, et al. 2021. Potential role of birds in Japanese encephalitis virus zoonotic transmission and genotype shift. Viruses, 13(3): 357. doi: 10.3390/v13030357
    [100]
    Harling-Berg CJ, Park TJ, Knopf PM. 1999. Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. Journal of Neuroimmunology, 101(2): 111−127. doi: 10.1016/S0165-5728(99)00130-7
    [101]
    Heininger U, Seward JF. 2006. Varicella. The Lancet, 368(9544): 1365−1376. doi: 10.1016/S0140-6736(06)69561-5
    [102]
    Hemachudha T, Ugolini G, Wacharapluesadee S, et al. 2013. Human rabies: neuropathogenesis, diagnosis, and management. The Lancet Neurology, 12(5): 498−513. doi: 10.1016/S1474-4422(13)70038-3
    [103]
    Hirsch AJ, Smith JL, Haese NN, et al. 2017. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathogens, 13(3): e1006219. doi: 10.1371/journal.ppat.1006219
    [104]
    Hirsch JM, Johansson SL, Vahlne A. 1984. Effect of snuff and herpes simplex virus-1 on rat oral mucosa: possible associations with the development of squamous cell carcinoma. Journal of Oral Pathology & Medicine, 13(1): 52−62.
    [105]
    Hooi YT, Ong KC, Tan SH, et al. 2020. Coxsackievirus A16 in a 1-day-old mouse model of central nervous system infection shows lower neurovirulence than enterovirus A71. Journal of Comparative Pathology, 176: 19−32. doi: 10.1016/j.jcpa.2020.02.001
    [106]
    Houen G, Trier NH, Frederiksen JL. 2020. Epstein-barr virus and multiple sclerosis. Frontiers in Immunology, 11: 587078. doi: 10.3389/fimmu.2020.587078
    [107]
    Hsu M, Rayasam A, Kijak JA, et al. 2019. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nature Communications, 10(1): 229. doi: 10.1038/s41467-018-08163-0
    [108]
    Hu XT, Deng QP, Ma L, et al. 2020. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Research, 30(3): 229−243. doi: 10.1038/s41422-020-0287-8
    [109]
    Jiang RD, Liu MQ, Chen Y, et al. 2020. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell, 182(1): 50−58.e8. doi: 10.1016/j.cell.2020.05.027
    [110]
    Joe S, Salam AAA, Neogi U, et al. 2022. Antiviral drug research for Japanese encephalitis: an updated review. Pharmacological Reports, 74(2): 273−296. doi: 10.1007/s43440-022-00355-2
    [111]
    Johnson RT, Burke DS, Elwell M, et al. 1985. Japanese encephalitis: immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Annals of Neurology, 18(5): 567−573. doi: 10.1002/ana.410180510
    [112]
    Jordan I, Ian Lipkin W. 2001. Borna disease virus. Reviews in Medical Virology, 11(1): 37−57. doi: 10.1002/rmv.300
    [113]
    Jung S, Aliberti J, Graemmel P, et al. 2000. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Molecular and Cellular Biology, 20(11): 4106−4114. doi: 10.1128/MCB.20.11.4106-4114.2000
    [114]
    Kennedy PGE. 2005. Viral encephalitis. Journal of Neurology, 252(3): 268−272. doi: 10.1007/s00415-005-0770-7
    [115]
    Kenyon RH, Rippy MK, McKee KT Jr, et al. 1992. Infection of Macaca radiata with viruses of the tick-borne encephalitis group. Microbial Pathogenesis, 13(5): 399−409. doi: 10.1016/0882-4010(92)90083-Z
    [116]
    Kim JH, Choi JY, Kim SB, et al. 2015. CD11chi dendritic cells regulate Ly-6Chi monocyte differentiation to preserve immune-privileged CNS in lethal neuroinflammation. Scientific Reports, 5: 17548. doi: 10.1038/srep17548
    [117]
    Kimberlin DW, Whitley RJ. 1998. Human herpesvirus-6: neurologic implications of a newly-described viral pathogen. Journal of Neurovirology, 4(5): 474−485. doi: 10.3109/13550289809113492
    [118]
    Kimura T, Sasaki M, Okumura M, et al. 2010. Flavivirus encephalitis: pathological aspects of mouse and other animal models. Veterinary Pathology, 47(5): 806−818. doi: 10.1177/0300985810372507
    [119]
    Kjeldsen L, Sengelov H, Lollike K, et al. 1994. Isolation and characterization of gelatinase granules from human neutrophils. Blood, 83(6): 1640−1649. doi: 10.1182/blood.V83.6.1640.1640
    [120]
    Klein RS. 2021. Encephalitic arboviruses of africa: emergence, clinical presentation and neuropathogenesis. Frontiers in Immunology, 12: 769942. doi: 10.3389/fimmu.2021.769942
    [121]
    Klein RS, Lin E, Zhang B, et al. 2005. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. Journal of Virology, 79(17): 11457−11466. doi: 10.1128/JVI.79.17.11457-11466.2005
    [122]
    Koyuncu OO, Hogue IB, Enquist LW. 2013. Virus infections in the nervous system. Cell Host & Microbe, 13(4): 379−393.
