Citation: | Chao-Yuan Cheng, Zhi-Bin Zhang. Reconstructing early transmission networks of SARS-CoV-2 using a genomic mutation model. Zoological Research, 2023, 44(3): 494-504. doi: 10.24272/j.issn.2095-8137.2022.535 |
[1] |
Abdool Karim SS, de Oliveira T. 2021. New SARS-CoV-2 variants — clinical, public health, and vaccine implications. New England Journal of Medicine, 384(19): 1866−1868. doi: 10.1056/NEJMc2100362
|
[2] |
Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1): 37−48. doi: 10.1093/oxfordjournals.molbev.a026036
|
[3] |
Burki T. 2021. Understanding variants of SARS-CoV-2. The Lancet, 397(10273): 462. doi: 10.1016/S0140-6736(21)00298-1
|
[4] |
Chan JFW, Kok KH, Zhu Z, et al. 2020. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1): 221−236.
|
[5] |
Cheng CY, Zhang ZB. 2023. SARS-CoV-2 shows a much earlier divergence in the world than in the Chinese mainland. Science China Life Sciences,doi: 10.1007/s11427-023-2294-5.
|
[6] |
Delaune D, Hul V, Karlsson EA, et al. 2021. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nature Communications, 12(1): 6563. doi: 10.1038/s41467-021-26809-4
|
[7] |
Deng SQ, Peng HJ. 2020. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. Journal of Clinical Medicine, 9(2): 575. doi: 10.3390/jcm9020575
|
[8] |
Duchene S, Lemey P, Stadler T, et al. 2020. Bayesian evaluation of temporal signal in measurably evolving populations. Molecular Biology and Evolution, 37(11): 3363−3379. doi: 10.1093/molbev/msaa163
|
[9] |
Ellis NA, Ciocci S, German J. 2001. Back mutation can produce phenotype reversion in Bloom syndrome somatic cells. Human Genetics, 108(2): 167−173. doi: 10.1007/s004390000447
|
[10] |
Fan Y, Zhao K, Shi ZL, et al. 2019. Bat coronaviruses in China. Viruses, 11(3): 210. doi: 10.3390/v11030210
|
[11] |
Forster P, Forster L, Renfrew C, et al. 2020. Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences of the United States of America, 117(17): 9241−9243. doi: 10.1073/pnas.2004999117
|
[12] |
Giovanetti M, Benvenuto D, Angeletti S, et al. 2020. The first two cases of 2019-nCoV in Italy: where they come from?. Journal of Medical Virology, 92(5): 518−521. doi: 10.1002/jmv.25699
|
[13] |
Hill V, Rambaut A. 2020[2021-02-17]. Phylodynamic analysis of SARS-CoV-2 | Update 2020-03-06.https://virological.org/t/phylodynamic-analysis-of-sars-cov-2-update-2020-03-06/420.
|
[14] |
Holmes EC, Nee S, Rambaut A, et al. 1995. Revealing the history of infectious disease epidemics through phylogenetic trees. Philosophical Transactions of the Royal Society B:Biological Sciences, 349(1327): 33−40. doi: 10.1098/rstb.1995.0088
|
[15] |
Kong S, Sánchez-Pacheco SJ, Murphy RW. 2016. On the use of median-joining networks in evolutionary biology. Cladistics, 32(6): 691−699. doi: 10.1111/cla.12147
|
[16] |
Lam TTY, Jia N, Zhang YW, et al. 2020. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815): 282−285. doi: 10.1038/s41586-020-2169-0
|
[17] |
Lanciotti RS, Ebel GD, Deubel V, et al. 2002. Complete genome sequences and phylogenetic analysis of west Nile virus strains isolated from the United States, Europe, and the Middle East. Virology, 298(1): 96−105. doi: 10.1006/viro.2002.1449
|
[18] |
Lau SKP, Luk HKH, Wong ACP, et al. 2020. Possible bat origin of severe acute respiratory syndrome coronavirus 2. Emerging Infectious Diseases, 26(7): 1542−1547. doi: 10.3201/eid2607.200092
|
[19] |
Lauring AS, Hodcroft EB. 2021. Genetic variants of SARS-CoV-2—What do they mean?. JAMA, 325(6): 529−531. doi: 10.1001/jama.2020.27124
|
[20] |
Li JG, Li Z, Cui XG, et al. 2020a. Bayesian phylodynamic inference on the temporal evolution and global transmission of SARS-CoV-2. Journal of Infection, 81(2): 318−356.
