Turn off MathJax
Article Contents
Rui Zheng, De-Xin Zhang, Yan-Jiao Shao, Xiao-Liang Fang, Lei Yang, Ya-Nan Huo, Da-Li Li, Hong-Quan Geng. Multiplex gene editing reduces oxalate production in primary hyperoxaluria type 1. Zoological Research, 2023, 44(6): 993-1002. doi: 10.24272/j.issn.2095-8137.2022.495
Citation: Rui Zheng, De-Xin Zhang, Yan-Jiao Shao, Xiao-Liang Fang, Lei Yang, Ya-Nan Huo, Da-Li Li, Hong-Quan Geng. Multiplex gene editing reduces oxalate production in primary hyperoxaluria type 1. Zoological Research, 2023, 44(6): 993-1002. doi: 10.24272/j.issn.2095-8137.2022.495

Multiplex gene editing reduces oxalate production in primary hyperoxaluria type 1

doi: 10.24272/j.issn.2095-8137.2022.495
Raw data were deposited in the National Center for Biotechnology Information database (PRJNA828129), Genome Sequence Archive (PRJCA016479), and Science Data Bank database (DOI: 10.57760/sciencedb.j00139.00052).
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
H.Q.G. and D.L.L.: Supervision, Conceptualization, Methodology. R.Z., D.X.Z., and X.L.F.: Data curation, Writing-Original draft preparation. R.Z., Y.J.S., D.X.Z., L.Y., and Y.N.H.: Visualization, Investigation. R.Z.: Software, Validation. H.Q.G.: Writing-Reviewing and Editing. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This work was partially supported by the Science and Technology Commission of Shanghai Municipality (22YF1426900, 20140900200) and National Natural Science Foundation of China (32001057)
More Information
  • Targeting key enzymes that generate oxalate precursors or substrates is an alternative strategy to eliminate primary hyperoxaluria type I (PH1), the most common and life-threatening type of primary hyperoxaluria. The compact Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) from the Prevotella and Francisella 1 (Cpf1) protein simplifies multiplex gene editing and allows for all-in-one adeno-associated virus (AAV) delivery. We hypothesized that the multiplex capabilities of the Cpf1 system could help minimize oxalate formation in PH1 by simultaneously targeting the hepatic hydroxyacid oxidase 1 (Hao1) and lactate dehydrogenase A (Ldha) genes. Study cohorts included treated PH1 rats (AgxtQ84X rats injected with AAV-AsCpf1 at 7 days of age), phosphate-buffered saline (PBS)-injected PH1 rats, untreated PH1 rats, and age-matched wild-type (WT) rats. The most efficient and specific CRISPR RNA (crRNA) pairs targeting the rat Hao1 and Ldha genes were initially screened ex vivo. In vivo experiments demonstrated efficient genome editing of the Hao1 and Ldha genes, primarily resulting in small deletions. This resulted in decreased transcription and translational expression of Hao1 and Ldha. Treatment significantly reduced urine oxalate levels, reduced kidney damage, and alleviated nephrocalcinosis in rats with PH1. No liver toxicity, ex-liver genome editing, or obvious off-target effects were detected. We demonstrated the AAV-AsCpf1 system can target multiple genes and rescue the pathogenic phenotype in PH1, serving as a proof-of-concept for the development of multiplex genome editing-based gene therapy.
  • Raw data were deposited in the National Center for Biotechnology Information database (PRJNA828129), Genome Sequence Archive (PRJCA016479), and Science Data Bank database (DOI: 10.57760/sciencedb.j00139.00052).
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    H.Q.G. and D.L.L.: Supervision, Conceptualization, Methodology. R.Z., D.X.Z., and X.L.F.: Data curation, Writing-Original draft preparation. R.Z., Y.J.S., D.X.Z., L.Y., and Y.N.H.: Visualization, Investigation. R.Z.: Software, Validation. H.Q.G.: Writing-Reviewing and Editing. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Chew WL. 2018. Immunity to CRISPR Cas9 and Cas12a therapeutics. WIREs Systems Biology and Medicine, 10(1): e1408. doi: 10.1002/wsbm.1408
    [2]
    Daniel SL, Moradi L, Paiste H, et al. 2021. Forty years of Oxalobacter formigenes, a gutsy oxalate-degrading specialist. Applied and Environmental Microbiology, 87(18): e0054421. doi: 10.1128/AEM.00544-21
    [3]
    Danpure CJ, Jennings PR, Watts RW. 1987. Enzymological diagnosis of primary hyperoxaluria type 1 by measurement of hepatic alanine: glyoxylate aminotransferase activity. The Lancet, 1(8528): 289−291.