    [123]
    Kubinski M, Beicht J, Gerlach T, et al. 2020. Tick-borne encephalitis virus: a quest for better vaccines against a virus on the rise. Vaccines (Basel), 8(3): 451.
    [124]
    Lam JH, Smith FL, Baumgarth N. 2020. B cell activation and response regulation during viral infections. Viral Immunology, 33(4): 294−306. doi: 10.1089/vim.2019.0207
    [125]
    Lane TE, Hardison JL, Walsh KB. 2006. Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system. In: Lane TE. Chemokines and Viral Infection. Berlin, Heidelberg: Springer, 1–27.
    [126]
    Laulund ASB, Trøstrup H, Lerche CJ, et al. 2020. Synergistic effect of immunomodulatory S100A8/A9 and ciprofloxacin against Pseudomonas aeruginosa biofilm in a murine chronic wound model. Pathogens and Disease, 78(5): ftz027. doi: 10.1093/femspd/ftz027
    [127]
    Lazear HM, Govero J, Smith AM, et al. 2016. A mouse model of Zika virus pathogenesis. Cell Host & Microbe, 19(5): 720−730.
    [128]
    Lee BJ, Weiss ML, Mosier D, et al. 1999. Spread of bovine herpesvirus type 5 (BHV-5) in the rabbit brain after intranasal inoculation. Journal of Neurovirology, 5(5): 474−484. doi: 10.3109/13550289909045376
    [129]
    Li CH, Yan LZ, Ban WZ, et al. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27(2): 241−252. doi: 10.1038/cr.2016.156
    [130]
    Li HD, Saucedo-Cuevas L, Regla-Nava JA, et al. 2016a. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell, 19(5): 593−598. doi: 10.1016/j.stem.2016.08.005
    [131]
    Li J, Loeb JA, Shy ME, et al. 2003. Asymmetric flaccid paralysis: a neuromuscular presentation of West Nile virus infection. Annals of Neurology, 53(6): 703−710. doi: 10.1002/ana.10575
    [132]
    Li JP, Liao Y, Zhang Y, et al. 2014. Experimental infection of tree shrews (Tupaia belangeri) with Coxsackie virus A16. Zoological Research, 35(6): 485−491.
    [133]
    Li LH, Li ZR, Wang EL, et al. 2016b. Herpes simplex virus 1 infection of tree shrews differs from that of mice in the severity of acute infection and viral transcription in the peripheral nervous system. Journal of Virology, 90(2): 790−804. doi: 10.1128/JVI.02258-15
    [134]
    Li LL, Xu CC, Zhang WJ, et al. 2019. Cargo-compatible encapsulation in virus-based nanoparticles. Nano Letters, 19(4): 2700−2706. doi: 10.1021/acs.nanolett.9b00679
    [135]
    Li XF, Deng YQ, Yang HQ, et al. 2013. A chimeric dengue virus vaccine using Japanese encephalitis virus vaccine strain SA14–14-2 as backbone is immunogenic and protective against either parental virus in mice and nonhuman primates. Journal of Virology, 87(24): 13694−13705. doi: 10.1128/JVI.00931-13
    [136]
    Li XF, Dong HL, Huang XY, et al. 2016c. Characterization of a 2016 clinical isolate of Zika virus in non-human primates. eBioMedicine, 12: 170−177. doi: 10.1016/j.ebiom.2016.09.022
    [137]
    Li XJ, Qi LL, Yang D, et al. 2022. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nature Neuroscience, 25(5): 577−587. doi: 10.1038/s41593-022-01063-z
    [138]
    Li YM, Ye J, Yang XH, et al. 2011. Infection of mouse bone marrow-derived dendritic cells by live attenuated Japanese encephalitis virus induces cells maturation and triggers T cells activation. Vaccine, 29(4): 855−862. doi: 10.1016/j.vaccine.2010.09.108
    [139]
    Lin MT, Stohlman SA, Hinton DR. 1997. Mouse hepatitis virus is cleared from the central nervous systems of mice lacking perforin-mediated cytolysis. Journal of Virology, 71(1): 383−391. doi: 10.1128/jvi.71.1.383-391.1997
    [140]
    Lindquist L, Vapalahti O. 2008. Tick-borne encephalitis. The Lancet, 371(9627): 1861−1871. doi: 10.1016/S0140-6736(08)60800-4
    [141]
    Linterman MA, Beaton L, Yu D, et al. 2010. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. Journal of Experimental Medicine, 207(2): 353−363. doi: 10.1084/jem.20091738
    [142]
    Liou ML, Hsu CY. 1998. Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell and Tissue Research, 293(3): 389−394. doi: 10.1007/s004410051130
    [143]
    Liu QY, Wang XJ, Xie CH, et al. 2021. A novel human acute encephalitis caused by pseudorabies virus variant strain. Clinical Infectious Diseases, 73(11): e3690−e3700. doi: 10.1093/cid/ciaa987
    [144]
    Louveau A. 2018. Meningeal immunity, drainage, and tertiary lymphoid structure formation. In: Dieu-Nosjean MC. Tertiary Lymphoid Structures. New York: Humana Press, 31–45.