|
[21] |
Li WD, Shi ZL, Yu M, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748): 676−679. doi: 10.1126/science.1118391
|
[22] |
Li XG, Wang W, Zhao XF, et al. 2020b. Transmission dynamics and evolutionary history of 2019-nCoV. Journal of Medical Virology, 92(5): 501−511. doi: 10.1002/jmv.25701
|
[23] |
Li XG, Zai JJ, Wang XM, et al. 2020c. Potential of large “first generation” human-to-human transmission of 2019-nCoV. Journal of Medical Virology, 92(4): 448−454. doi: 10.1002/jmv.25693
|
[24] |
Li XG, Zai JJ, Zhao Q, et al. 2020d. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. Journal of Medical Virology, 92(6): 602−611. doi: 10.1002/jmv.25731
|
[25] |
Liu Q, Zhao SL, Shi CM, et al. 2020. Population genetics of SARS-CoV-2: disentangling effects of sampling bias and infection clusters. Genomics, Proteomics & Bioinformatics, 18(6): 640−647.
|
[26] |
Lu RJ, Zhao X, Li J, et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224): 565−574. doi: 10.1016/S0140-6736(20)30251-8
|
[27] |
Lundstrom K, Seyran M, Pizzol D, et al. 2020. The importance of research on the origin of SARS-CoV-2. Viruses, 12(11): 1203. doi: 10.3390/v12111203
|
[28] |
Mallapaty S. 2020. Coronaviruses closely related to the pandemic virus discovered in Japan and Cambodia. Nature, 588(7836): 15−16. doi: 10.1038/d41586-020-03217-0
|
[29] |
Morel B, Barbera P, Czech L, et al. 2021. Phylogenetic analysis of SARS-CoV-2 data is difficult. Molecular Biology and Evolution, 38(5): 1777−1791. doi: 10.1093/molbev/msaa314
|
[30] |
Nabil B, Sabrina B, Abdelhakim B. 2021. Transmission route and introduction of pandemic SARS-CoV-2 between China, Italy, and Spain. Journal of Medical Virology, 93(1): 564−568. doi: 10.1002/jmv.26333
|
[31] |
Nie Q, Li XG, Chen W, et al. 2020. Phylogenetic and phylodynamic analyses of SARS-CoV-2. Virus Research, 287: 198098. doi: 10.1016/j.virusres.2020.198098
|
[32] |
Paraskevis D, Kostaki EG, Magiorkinis G, et al. 2020. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 79: 104212. doi: 10.1016/j.meegid.2020.104212
|
[33] |
Patwardhan A, Ray S, Roy A. 2014. Molecular markers in phylogenetic studies-a review. Journal of Phylogenetics & Evolutionary Biology, 2(2): 1000131.
|
[34] |
Peng MS, Li JB, Cai ZF, et al. 2021. The high diversity of SARS-CoV-2-related coronaviruses in pangolins alerts potential ecological risks. Zoological Research, 42(6): 834−844.
|
[35] |
Pipes L, Wang HR, Huelsenbeck JP, et al. 2021. Assessing uncertainty in the rooting of the SARS-CoV-2 phylogeny. Molecular Biology and Evolution, 38(4): 1537−1543. doi: 10.1093/molbev/msaa316
|
[36] |
Poon AFY, Walker LW, Murray H, et al. 2013. Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. PLoS One, 8(11): e78122. doi: 10.1371/journal.pone.0078122
|
[37] |
Ruan YS, Wen HJ, Hou M, et al. 2022. The twin-beginnings of COVID-19 in Asia and Europe - one prevails quickly. National Science Review, 9(4): nwab223. doi: 10.1093/nsr/nwab223
|
[38] |
Sekizuka T, Itokawa K, Kageyama T, et al. 2020. Haplotype networks of SARS-CoV-2 infections in the Diamond Princess cruise ship outbreak. Proceedings of the National Academy of Sciences of the United States of America, 117(33): 20198−20201. doi: 10.1073/pnas.2006824117
|
[39] |
Shan KJ, Wei CS, Wang Y, et al. 2021. Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process. The Innovation, 2(4): 100159. doi: 10.1016/j.xinn.2021.100159
|
[40] |
Song SH, Ma LN, Zou D, et al. 2020. The global landscape of SARS-CoV-2 genomes, variants, and haplotypes in 2019nCoVR. Genomics, Proteomics & Bioinformatics, 18(6): 749−759.
