Volume 44 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Jing Pan, Chen-Jie Fei, Yang Hu, Xiang-Yu Wu, Li Nie, Jiong Chen. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zoological Research, 2023, 44(1): 183-218. doi: 10.24272/j.issn.2095-8137.2022.464
Citation: Jing Pan, Chen-Jie Fei, Yang Hu, Xiang-Yu Wu, Li Nie, Jiong Chen. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zoological Research, 2023, 44(1): 183-218. doi: 10.24272/j.issn.2095-8137.2022.464

Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases

doi: 10.24272/j.issn.2095-8137.2022.464
The authors declare that they have no competing interests.
J.P., C.J.F., and L.N. wrote the original draft, J.P., Y.H., and X.Y.W. drew the figures, Y.H. constructed the tables, and J.C. supervised the project and wrote and edited the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This work was supported by the Natural Science Foundation of Zhejiang Province (LY23C190002), National Natural Science Foundation of China (32173004), and Natural Science Foundation of Ningbo City (202003N4011)
More Information
  • The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
  • The authors declare that they have no competing interests.
    J.P., C.J.F., and L.N. wrote the original draft, J.P., Y.H., and X.Y.W. drew the figures, Y.H. constructed the tables, and J.C. supervised the project and wrote and edited the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Aarreberg LD, Esser-Nobis K, Driscoll C, Shuvarikov A, Roby JA, Gale M Jr. 2019. Interleukin-1β induces mtDNA release to activate innate immune signaling via cGAS-STING. Molecular Cell, 74(4): 801−815.e6. doi: 10.1016/j.molcel.2019.02.038
    Abe T, Barber GN. 2014. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. Journal of Virology, 88(10): 5328−5341. doi: 10.1128/JVI.00037-14
    Ablasser A. 2016. ReGLUation of cGAS. Nature Immunology, 17(4): 347−349. doi: 10.1038/ni.3397
    Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, et al. 2018. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. Journal of Experimental Medicine, 215(11): 2868−2886. doi: 10.1084/jem.20171029
    Ahn J, Barber GN. 2014. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Current Opinion in Immunology, 31: 121−126. doi: 10.1016/j.coi.2014.10.009
    Ahn J, Son S, Oliveira SC, Barber GN. 2017. STING-dependent signaling underlies IL-10 controlled inflammatory colitis. Cell Reports, 21(13): 3873−3884. doi: 10.1016/j.celrep.2017.11.101
    Ahn J, Xia TL, Konno H, Konno K, Ruiz P, Barber GN. 2014. Inflammation-driven carcinogenesis is mediated through STING. Nature Communications, 5: 5166. doi: 10.1038/ncomms6166
    Akira S, Saitoh T, Kawai T. 2012. Nucleic acids recognition by innate immunity. Uirusu, 62(1): 39–46. (in Japanese)
    Al-Chalabi A, Hardiman O. 2013. The epidemiology of ALS: a conspiracy of genes, environment and time. Nature Reviews Neurology, 9(11): 617−628. doi: 10.1038/nrneurol.2013.203
    An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. 2017. Antimalarial drugs as immune modulators: new mechanisms for old drugs. Annual Review of Medicine, 68: 317−330. doi: 10.1146/annurev-med-043015-123453
    An J, Woodward JJ, Lai WN, Minie M, Sun XZ, Tanaka L, et al. 2018. Inhibition of cyclic GMP-AMP synthase using a novel antimalarial drug derivative in Trex1-deficient mice. Arthritis & Rheumatology, 70(11): 1807−1819.
    An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. 2015. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. The Journal of Immunology, 194(9): 4089−4093. doi: 10.4049/jimmunol.1402793
    Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC, Jan Drexler D, et al. 2017. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature, 549(7672): 394−398. doi: 10.1038/nature23890
    Apel F, Andreeva L, Knackstedt LS, Streeck R, Frese CK, Goosmann C, et al. 2021. The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Science Signaling, 14(673): eaax7942. doi: 10.1126/scisignal.aax7942
    Bai JL, Liu F. 2021. cGAS-STING signaling and function in metabolism and kidney diseases. Journal of Molecular Cell Biology, 13(10): 728−738. doi: 10.1093/jmcb/mjab066
    Bai JL, Liu F. 2022. Nuclear cGAS: sequestration and beyond. Protein & Cell, 13(2): 90−101.
    Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Kranzusch PJ, et al. 2019. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell, 176(6): 1432−1446.e11. doi: 10.1016/j.cell.2019.01.049
    Baum R, Sharma S, Organ JM, Jakobs C, Hornung V, Burr DB, et al. 2017. STING contributes to abnormal bone formation induced by deficiency of DNase II in mice. Arthritis & Rheumatology, 69(2): 460−471.
    Baumgart DC, Sandborn WJ. 2012. Crohn's disease. The Lancet, 380(9853): 1590−1605. doi: 10.1016/S0140-6736(12)60026-9
    Bedford MT, Clarke SG. 2009. Protein arginine methylation in mammals: who, what, and why. Molecular Cell, 33(1): 1−13. doi: 10.1016/j.molcel.2008.12.013
    Benjamin JL, Sumpter R Jr, Levine B, Hooper LV. 2013. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host & Microbe, 13(6): 723−734.
    Benmerzoug S, Rose S, Bounab B, Gosset D, Duneau L, Chenuet P, et al. 2018. STING-dependent sensing of self-DNA drives silica-induced lung inflammation. Nature Communications, 9(1): 5226. doi: 10.1038/s41467-018-07425-1
    Berthelot JM, Drouet L, Lioté F. 2020a. Kawasaki-like diseases and thrombotic coagulopathy in COVID-19: delayed over-activation of the STING pathway?. Emerging Microbes & Infections, 9(1): 1514−1522.
    Berthelot JM, Lioté F. 2020. COVID-19 as a STING disorder with delayed over-secretion of interferon-beta. eBioMedicine, 56: 102801. doi: 10.1016/j.ebiom.2020.102801
    Blanc RS, Richard S. 2017. Arginine methylation: the coming of age. Molecular Cell, 65(1): 8−24. doi: 10.1016/j.molcel.2016.11.003
    Berthelot JM, Lioté F, Maugars Y, Sibilia J. 2020b. Lymphocyte changes in severe COVID-19: delayed over-activation of STING?. Frontiers in Immunology, 11: 607069. doi: 10.3389/fimmu.2020.607069
    Bodda C, Reinert LS, Fruhwürth S, Richardo T, Sun CL, Zhang BC, et al. 2020. HSV1 VP1–2 deubiquitinates STING to block type I interferon expression and promote brain infection. Journal of Experimental Medicine, 217(7): e20191422. doi: 10.1084/jem.20191422
    Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu PD, Mcginty RK, et al. 2020. Structural basis of nucleosome-dependent cGAS inhibition. Science, 370(6515): 450−454. doi: 10.1126/science.abd0609
    Brandizzi F, Barlowe C. 2013. Organization of the ER-Golgi interface for membrane traffic control. Nature Reviews Molecular Cell Biology, 14(6): 382−392. doi: 10.1038/nrm3588
    Broz P, Dixit VM. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 16(7): 407−420. doi: 10.1038/nri.2016.58
    Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature, 478(7370): 515−518. doi: 10.1038/nature10429
    Campisi J. 2013. Aging, cellular senescence, and cancer. Annual Review of Physiology, 75: 685−705. doi: 10.1146/annurev-physiol-030212-183653
    Canesso MCC, Lemos L, Neves TC, Marim FM, Castro TBR, Veloso ÉS, et al. 2018. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation. Mucosal Immunology, 11(3): 820−834. doi: 10.1038/mi.2017.88
    Cao DF, Han XN, Fan XY, Xu RM, Zhang XZ. 2020. Structural basis for nucleosome-mediated inhibition of cGAS activity. Cell Research, 30(12): 1088−1097. doi: 10.1038/s41422-020-00422-4
    Cao L, Xu EJ, Zheng RD, Zhangchen ZL, Zhong RL, Huang F, et al. 2022. Traditional Chinese medicine Lingguizhugan decoction ameliorate HFD-induced hepatic-lipid deposition in mice by inhibiting STING-mediated inflammation in macrophages. Chinese Medicine, 17(1): 7. doi: 10.1186/s13020-021-00559-3