    [145]
    Louveau A, Herz J, Alme MN, et al. 2018. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature Neuroscience, 21(10): 1380−1391. doi: 10.1038/s41593-018-0227-9
    [146]
    Louveau A, Smirnov I, Keyes TJ, et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature, 523(7560): 337−341. doi: 10.1038/nature14432
    [147]
    Ludlow M, Kortekaas J, Herden C, et al. 2016. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathologica, 131(2): 159−184. doi: 10.1007/s00401-015-1511-3
    [148]
    Lundin KE, Good L, Strömberg R, et al. 2006. Biological activity and biotechnological aspects of peptide nucleic acid. Advanceds in Genetics, 56: 1−51.
    [149]
    Luo Z, Su R, Wang WB, et al. 2019. EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathogens, 15(11): e1008142. doi: 10.1371/journal.ppat.1008142
    [150]
    Maciejewski-Lenoir D, Chen SZ, Feng LL, et al. 1999. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. The Journal of Immunology, 163(3): 1628−1635. doi: 10.4049/jimmunol.163.3.1628
    [151]
    Marques RE, Del Sarto JL, Rocha RPF, et al. 2017. Development of a model of Saint Louis encephalitis infection and disease in mice. Journal of Neuroinflammation, 14(1): 61. doi: 10.1186/s12974-017-0837-2
    [152]
    Martina BEE, Koraka P, van den Doel P, et al. 2008. DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-α and TNF-α. Virus Research, 135(1): 64−71. doi: 10.1016/j.virusres.2008.02.008
    [153]
    Martinot AJ, Abbink P, Afacan O, et al. 2018. Fetal neuropathology in Zika virus-infected pregnant female rhesus monkeys. Cell, 173(5): 1111−1122.e10. doi: 10.1016/j.cell.2018.03.019
    [154]
    Maury A, Lyoubi A, Peiffer-Smadja N, et al. 2021. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: a narrative review for clinicians. Revue Neurologique, 177(1–2): 51–64.
    [155]
    Mavigner M, Raper J, Kovacs-Balint Z, et al. 2018. Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Science Translational Medicine, 10(435): eaao6975. doi: 10.1126/scitranslmed.aao6975
    [156]
    McJunkin JE, de los Reyes EC, Irazuzta JE, et al. 2001. La Crosse encephalitis in children. New England Journal of Medicine, 344(11): 801−807. doi: 10.1056/NEJM200103153441103
    [157]
    McMenamin PG. 1999. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. Journal of Comparative Neurology, 405(4): 553−562. doi: 10.1002/(SICI)1096-9861(19990322)405:4<553::AID-CNE8>3.0.CO;2-6
    [158]
    Medigeshi GR, Hirsch AJ, Brien JD, et al. 2009. West nile virus capsid degradation of claudin proteins disrupts epithelial barrier function. Journal of Virology, 83(12): 6125−6134. doi: 10.1128/JVI.02617-08
    [159]
    Meertens L, Bertaux C, Cukierman L, et al. 2008. The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. Journal of Virology, 82(7): 3555−3560. doi: 10.1128/JVI.01977-07
    [160]
    Meinhardt J, Radke J, Dittmayer C, et al. 2021. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neuroscience, 24(2): 168−175. doi: 10.1038/s41593-020-00758-5
    [161]
    Metcalf TU, Griffin DE. 2011. Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. Journal of Virology, 85(21): 11490−11501. doi: 10.1128/JVI.05379-11
    [162]
    Meyer KF, Haring CM, Howitt B. 1931. The etiology of epizootic encephalomyelitis of horses in the san joaquin valley, 1930. Science, 74(1913): 227−228.