|
[41] |
Tang XL, Wu CC, Li X, et al. 2020. On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6): 1012−1023. doi: 10.1093/nsr/nwaa036
|
[42] |
Tang XL, Ying RC, Yao XM, et al. 2021. Evolutionary analysis and lineage designation of SARS-CoV-2 genomes. Science Bulletin, 66(22): 2297−2311. doi: 10.1016/j.scib.2021.02.012
|
[43] |
Temmam S, Vongphayloth K, Baquero E, et al. 2022. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature, 604(7905): 330−336. doi: 10.1038/s41586-022-04532-4
|
[44] |
Tong YG, Liu WL, Liu PP, et al. 2021. The origins of viruses: discovery takes time, international resources, and cooperation. The Lancet, 398(10309): 1401−1402. doi: 10.1016/S0140-6736(21)02180-2
|
[45] |
Turakhia Y, de Maio N, Thornlow B, et al. 2020. Stability of SARS-CoV-2 phylogenies. PLoS Genetics, 16(11): e1009175. doi: 10.1371/journal.pgen.1009175
|
[46] |
van Dorp L, Acman M, Richard D, et al. 2020. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution, 83: 104351. doi: 10.1016/j.meegid.2020.104351
|
[47] |
Wacharapluesadee S, Tan CW, Maneeorn P, et al. 2021. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in southeast Asia. Nature Communications, 12(1): 972. doi: 10.1038/s41467-021-21240-1
|
[48] |
Wang HJ, Zhao W. 2021. WHO-convened global study of origins of SARS-CoV-2: China part (text extract). Infectious Diseases & Immunity, 1(3): 125−132.
|
[49] |
WHO Team. 2023. Weekly epidemiological update on COVID-19 - 16 March 2023. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---16-march-2023.
|
[50] |
Wong G, Bi YH, Wang QH, et al. 2020. Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important?. Zoological Research, 41(3): 213−219. doi: 10.24272/j.issn.2095-8137.2020.031
|
[51] |
Wu CI, Wen HJ, Lu J, et al. 2021. On the origin of SARS-CoV-2—the blind watchmaker argument. Science China Life Sciences, 64(9): 1560−1563. doi: 10.1007/s11427-021-1972-1
|
[52] |
Wu F, Zhao S, Yu B, et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature, 579(7798): 265−269. doi: 10.1038/s41586-020-2008-3
|
[53] |
Xiao KP, Zhai JQ, Feng YY, et al. 2020. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 583(7815): 286−289. doi: 10.1038/s41586-020-2313-x
|
[54] |
Yu D, Zhu J, Yang J, et al. 2022. Global cold-chain related SARS-CoV-2 transmission identified by pandemic-scale phylogenomics. Zoological Research, 43(5): 871−874. doi: 10.24272/j.issn.2095-8137.2022.238
|
[55] |
Yu WB, Tang GD, Zhang L, et al. 2020. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2 / HCoV-19) using whole genomic data. Zoological Research, 41(3): 247−257. doi: 10.24272/j.issn.2095-8137.2020.022
|
[56] |
Zhang YZ, Holmes EC. 2020. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell, 181(2): 223−227. doi: 10.1016/j.cell.2020.03.035
|
[57] |
Zhou H, Chen X, Hu T, et al. 2020a. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology, 30(11): 2196−2203.e3. doi: 10.1016/j.cub.2020.05.023
|
[58] |
Zhou H, Ji JK, Chen X, et al. 2021. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell, 184(17): 4380−4391.e14. doi: 10.1016/j.cell.2021.06.008
|
[59] |
Zhou P, Yang XL, Wang XG, et al. 2020b. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270−273. doi: 10.1038/s41586-020-2012-7
|
![]() |
![]() |