    Cao TY, Shao S, Li B, Jin L, Lei J, Qiao HJ, et al. 2016. Up-regulation of interferon-inducible protein 16 contributes to psoriasis by modulating chemokine production in keratinocytes. Scientific Reports, 6: 25381. doi: 10.1038/srep25381
    Castaneda D, Gonzalez AJ, Alomari M, Tandon K, Zervos XB. 2021. From hepatitis A to E: a critical review of viral hepatitis. World Journal of Gastroenterology, 27(16): 1691−1715. doi: 10.3748/wjg.v27.i16.1691
    Cavlar T, Deimling T, Ablasser A, Hopfner KP, Hornung V. 2013. Species-specific detection of the antiviral small-molecule compound CMA by STING. The EMBO Journal, 32(10): 1440−1450. doi: 10.1038/emboj.2013.86
    Chen H, Chen H, Zhang JM, Wang YM, Simoneau A, Yang H, et al. 2020. cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances, 6(42): eabb8941. doi: 10.1126/sciadv.abb8941
    Chen HH, Pei RJ, Zhu WD, Zeng R, Wang Y, Wang YY, et al. 2014. An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs. The Journal of Immunology, 192(3): 1162−1170. doi: 10.4049/jimmunol.1300798
    Chen LF, Greene WC. 2004. Shaping the nuclear action of NF-κB. Nature Reviews Molecular Cell Biology, 5(5): 392−401. doi: 10.1038/nrm1368
    Chen MX, Meng QC, Qin YF, Liang PP, Tan P, He L, et al. 2016a. TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Molecular Cell, 64(1): 105−119. doi: 10.1016/j.molcel.2016.08.025
    Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, et al. 2016b. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604): 493−498. doi: 10.1038/nature18268
    Chen Q, Sun LJ, Chen ZJ. 2016c. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nature Immunology, 17(10): 1142−1149. doi: 10.1038/ni.3558
    Chen SY, Liu YQ, Zhou HC. 2021. Advances in the Development ubiquitin-specific peptidase (USP) inhibitors. International Journal of Molecular Sciences, 22(9): 4546. doi: 10.3390/ijms22094546
    Chen XF, Chen YF. 2019. Ubiquitination of cGAS by TRAF6 regulates anti-DNA viral innate immune responses. Biochemical and Biophysical Research Communications, 514(3): 659−664. doi: 10.1016/j.bbrc.2019.05.022
    Chen YF, Wang LF, Jin JL, Luan Y, Chen C, Li Y, et al. 2017. p38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. Journal of Experimental Medicine, 214(4): 991−1010. doi: 10.1084/jem.20161387
    Chin EN, Yu CG, Vartabedian VF, Jia Y, Kumar M, Gamo AM, et al. 2020. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science, 369(6506): 993−999. doi: 10.1126/science.abb4255
    Christensen MH, Jensen SB, Miettinen JJ, Luecke S, Prabakaran T, Reinert LS, et al. 2016. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. The EMBO Journal, 35(13): 1385−1399. doi: 10.15252/embj.201593458
    Chu L, Li CH, Li YX, Yu QY, Yu HS, Li CH, et al. 2021. Perillaldehyde inhibition of cGAS reduces dsDNA-induced interferon response. Frontiers in Immunology, 12: 655637. doi: 10.3389/fimmu.2021.655637
    Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, et al. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. Nature, 498(7454): 332−337. doi: 10.1038/nature12305
    Collins AC, Cai HC, Li T, Franco LH, Li XD, Nair VR, et al. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host & Microbe, 17(6): 820–828.