    [163]
    Mifune K, Shichijo A, Makino Y, et al. 1980. A mouse model for the pathogenesis and postexposure prophylaxis of rabies. Microbiology and Immunology, 24(9): 835−845. doi: 10.1111/j.1348-0421.1980.tb02888.x
    [164]
    Miller KN, Victorelli SG, Salmonowicz H, et al. 2021. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell, 184(22): 5506−5526. doi: 10.1016/j.cell.2021.09.034
    [165]
    Mitchell MJ, Billingsley MM, Haley RM, et al. 2021. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20(2): 101−124. doi: 10.1038/s41573-020-0090-8
    [166]
    Miura K, Goto N, Suzuki H, et al. 1988. Strain difference of mouse in susceptibility to Japanese encephalitis virus infection. Experimental Animals, 37(4): 365−373. doi: 10.1538/expanim1978.37.4_365
    [167]
    Mockus TE, Ren HM, Shwetank, et al. 2019. To go or stay: the development, benefit, and detriment of tissue-resident memory CD8 T cells during central nervous system viral infections. Viruses, 11(9): 842. doi: 10.3390/v11090842
    [168]
    Møllgård K, Beinlich FRM, Kusk P, et al. 2023. A mesothelium divides the subarachnoid space into functional compartments. Science, 379(6627): 84−88. doi: 10.1126/science.adc8810
    [169]
    Mori I, Nishiyama Y, Yokochi T, et al. 2005. Olfactory transmission of neurotropic viruses. Journal of Neurovirology, 11(2): 129−137. doi: 10.1080/13550280590922793
    [170]
    Mostashari F, Bunning ML, Kitsutani PT, et al. 2001. Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. The Lancet, 358(9278): 261−264. doi: 10.1016/S0140-6736(01)05480-0
    [171]
    Müller U, Steinhoff U, Reis LF, et al. 1994. Functional role of type I and type II interferons in antiviral defense. Science, 264(5167): 1918−1921. doi: 10.1126/science.8009221
    [172]
    Munster VJ, Feldmann F, Williamson BN, et al. 2020. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature, 585(7824): 268−272. doi: 10.1038/s41586-020-2324-7
    [173]
    Munster VJ, Prescott JB, Bushmaker T, et al. 2012. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Scientific Reports, 2: 736. doi: 10.1038/srep00736
    [174]
    Mustafá YM, Meuren LM, Coelho SVA, et al. 2019. Pathways exploited by flaviviruses to counteract the blood-brain barrier and invade the central nervous system. Frontiers in Microbiology, 10: 525. doi: 10.3389/fmicb.2019.00525
    [175]
    Nagel MA, Niemeyer CS, Bubak AN. 2020. Central nervous system infections produced by varicella zoster virus. Current Opinion in Infectious Diseases, 33(3): 273−278. doi: 10.1097/QCO.0000000000000647
    [176]
    Narita M, Uchimura A, Kawanabe M, et al. 2001. Invasion and spread of equine herpesvirus 9 in the olfactory pathway of pigs after intranasal inoculation. Journal of Comparative Pathology, 124(4): 265−272. doi: 10.1053/jcpa.2000.0461
    [177]
    Nemeth N, Bosco-Lauth A, Oesterle P, et al. 2012. North American birds as potential amplifying hosts of Japanese encephalitis virus. The American Journal of Tropical Medicine and Hygiene, 87(4): 760−767. doi: 10.4269/ajtmh.2012.12-0141
    [178]
    Niu CX, Yu JJ, Zou T, et al. 2022. Identification of hematopoietic stem cells residing in the meninges of adult mice at steady state. Cell Reports, 41(6): 111592. doi: 10.1016/j.celrep.2022.111592
    [179]
    Ohka S, Nihei CI, Yamazaki M, et al. 2012. Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway. Frontiers in Microbiology, 3: 147.
    [180]
    O'Neal JT, Upadhyay AA, Wolabaugh A, et al. 2019. West nile virus-inclusive single-cell RNA sequencing reveals heterogeneity in the type i interferon response within single cells. Journal of Virology, 93(6): e01778−18.
    [181]
    Overall JC Jr. 1994. Herpes simplex virus infection of the fetus and newborn. Pediatric Annals, 23(3): 131−136. doi: 10.3928/0090-4481-19940301-06
    [182]
    Papa MP, Meuren LM, Coelho SVA, et al. 2017. Zika virus infects, activates, and crosses brain microvascular endothelial cells, without barrier disruption. Frontiers in Microbiology, 8: 2557. doi: 10.3389/fmicb.2017.02557
    [183]
    Parameswaran P, Sklan E, Wilkins C, et al. 2010. Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathogens, 6(2): e1000764. doi: 10.1371/journal.ppat.1000764
    [184]
    Parra B, Hinton DR, Marten NW, et al. 1999. IFN-γ is required for viral clearance from central nervous system oligodendroglia. The Journal of Immunology, 162(3): 1641−1647. doi: 10.4049/jimmunol.162.3.1641
    [185]
    Pfeffer S, Zavolan M, Grasser FA, et al. 2004. Identification of virus-encoded microRNAs. Science, 304(5671): 734−736. doi: 10.1126/science.1096781
    [186]
    Phares TW, Marques CP, Stohlman SA, et al. 2011. Factors supporting intrathecal humoral responses following viral encephalomyelitis. Journal of Virology, 85(6): 2589−2598. doi: 10.1128/JVI.02260-10
    [187]