    [4]
    Dindo M, Conter C, Oppici E, et al. 2019. Molecular basis of primary hyperoxaluria: clues to innovative treatments. Urolithiasis, 47(1): 67−78. doi: 10.1007/s00240-018-1089-z
    [5]
    Fargue S, Rumsby G, Danpure CJ. 2013. Multiple mechanisms of action of pyridoxine in primary hyperoxaluria type 1. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(10): 1776−1783. doi: 10.1016/j.bbadis.2013.04.010
    [6]
    Finn JD, Smith AR, Patel MC, et al. 2018. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Reports, 22(9): 2227−2235. doi: 10.1016/j.celrep.2018.02.014
    [7]
    Fonfara I, Richter H, Bratovič M, et al. 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 532(7600): 517−521. doi: 10.1038/nature17945
    [8]
    Gao LY, Cox DBT, Yan WX, et al. 2017. Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 35(8): 789−792. doi: 10.1038/nbt.3900
    [9]
    Garneau JE, Dupuis MÈ, Villion M, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320): 67−71. doi: 10.1038/nature09523
    [10]
    Gasiunas G, Barrangou R, Horvath P, et al. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39): E2579−E2586.
    [11]
    Gaudelli NM, Komor AC, Rees HA, et al. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551(7681): 464−471. doi: 10.1038/nature24644
    [12]
    Hastie E, Samulski RJ. 2015. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success—a personal perspective. Human Gene Therapy, 26(5): 257−265. doi: 10.1089/hum.2015.025
    [13]
    Hopp K, Cogal AG, Bergstralh EJ, et al. 2015. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. Journal of the American Society of Nephrology, 26(10): 2559−2570. doi: 10.1681/ASN.2014070698
    [14]
    Hoyer-Kuhn H, Kohbrok S, Volland R, et al. 2014. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clinical Journal of the American Society of Nephrology, 9(3): 468−477. doi: 10.2215/CJN.06820613
    [15]
    Hu HM, Mosca R, Gomero E, et al. 2021. AAV-mediated gene therapy for galactosialidosis: a long-term safety and efficacy study. Molecular Therapy - Methods & Clinical Development, 23: 644−658.
    [16]
    Jinek M, Chylinski K, Fonfara I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816−821. doi: 10.1126/science.1225829
    [17]
    Kim D, Kim J, Hur JK, et al. 2016. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology, 34(8): 863−868. doi: 10.1038/nbt.3609
    [18]
    Komor AC, Kim YB, Packer MS, et al. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603): 420−424. doi: 10.1038/nature17946
    [19]
    Lai C, Pursell N, Gierut J, et al. 2018. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Molecular Therapy, 26(8): 1983−1995. doi: 10.1016/j.ymthe.2018.05.016
    [20]
    Li CW, Samulski RJ. 2020. Engineering adeno-associated virus vectors for gene therapy. Nature Reviews Genetics, 21(4): 255−272. doi: 10.1038/s41576-019-0205-4
    [21]
    Li YY, Zheng R, Xu GF, et al. 2021. Generation and characterization of a novel rat model of primary hyperoxaluria type 1 with a nonsense mutation in alanine-glyoxylate aminotransferase gene. American Journal of Physiology-Renal Physiology, 320(3): F475−F484. doi: 10.1152/ajprenal.00514.2020
    [22]
    Liebow A, Li XS, Racie T, et al. 2017. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. Journal of the American Society of Nephrology, 28(2): 494−503. doi: 10.1681/ASN.2016030338
    [23]
    Mandrile G, Van Woerden CS, Berchialla P, et al. 2014. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney International, 86(6): 1197−1204. doi: 10.1038/ki.2014.222
    [24]
    Martin-Higueras C, Luis-Lima S, Salido E. 2016. Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of primary hyperoxaluria type I. Molecular Therapy, 24(4): 719−725. doi: 10.1038/mt.2015.224
    [25]
    Mulay SR, Desai J, Kumar SV, et al. 2016. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nature Communications, 7: 10274. doi: 10.1038/ncomms10274
    [26]
    Mulay SR, Kulkarni OP, Rupanagudi KV, et al. 2013. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. Journal of Clinical Investigation, 123(1): 236−246. doi: 10.1172/JCI63679
    [27]
    Naderi G, Tabassomi F, Latif A, et al. 2015. Primary hyperoxaluria type 1 diagnosed after kidney transplantation: the importance of pre-transplantation metabolic screening in recurrent urolithiasis. Saudi Journal of Kidney Diseases and Transplantation, 26(4): 783−785. doi: 10.4103/1319-2442.160216
    [28]
    Naso MF, Tomkowicz B, Perry III WL, et al. 2017. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs, 31(4): 317−334. doi: 10.1007/s40259-017-0234-5
    [29]
    Pizzolato P. 1964. Histochemical recognition of calcium oxalate. Journal of Histochemistry & Cytochemistry, 12(5): 333−336.