    Cong XY, Yuan ZL, Du YJ, Wu B, Lu DF, Wu XJ, et al. 2019. Crystal structures of porcine STINGCBD-CDN complexes reveal the mechanism of ligand recognition and discrimination of STING proteins. Journal of Biological Chemistry, 294(30): 11420−11432. doi: 10.1074/jbc.RA119.007367
    Corrales L, Gajewski TF. 2016. Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy. Cytokine, 77: 245−247. doi: 10.1016/j.cyto.2015.08.258
    Cox DJ, Field RH, Williams DG, Baran M, Bowie AG, Cunningham C, et al. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia, 63(5): 812−825. doi: 10.1002/glia.22786
    Cree BAC, Arnold DL, Chataway J, Chitnis T, Fox RJ, Pozo Ramajo A, et al. 2021. Secondary progressive multiple sclerosis: new insights. Neurology, 97(8): 378−388. doi: 10.1212/WNL.0000000000012323
    Crow YJ. 2015. Type I interferonopathies: mendelian type I interferon up-regulation. Current Opinion in Immunology, 32: 7−12. doi: 10.1016/j.coi.2014.10.005
    Cui SF, Yu QY, Chu L, Cui Y, Ding M, Wang QY, et al. 2020. Nuclear cGAS functions non-canonically to enhance antiviral immunity via recruiting methyltransferase prmt5. Cell Reports, 33(10): 108490. doi: 10.1016/j.celrep.2020.108490
    Cui Y, Yu H, Zheng X, Peng R, Wang Q, Zhou Y, et al. 2017. SENP7 potentiates cGAS activation by relieving SUMO-mediated inhibition of cytosolic DNA sensing. PLoS Pathogens, 13(1): e1006156. doi: 10.1371/journal.ppat.1006156
    Dai J, Huang YJ, He XH, Zhao M, Wang XZ, Liu ZS, et al. 2019. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell, 176(6): 1447−1460.e14. doi: 10.1016/j.cell.2019.01.016
    Dansako H, Imai H, Ueda Y, Satoh S, Shimotohno K, Kato N. 2019. High-level expression of STING restricts susceptibility to HBV by mediating type III IFN induction. FASEB Bioadvances, 1(2): 67−80. doi: 10.1096/fba.1022
    Dansako H, Ueda Y, Okumura N, Satoh S, Sugiyama M, Mizokami M, et al. 2016. The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly. FEBS Journal, 283(1): 144−156. doi: 10.1111/febs.13563
    D'Arcy MS. 2019. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6): 582−592. doi: 10.1002/cbin.11137
    Davies BW, Bogard RW, Young TS, Mekalanos JJ. 2012. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell, 149(2): 358−370. doi: 10.1016/j.cell.2012.01.053
    Davis SE, Khatua AK, Popik W. 2019. Nucleosomal dsDNA stimulates APOL1 expression in human cultured podocytes by activating the cGAS/IFI16-STING signaling pathway. Scientific Reports, 9(1): 15485. doi: 10.1038/s41598-019-51998-w
    De Falco F, Cutarelli A, Catoi AF, Uberti BD, Cuccaro B, Roperto S. 2022. Bovine delta papillomavirus E5 oncoprotein negatively regulates the cGAS-STING signaling pathway in cattle in a spontaneous model of viral disease. Frontiers in Immunology, 13: 937736. doi: 10.3389/fimmu.2022.937736
    De Gaetano A, Solodka K, Zanini G, Selleri V, Mattioli AV, Nasi M, et al. 2021. Molecular mechanisms of mtDNA-mediated inflammation. Cells, 10(11): 2898. doi: 10.3390/cells10112898
    Decout A, Katz JD, Venkatraman S, Ablasser A. 2021. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 21(9): 548−569. doi: 10.1038/s41577-021-00524-z
    Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, et al. 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 112(50): 15408−15413. doi: 10.1073/pnas.1512832112
    Deng L, Meng T, Chen L, Wei WY, Wang P. 2020a. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduction and Targeted Therapy, 5(1): 11. doi: 10.1038/s41392-020-0107-0
    Deng LF, Liang H, Xu M, Yang XM, Burnette B, Arina A, et al. 2014. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 41(5): 843−852. doi: 10.1016/j.immuni.2014.10.019
    Deng XB, Yu XY, Pei JF. 2020b. Regulation of interferon production as a potential strategy for COVID-19 treatment. arXiv preprint arXiv: 2003.00751.