    Pilotto A, Masciocchi S, Volonghi I, et al. 2021. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encephalitis is a cytokine release syndrome: evidences from cerebrospinal fluid analyses. Clinical Infectious Diseases, 73(9): e3019−e3026. doi: 10.1093/cid/ciaa1933
    [188]
    Pompon J, Manuel M, Ng GK, et al. 2017. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathogens, 13(7): e1006535. doi: 10.1371/journal.ppat.1006535
    [189]
    Puntambekar SS, Bergmann CC, Savarin C, et al. 2011. Shifting hierarchies of interleukin-10-producing T cell populations in the central nervous system during acute and persistent viral encephalomyelitis. Journal of Virology, 85(13): 6702−6713. doi: 10.1128/JVI.00200-11
    [190]
    Racaniello VR. 2006. One hundred years of poliovirus pathogenesis. Virology, 344(1): 9−16. doi: 10.1016/j.virol.2005.09.015
    [191]
    Ramakrishna C, Stohlman SA, Atkinson RA, et al. 2004. Differential regulation of primary and secondary CD8+ T cells in the central nervous system. The Journal of Immunology, 173(10): 6265−6273. doi: 10.4049/jimmunol.173.10.6265
    [192]
    Ransohoff RM, Kivisäkk P, Kidd G. 2003. Three or more routes for leukocyte migration into the central nervous system. Nature Reviews Immunology, 3(7): 569−581. doi: 10.1038/nri1130
    [193]
    Reagin KL, Funk KE. 2022. The role of antiviral CD8+ T cells in cognitive impairment. Current Opinion in Neurobiology, 76: 102603. doi: 10.1016/j.conb.2022.102603
    [194]
    Rebejac J, Eme-Scolan E, Arnaud Paroutaud L, et al. 2022. Meningeal macrophages protect against viral neuroinfection. Immunity, 55(11): 2103−2117.e10. doi: 10.1016/j.immuni.2022.10.005
    [195]
    Redant V, Favoreel HW, Dallmeier K, et al. 2020. Efficient control of Japanese encephalitis virus in the central nervous system of infected pigs occurs in the absence of a pronounced inflammatory immune response. Journal of Neuroinflammation, 17(1): 315. doi: 10.1186/s12974-020-01974-3
    [196]
    Ren MS, Mei H, Zhou JJ, et al. 2021. Early diagnosis of rabies virus infection by RPA-CRISPR techniques in a rat model. Archives of Virology, 166(4): 1083−1092. doi: 10.1007/s00705-021-04970-x
    [197]
    Ricklin ME, García-Nicolás O, Brechbühl D, et al. 2016. Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nature Communications, 7: 10832. doi: 10.1038/ncomms10832
    [198]
    Roberts TK, Buckner CM, Berman JW. 2010. Leukocyte transmigration across the blood-brain barrier: perspectives on neuroAIDS. Frontiers in Bioscience, 15(2): 478−536.
    [199]
    Roe K, Kumar M, Lum S, et al. 2012. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. Journal of General Virology, 93(6): 1193−1203. doi: 10.1099/vir.0.040899-0
    [200]
    Rossi SL, Tesh RB, Azar SR, et al. 2016. Characterization of a Novel Murine Model to Study Zika Virus. The American Journal of Tropical Medicine and Hygiene, 94(6): 1362−1369. doi: 10.4269/ajtmh.16-0111
    [201]
    Rua R, McGavern DB. 2018. Advances in meningeal immunity. Trends in Molecular Medicine, 24(6): 542−559. doi: 10.1016/j.molmed.2018.04.003
    [202]
    Rubin SA, Pletnikov M, Carbone KM. 1998. Comparison of the neurovirulence of a vaccine and a wild-type mumps virus strain in the developing rat brain. Journal of Virology, 72(10): 8037−8042. doi: 10.1128/JVI.72.10.8037-8042.1998
    [203]
    Sabin AB, Olitsky PK. 1937. Influence of host factors on neuroinvasiveness of vesicular stomatitis virus: II. Effect of age on the invasion of the peripheral and central nervous systems by virus injected into the leg muscles or the eye. Journal of Experimental Medicine, 66(1): 35−57. doi: 10.1084/jem.66.1.35
    [204]
    Salimi H, Cain MD, Klein RS. 2016. Encephalitic arboviruses: emergence, clinical presentation, and neuropathogenesis. Neurotherapeutics, 13(3): 514−534. doi: 10.1007/s13311-016-0443-5
    [205]
    Samuel MA, Wang H, Siddharthan V, et al. 2007. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proceedings of the National Academy of Sciences of the United States of America, 104(43): 17140−17145. doi: 10.1073/pnas.0705837104
    [206]
    Sasseville VG, Newman W, Brodie SJ, et al. 1994. Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/α4β1 integrin interactions. American Journal of Pathology, 144(1): 27−40.
    [207]
    Saxena V, Mathur A, Krishnani N, et al. 2008. Kinetics of cytokine profile during intraperitoneal inoculation of Japanese encephalitis virus in BALB/c mice model. Microbes and Infection, 10(10–11): 1210–1217.
    [208]
    Seferovic M, Martín CSS, Tardif SD, et al. 2018. Experimental zika virus infection in the pregnant common marmoset induces spontaneous fetal loss and neurodevelopmental abnormalities. Scientific Reports, 8(1): 6851. doi: 10.1038/s41598-018-25205-1
    [209]
    Sejvar JJ, Haddad MB, Tierney BC, et al. 2003. Neurologic manifestations and outcome of West Nile virus infection. JAMA, 290(4): 511−515. doi: 10.1001/jama.290.4.511
    [210]
    Shan C, Yao YF, Yang XL, et al. 2020. Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Research, 30(8): 670–677.