    [30]
    Qiu M, Glass Z, Chen JJ, et al. 2021. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proceedings of the National Academy of Sciences of the United States of America, 118(10): e2020401118.
    [31]
    Rabinowitz J, Chan YK, Samulski RJ. 2019. Adeno-associated virus (AAV) versus immune response. Viruses, 11(2): 102. doi: 10.3390/v11020102
    [32]
    Ran FA, Cong L, Yan WX, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546): 186−191. doi: 10.1038/nature14299
    [33]
    Salido E, Pey AL, Rodriguez R, et al. 2012. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(9): 1453−1464. doi: 10.1016/j.bbadis.2012.03.004
    [34]
    Salido EC, Li XM, Lu Y, et al. 2006. Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 103(48): 18249−18254.
    [35]
    Shah VN, Pyle L. 2021. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. The New England Journal of Medicine, 385(20): e69. doi: 10.1056/NEJMc2107661
    [36]
    Toussaint C. 1998. Pyridoxine-responsive PH1: treatment. Journal of Nephrology, 11 Suppl 1: 49–50.
    [37]
    Verdera HC, Kuranda K, Mingozzi F. 2020. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Molecular Therapy, 28(3): 723−746. doi: 10.1016/j.ymthe.2019.12.010
    [38]
    Wood KD, Holmes RP, Erbe D, et al. 2019. Reduction in urinary oxalate excretion in mouse models of primary hyperoxaluria by RNA interference inhibition of liver lactate dehydrogenase activity. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1865(9): 2203−2209. doi: 10.1016/j.bbadis.2019.04.017
    [39]
    Wu ZJ, Asokan A, Samulski RJ. 2006. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Molecular Therapy, 14(3): 316−327. doi: 10.1016/j.ymthe.2006.05.009
    [40]
    Zabaleta N, Barberia M, Martin-Higueras C, et al. 2018. CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nature Communications, 9(1): 5454. doi: 10.1038/s41467-018-07827-1
    [41]
    Zetsche B, Gootenberg JS, Abudayyeh OO, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system. Cell, 163(3): 759−771. doi: 10.1016/j.cell.2015.09.038
    [42]
    Zetsche B, Heidenreich M, Mohanraju P, et al. 2017. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nature Biotechnology, 35(1): 31−34. doi: 10.1038/nbt.3737
    [43]
    Zheng R, Fang XL, Chen X, et al. 2020a. Knockdown of lactate dehydrogenase by adeno-associated virus-delivered CRISPR/Cas9 system alleviates primary hyperoxaluria type 1. Clinical and Translational Medicine, 10(8): e261. doi: 10.1002/ctm2.261
    [44]
    Zheng R, Li YY, Wang LR, et al. 2020b. CRISPR/Cas9-mediated metabolic pathway reprogramming in a novel humanized rat model ameliorates primary hyperoxaluria type 1. Kidney International, 98(4): 947−957. doi: 10.1016/j.kint.2020.04.049
  • ZR-2022-495-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (142) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return