    Dewar JM, Walter JC. 2017. Mechanisms of DNA replication termination. Nature Reviews Molecular Cell Biology, 18(8): 507−516. doi: 10.1038/nrm.2017.42
    Dewi Pamungkas Putri D, Kawasaki T, Murase M, Sueyoshi T, Deguchi T, Ori D, et al. 2019. PtdIns3P phosphatases MTMR3 and MTMR4 negatively regulate innate immune responses to DNA through modulating STING trafficking. Journal of Biological Chemistry, 294(21): 8412−8423. doi: 10.1074/jbc.RA118.005731
    Ding Q, Cao XZ, Lu J, Huang B, Liu YJ, Kato N, et al. 2013. Hepatitis C virus NS4B blocks the interaction of STING and TBK1 to evade host innate immunity. Journal of Hepatology, 59(1): 52−58. doi: 10.1016/j.jhep.2013.03.019
    Dobbs N, Burnaevskiy N, Chen DD, Gonugunta VK, Alto NM, Yan N. 2015. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host & Microbe, 18(2): 157−168.
    Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. 2020. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of Cardiology, 75(18): 2352−2371. doi: 10.1016/j.jacc.2020.03.031
    Du MJ, Chen ZJ. 2018. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 361(6403): 704−709. doi: 10.1126/science.aat1022
    Dugger BN, Dickson DW. 2017. Pathology of neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 9(7): a028035. doi: 10.1101/cshperspect.a028035
    Eifler K, Vertegaal ACO. 2015. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends in Biochemical Sciences, 40(12): 779−793. doi: 10.1016/j.tibs.2015.09.006
    Enchev RI, Schulman BA, Peter M. 2015. Protein neddylation: beyond cullin-RING ligases. Nature Reviews Molecular Cell Biology, 16(1): 30−44. doi: 10.1038/nrm3919
    Ergun SL, Fernandez D, Weiss TM, Li LY. 2019. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell, 178(2): 290−301.e10. doi: 10.1016/j.cell.2019.05.036
    Ergun SL, Li LY. 2020. Structural insights into STING signaling. Trends in Cell Biology, 30(5): 399−407. doi: 10.1016/j.tcb.2020.01.010
    Fang CJ, Mo F, Liu L, Du J, Luo M, Men K, et al. 2021. Oxidized mitochondrial DNA sensing by STING signaling promotes the antitumor effect of an irradiated immunogenic cancer cell vaccine. Cellular & Molecular Immunology, 18(9): 2211−2223.
    Fischer H, Tschachler E, Eckhart L. 2020. Cytosolic DNA sensing through cGAS and STING is inactivated by gene mutations in pangolins. Apoptosis, 25(7–8): 474–480.
    Fischer JC, Bscheider M, Eisenkolb G, Lin CC, Wintges A, Otten V, et al. 2017. RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Science Translational Medicine, 9(386): eaag2513. doi: 10.1126/scitranslmed.aag2513
    Flotho A, Melchior F. 2013. Sumoylation: a regulatory protein modification in health and disease. Annual Review of Biochemistry, 82: 357−385. doi: 10.1146/annurev-biochem-061909-093311
    Foley JF. 2012. Membrane fusion stimulates STING. Science Signaling, 5(235): ec202.
    Galluzzi L, Green DR. 2019. Autophagy-independent functions of the autophagy machinery. Cell, 177(7): 1682−1699. doi: 10.1016/j.cell.2019.05.026
    Gao B, Bataller R. 2011. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology, 141(5): 1572−1585. doi: 10.1053/j.gastro.2011.09.002
    Gao DX, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences of the United States of America, 112(42): E5699−E5705.
    Gao DX, Wu JX, Wu YT, Du FH, Aroh C, Yan N, et al. 2013a. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science, 341(6148): 903−906. doi: 10.1126/science.1240933
    Gao JN, Zheng MG, Wu XY, Zhang H, Su H, Dang YF, et al. 2022. CDK inhibitor Palbociclib targets STING to alleviate autoinflammation. EMBO Reports, 23(6): e53932.
    Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, et al. 2013b. Cyclic [G(2', 5')pA(3', 5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell, 153(5): 1094−1107. doi: 10.1016/j.cell.2013.04.046
    Gao P, Ascano M, Zillinger T, Wang WY, Dai PH, Serganov AA, et al. 2013c. Structure-function analysis of STING activation by c[G(2', 5')pA(3', 5')p] and targeting by antiviral DMXAA. Cell, 154(4): 748−762. doi: 10.1016/j.cell.2013.07.023
    Garnham CP, Vemu A, Wilson-Kubalek EM, Yu I, Szyk A, Lander GC, et al. 2015. Multivalent microtubule recognition by tubulin tyrosine ligase-like family glutamylases. Cell, 161(5): 1112−1123. doi: 10.1016/j.cell.2015.04.003
    Ge L, Baskaran S, Schekman R, Hurley JH. 2014. The protein-vesicle network of autophagy. Current Opinion in Cell Biology, 29: 18−24. doi: 10.1016/j.ceb.2014.02.005
    Ge L, Melville D, Zhang M, Schekman R. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife, 2: e00947. doi: 10.7554/eLife.00947
    Genetic Modifiers of Huntington's Disease (GeM-HD) Consortium. 2019. CAG repeat not polyglutamine length determines timing of huntington's disease onset. Cell, 178(4): 887−900.e14. doi: 10.1016/j.cell.2019.06.036
    Gentili M, Lahaye X, Nadalin F, Nader GPF, Puig Lombardi E, Herve S, et al. 2019. The N-Terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Reports, 26(9): 2377−2393.e13. doi: 10.1016/j.celrep.2019.01.105
    Gong W, Lu LL, Zhou Y, Liu JY, Ma HY, Fu LH, et al. 2021. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. American Journal of Physiology-Renal Physiology, 320(4): F608−F616. doi: 10.1152/ajprenal.00554.2020
    Gong Y, Li GW, Tao J, Wu NN, Kandadi MR, Bi YG, et al. 2020. Double knockout of Akt2 and AMPK accentuates high fat diet-induced cardiac anomalies through a cGAS-STING-mediated mechanism. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(10): 165855.
    Gonugunta VK, Sakai T, Pokatayev V, Yang K, Wu JJ, Dobbs N, et al. 2017. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Reports, 21(11): 3234−3242. doi: 10.1016/j.celrep.2017.11.061
    Gray EE, Treuting PM, Woodward JJ, Stetson DB. 2015. Cutting edge: cGAS is required for lethal autoimmune disease in the trex1-deficient mouse model of aicardi-goutières syndrome. The Journal of Immunology, 195(5): 1939−1943. doi: 10.4049/jimmunol.1500969
    Gresser I, Morel-Maroger L, Rivière Y, Guillon JC, Tovey MG, Woodrow D, et al. 1980. Interferon-induced disease in mice and rats. Annals of the New York Academy of Sciences, 350(1): 12−20.
    Gu TL, Yu DD, Xu L, Yao YL, Yao YG. 2021. Tupaia GBP1 Interacts with STING to initiate autophagy and restrict Herpes Simplex Virus type 1 infection. The Journal of Immunology, 207(11): 2673−2680. doi: 10.4049/jimmunol.2100325
    Gui X, Yang H, Li T, Tan XJ, Shi PQ, Li MH, et al. 2019. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature, 567(7747): 262−266. doi: 10.1038/s41586-019-1006-9
    Guo F, Han YX, Zhao XS, Wang JH, Liu F, Xu CX, et al. 2015. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrobial Agents and Chemotherapy, 59(2): 1273−1281. doi: 10.1128/AAC.04321-14
    Guo F, Tang LD, Shu SN, Sehgal M, Sheraz M, Liu BW, et al. 2017. Activation of stimulator of interferon genes in hepatocytes suppresses the replication of hepatitis B virus. Antimicrobial Agents and Chemotherapy, 61(10): e00771−17.