    [211]
    Shrestha B, Diamond MS. 2007. Fas ligand interactions contribute to CD8+ T-cell-mediated control of West Nile virus infection in the central nervous system. Journal of Virology, 81(21): 11749−11757. doi: 10.1128/JVI.01136-07
    [212]
    Shrestha B, Pinto AK, Green S, et al. 2012. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. Journal of Virology, 86(17): 8937−8948. doi: 10.1128/JVI.00673-12
    [213]
    Shrestha B, Zhang B, Purtha WE, et al. 2008. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. Journal of Virology, 82(18): 8956−8964. doi: 10.1128/JVI.01118-08
    [214]
    Silva MC, Guerrero-Plata A, Gilfoy FD, et al. 2007. Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. Journal of Virology, 81(24): 13640−13648. doi: 10.1128/JVI.00857-07
    [215]
    Silva MTT. 2013. Viral encephalitis. Arquivos de Neuro-Psiquiatria, 71(9B): 703−709. doi: 10.1590/0004-282X20130155
    [216]
    Sips GJ, Wilschut J, Smit JM. 2012. Neuroinvasive flavivirus infections. Reviews in Medical Virology, 22(2): 69−87. doi: 10.1002/rmv.712
    [217]
    Smith JS. 1981. Mouse model for abortive rabies infection of the central nervous system. Infection and Immunity, 31(1): 297−308. doi: 10.1128/iai.31.1.297-308.1981
    [218]
    Solomon T, Lewthwaite P, Perera D, et al. 2010. Virology, epidemiology, pathogenesis, and control of enterovirus 71. The Lancet Infectious Diseases, 10(11): 778−790. doi: 10.1016/S1473-3099(10)70194-8
    [219]
    Song E, Mao TY, Dong HP, et al. 2020. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature, 577(7792): 689−694. doi: 10.1038/s41586-019-1912-x
    [220]
    Sooryanarain H, Ayachit V, Gore M. 2012. Activated CD56+ lymphocytes (NK+NKT) mediate immunomodulatory and anti-viral effects during Japanese encephalitis virus infection of dendritic cells in-vitro. Virology, 432(2): 250–260.
    [221]
    Spudich S, Nath A. 2022. Nervous system consequences of COVID-19. Science, 375(6578): 267−269. doi: 10.1126/science.abm2052
    [222]
    Steinbach K, Vincenti I, Kreutzfeldt M, et al. 2016. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. Journal of Experimental Medicine, 213(8): 1571−1587. doi: 10.1084/jem.20151916
    [223]
    Stiles LN, Hosking MP, Edwards RA, et al. 2006. Differential roles for CXCR3 in CD4+ and CD8+ T cell trafficking following viral infection of the CNS. European Journal of Immunology, 36(3): 613−622. doi: 10.1002/eji.200535509
    [224]
    Sumathy K, Kulkarni B, Gondu RK, et al. 2017. Protective efficacy of Zika vaccine in AG129 mouse model. Scientific Reports, 7: 46375. doi: 10.1038/srep46375
    [225]
    Sun SH, Chen Q, Gu HJ, et al. 2020. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host & Microbe, 28(1): 124−133.e4.
    [226]
    Süss J, Gelpi E, Klaus C, et al. 2007. Tickborne encephalitis in naturally exposed monkey (Macaca sylvanus). Emerging Infectious Diseases, 13(6): 905−907. doi: 10.3201/eid1306.061173
    [227]
    Suthar MS, Diamond MS, Gale M Jr. 2013. West Nile virus infection and immunity. Nature Reviews Microbiology, 11(2): 115−128. doi: 10.1038/nrmicro2950
    [228]
    Takahashi M, Yamada T, Nakajima S, et al. 1995. The substantia nigra is a major target for neurovirulent influenza A virus. Journal of Experimental Medicine, 181(6): 2161−2169. doi: 10.1084/jem.181.6.2161
    [229]
    Tan SH, Ong KC, Wong KT. 2014. Enterovirus 71 can directly infect the brainstem via cranial nerves and infection can be ameliorated by passive immunization. Journal of Neuropathology & Experimental Neurology, 73(11): 999−1008.
    [230]
    Tarantal AF, Salamat MS, Britt WJ, et al. 1998. Neuropathogenesis induced by rhesus cytomegalovirus in fetal rhesus monkeys (Macaca mulatta). The Journal of Infectious Diseases, 177(2): 446−450. doi: 10.1086/514206
    [231]
    Templeton SP, Kim TS, O'Malley K, et al. 2008. Maturation and localization of macrophages and microglia during infection with a neurotropic murine coronavirus. Brain Pathology, 18(1): 40−51. doi: 10.1111/j.1750-3639.2007.00098.x
    [232]
    Throsby M, Geuijen C, Goudsmit J, et al. 2006. Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus. Journal of Virology, 80(14): 6982−6992. doi: 10.1128/JVI.00551-06
    [233]
    Trifilo MJ, Lane TE. 2004. The CC chemokine ligand 3 regulates CD11c+CD11b+CD8α- dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology, 327(1): 8−15. doi: 10.1016/j.virol.2004.06.027
    [234]
    Trivedi S, Chakravarty A. 2022. Neurological complications of dengue fever. Current Neurology and Neuroscience Reports, 22(8): 515−529. doi: 10.1007/s11910-022-01213-7
    [235]
    Tselis AC. 2014. Epstein-Barr virus infections of the nervous system. Handbook of Clinical Neurology, 123: 285−305.
    [236]
    Tuite MF, Serio TR. 2010. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nature Reviews Molecular Cell Biology, 11(12): 823−833. doi: 10.1038/nrm3007
    [237]
    Turell MJ, Sardelis MR, Dohm DJ, et al. 2001. Potential North American vectors of West Nile virus. Annals of the New York Academy of Sciences, 951(1): 317−324.
    [238]
    Turtle L, Bali T, Buxton G, et al. 2016. Human T cell responses to Japanese encephalitis virus in health and disease. Journal of Experimental Medicine, 213(7): 1331−1352. doi: 10.1084/jem.20151517
    [239]
    Ugolini G. 2011. Rabies virus as a transneuronal tracer of neuronal connections. Advances in Virus Research, 79: 165−202.
    [240]
    Uyar O, Dominguez JM, Bordeleau M, et al. 2022. Single-cell transcriptomics of the ventral posterolateral nucleus-enriched thalamic regions from HSV-1-infected mice reveal a novel microglia/microglia-like transcriptional response. Journal of Neuroinflammation, 19(1): 81. doi: 10.1186/s12974-022-02437-7
    [241]
    van den Pol AN, Mocarski E, Saederup N, et al. 1999. Cytomegalovirus cell tropism, replication, and gene transfer in brain. Journal of Neuroscience, 19(24): 10948−10965. doi: 10.1523/JNEUROSCI.19-24-10948.1999
    [242]
    van Riel D, Verdijk R, Kuiken T. 2015. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. The Journal of Pathology, 235(2): 277−287. doi: 10.1002/path.4461
    [243]
    Venkatesan A, Tunkel AR, Bloch KC, et al. 2013. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clinical Infectious Diseases, 57(8): 1114−1128. doi: 10.1093/cid/cit458
    [244]
    Verboon-Maciolek MA, Groenendaal F, Hahn CD, et al. 2008. Human parechovirus causes encephalitis with white matter injury in neonates. Annals of Neurology, 64(3): 266−273. doi: 10.1002/ana.21445
    [245]
    Verma R, Sharma P, Garg RK, et al. 2011. Neurological complications of dengue fever: experience from a tertiary center of north India. Annals of Indian Academy of Neurology, 14(4): 272−278. doi: 10.4103/0972-2327.91946
    [246]
    Verstrepen BE, Fagrouch Z, van Heteren M, et al. 2014. Experimental infection of rhesus macaques and common marmosets with a European strain of West Nile virus. PLoS Neglected Tropical Diseases, 8(4): e2797. doi: 10.1371/journal.pntd.0002797
    [247]
    Walsh KB, Edwards RA, Romero KM, et al. 2007. Expression of CXC chemokine ligand 10 from the mouse hepatitis virus genome results in protection from viral-induced neurological and liver disease. The Journal of Immunology, 179(2): 1155−1165. doi: 10.4049/jimmunol.179.2.1155
    [248]
    Wang ML, Cao RY, Zhang LK, et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3): 269−271. doi: 10.1038/s41422-020-0282-0
    [249]
    Wang Y, Chen DY, Xu D, et al. 2021. Early developing B cells undergo negative selection by central nervous system-specific antigens in the meninges. Immunity, 54(12): 2784−2794.e6. doi: 10.1016/j.immuni.2021.09.016
    [250]
    Watson JT, Pertel PE, Jones RC, et al. 2004. Clinical characteristics and functional outcomes of West Nile Fever. Annals of Internal Medicine, 141(5): 360−365. doi: 10.7326/0003-4819-141-5-200409070-00010
    [251]
    Weinger JG, Marro BS, Hosking MP, et al. 2013. The chemokine receptor CXCR2 and coronavirus-induced neurologic disease. Virology, 435(1): 110−117. doi: 10.1016/j.virol.2012.08.049
    [252]
    White MK, Wollebo HS, David Beckham J, et al. 2016. Zika virus: an emergent neuropathological agent. Annals of Neurology, 80(4): 479−489. doi: 10.1002/ana.24748
    [253]
    Whitley RJ. 2015. Herpes simplex virus infections of the central nervous system. Continuum (Minneap Minn), 21(6): 1704–1713.