    Guo YY, Jiang F, Kong LL, Li BQ, Yang YL, Zhang L, et al. 2019. Cutting edge: USP27X deubiquitinates and stabilizes the DNA sensor cGAS to regulate cytosolic DNA-mediated signaling. The Journal of Immunology, 203(8): 2049−2054. doi: 10.4049/jimmunol.1900514
    Guo YY, Jiang F, Kong LL, Wu HF, Zhang HH, Chen XR, et al. 2021. OTUD5 promotes innate antiviral and antitumor immunity through deubiquitinating and stabilizing STING. Cellular and Molecular Immunology, 18(8): 1945−1955. doi: 10.1038/s41423-020-00531-5
    Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, et al. 2018. Targeting STING with covalent small-molecule inhibitors. Nature, 559(7713): 269−273. doi: 10.1038/s41586-018-0287-8
    Hall J, Brault A, Vincent F, Weng S, Wang H, Dumlao D, et al. 2017. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS One, 12(9): e0184843. doi: 10.1371/journal.pone.0184843
    Han LL, Zheng Y, Deng J, Nan ML, Xiao Y, Zhuang MW, et al. 2022. SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy. Journal of Medical Virology, 94(11): 5174−5188. doi: 10.1002/jmv.27965
    Han LL, Zhuang MW, Deng J, Zheng Y, Zhang J, Nan ML, et al. 2021. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways. Journal of Medical Virology, 93(9): 5376−5389. doi: 10.1002/jmv.27050
    Han YL, Chen L, Liu HW, Jin ZC, Wu YF, Wu YP, et al. 2020. Airway epithelial cGAS is critical for induction of experimental allergic airway inflammation. The Journal of Immunology, 204(6): 1437−1447. doi: 10.4049/jimmunol.1900869
    Han ZJ, Feng YH, Gu BH, Li YM, Chen H. 2018. The post-translational modification, SUMOylation, and cancer (Review). International Journal of Oncology, 52(4): 1081−1094.
    Hansen AL, Buchan GJ, Rühl M, Mukai K, Salvatore SR, Ogawa E, et al. 2018a. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proceedings of the National Academy of Sciences of the United States of America, 115(33): E7768−E7775.
    Hansen DV, Hanson JE, Sheng M. 2018b. Microglia in Alzheimer's disease. The Journal of Cell Biology, 217(2): 459−472. doi: 10.1083/jcb.201709069
    Hansen K, Prabakaran T, Laustsen A, Jørgensen SE, Rahbæk SH, Jensen SB, et al. 2014. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. The EMBO Journal, 33(15): 1654−1666. doi: 10.15252/embj.201488029
    Härtlova A, Erttmann SF, Raffi FAM, Schmalz AM, Resch U, Anugula S, et al. 2015. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity, 42(2): 332−343. doi: 10.1016/j.immuni.2015.01.012
    He J, Hao RD, Liu D, Liu X, Wu SS, Guo ST, et al. 2016. Inhibition of Hepatitis B Virus replication by activation of the cGAS-STING pathway. Journal of General Virology, 97(12): 3368−3378. doi: 10.1099/jgv.0.000647
    Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA, Moeller HB, et al. 2012. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nature Immunology, 13(8): 737−743. doi: 10.1038/ni.2350
    Hong C, Schubert M, Tijhuis AE, Requesens M, Roorda M, van den Brink A, et al. 2022. cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature, 607(7918): 366−373. doi: 10.1038/s41586-022-04847-2
    Hong Z, Mei JH, Li CH, Bai GH, Maimaiti M, Hu HY, et al. 2021. STING inhibitors target the cyclic dinucleotide binding pocket. Proceedings of the National Academy of Sciences of the United States of America, 118(24): e2105465118. doi: 10.1073/pnas.2105465118
    Hou YJ, Wei Y, Lautrup S, Yang BM, Wang YM, Cordonnier S, et al. 2021. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer's disease via cGAS-STING. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2011226118. doi: 10.1073/pnas.2011226118
    Hu MJ, Zhou M, Bao XH, Pan D, Jiao M, Liu XJ, et al. 2021. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. The Journal of Clinical Investigation, 131(3): e139333. doi: 10.1172/JCI139333
    Hu MM, Yang Q, Xie XQ, Liao CY, Lin H, Liu TT, et al. 2016. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity, 45(3): 555−569. doi: 10.1016/j.immuni.2016.08.014
    Huang L, Li LL, Lemos H, Chandler PR, Pacholczyk G, Baban B, et al. 2013. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. The Journal of Immunology, 191(7): 3509−3513. doi: 10.4049/jimmunol.1301419
    Huang XY, Yao YC, Hou XL, Wei L, Rao YH, Su Y, et al. 2022. Macrophage SCAP contributes to metaflammation and lean NAFLD by activating STING-NF-κB signaling pathway. Cellular and Molecular Gastroenterology and Hepatology, 14(1): 1−26. doi: 10.1016/j.jcmgh.2022.03.006
    Huang YH, Liu XY, Du XX, Jiang ZF, Su XD. 2012. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nature Structural & Molecular Biology, 19(7): 728−730.