    [254]
    Wilkins C, Gale M Jr. 2010. Recognition of viruses by cytoplasmic sensors. Current Opinion in Immunology, 22(1): 41−47. doi: 10.1016/j.coi.2009.12.003
    [255]
    Winkler ES, Bailey AL, Kafai NM, et al. 2020. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunology, 21(11): 1327−1335. doi: 10.1038/s41590-020-0778-2
    [256]
    Wong P, Pamer EG. 2003. CD8 T cell responses to infectious pathogens. Annual Review of Immunology, 21: 29−70. doi: 10.1146/annurev.immunol.21.120601.141114
    [257]
    Wong PSJ, Li MZI, Chong CS, et al. 2013. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Neglected Tropical Diseases, 7(8): e2348. doi: 10.1371/journal.pntd.0002348
    [258]
    Wu SJL, Grouard-Vogel G, Sun W, et al. 2000. Human skin Langerhans cells are targets of dengue virus infection. Nature Medicine, 6(7): 816−820. doi: 10.1038/77553
    [259]
    Xiao CG, Wang X, Cui GH, et al. 2018. Possible pathogenicity of Japanese encephalitis virus in newly hatched domestic ducklings. Veterinary Microbiology, 227: 8−11. doi: 10.1016/j.vetmic.2018.10.016
    [260]
    Xiao SY, Guzman H, Zhang H, et al. 2001. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerging Infectious Diseases, 7(4): 714−721. doi: 10.3201/eid0704.017420
    [261]
    Xie XP, Wang QY, Xu HY, et al. 2011. Inhibition of dengue virus by targeting viral NS4B protein. Journal of Virology, 85(21): 11183−11195. doi: 10.1128/JVI.05468-11
    [262]
    Xu L, Yu DD, Ma YH, et al. 2020. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zoological Research, 41(5): 517−526. doi: 10.24272/j.issn.2095-8137.2020.053
    [263]
    Xu RF, Feng XY, Xie X, et al. 2012a. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Research, 1436: 13−19. doi: 10.1016/j.brainres.2011.11.052
    [264]
    Xu ZK, Waeckerlin R, Urbanowski MD, et al. 2012b. West nile virus infection causes endocytosis of a specific subset of tight junction membrane proteins. PLoS One, 7(5): e37886. doi: 10.1371/journal.pone.0037886
    [265]
    Yan Q, Zheng WJ, Jiang Y, et al. 2023. Transcriptomic reveals the ferroptosis features of host response in a mouse model of Zika virus infection. Journal of Medical Virology, 95(1): e28386.
    [266]
    Yang ZF, Zhao J, Zhu YT, et al. 2013. The tree shrew provides a useful alternative model for the study of influenza H1N1 virus. Virology Journal, 10: 111. doi: 10.1186/1743-422X-10-111
    [267]
    Yao YG. 2017. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 38(3): 118−126. doi: 10.24272/j.issn.2095-8137.2017.032
    [268]
    Yshii L, Gebauer C, Bernard-Valnet R, et al. 2015. Neurons and T cells: understanding this interaction for inflammatory neurological diseases. European Journal of Immunology, 45(10): 2712−2720. doi: 10.1002/eji.201545759
    [269]
    Yu JH, Liu XL, Ke CW, et al. 2017. Effective suckling C57BL/6, kunming, and BALB/c mouse models with remarkable neurological manifestation for Zika virus infection. Viruses, 9(7): 165. doi: 10.3390/v9070165
    [270]
    Zhang F, Qi LL, Li T, et al. 2019a. PD1+CCR2+CD8+ T cells infiltrate the central nervous system during acute japanese encephalitis virus infection. Virologica Sinica, 34(5): 538−548. doi: 10.1007/s12250-019-00134-z
    [271]
    Zhang NN, Zhang L, Deng YQ, et al. 2019b. Zika virus infection in tupaia belangeri causes dermatological manifestations and confers protection against secondary infection. Journal of Virology, 93(8): e01982−18.
    [272]
    Zhang RY, Sun C, Chen XM, et al. 2022a. COVID-19-related brain injury: the potential role of ferroptosis. Journal of Inflammation Research, 15: 2181−2198. doi: 10.2147/JIR.S353467
    [273]
    Zhang Y, Zhang SF, Li LT, et al. 2016. Ineffectiveness of rabies vaccination alone for post-exposure protection against rabies infection in animal models. Antiviral Research, 135: 56−61. doi: 10.1016/j.antiviral.2016.10.002
    [274]
    Zhang YY, Bailey JT, Xu E, et al. 2022b. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nature Immunology, 23(12): 1714−1725. doi: 10.1038/s41590-022-01349-1
    [275]
    Zuo J, Stohlman SA, Hoskin JB, et al. 2006. Mouse hepatitis virus pathogenesis in the central nervous system is independent of IL-15 and natural killer cells. Virology, 350(1): 206−215. doi: 10.1016/j.virol.2006.01.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (1259) PDF downloads(264) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return