    Hwang ES. 2002. Replicative senescence and senescence-like state induced in cancer-derived cells. Mechanisms of Ageing and Development, 123(12): 1681−1694. doi: 10.1016/S0047-6374(02)00102-1
    Ishikawa H, Barber GN. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 455(7213): 674−678. doi: 10.1038/nature07317
    Janke C, Rogowski K, van Dijk J. 2008. Polyglutamylation: a fine-regulator of protein function?. EMBO Reports, 9(7): 636−641. doi: 10.1038/embor.2008.114
    Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, et al. 2020. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. The Journal of Clinical Investigation, 130(6): 3124−3136. doi: 10.1172/JCI135026
    Jia MT, Qin DH, Zhao CY, Chai L, Yu ZX, Wang WW, et al. 2020. Redox homeostasis maintained by GPX4 facilitates STING activation. Nature Immunology, 21(7): 727−735. doi: 10.1038/s41590-020-0699-0
    Jiang S, Luo J, Zhang YW, Cao Q, Wang YN, Xia NW, et al. 2022. The porcine and chicken innate DNA sensing cGAS-STING-IRF signaling axes exhibit differential species specificity. The Journal of Immunology, 209(2): 412−426. doi: 10.4049/jimmunol.2101212
    Jiang XF, Liu GP, Hu ZY, Chen GQ, Chen JQ, Lv ZB. 2019. cGAMP inhibits tumor growth in colorectal cancer metastasis through the STING/STAT3 axis in a zebrafish xenograft model. Fish & Shellfish Immunology, 95: 220−226.
    Johnson BM, Uchimura T, Gallovic MD, Thamilarasan M, Chou WC, Gibson SA, et al. 2021. STING agonist mitigates experimental autoimmune encephalomyelitis by stimulating type I IFN-dependent and -independent immune-regulatory pathways. The Journal of Immunology, 206(9): 2015−2028. doi: 10.4049/jimmunol.2001317
    Kaparakis M, Philpott DJ, Ferrero RL. 2007. Mammalian NLR proteins; discriminating foe from friend. Immunology and Cell Biology, 85(6): 495−502. doi: 10.1038/sj.icb.7100105
    Karimi-Googheri M, Daneshvar H, Khaleghinia M, Bidaki R, Arababadi MK. 2015. Decreased expressions of STING but not IRF3 molecules in chronic HBV infected patients. Archives of Iranian Medicine, 18(6): 351−354.
    Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. 2008. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell, 134(5): 743−756. doi: 10.1016/j.cell.2008.07.021
    Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, et al. 2021. New avenues for the treatment of Huntington's disease. International Journal of Molecular Sciences, 22(16): 8363. doi: 10.3390/ijms22168363
    Kim J, Gupta R, Blanco LP, Yang ST, Shteinfer-Kuzmine A, Wang KN, et al. 2019. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science, 366(6472): 1531−1536. doi: 10.1126/science.aav4011
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676): 605−608. doi: 10.1038/33416
    Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. 2014. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. The Journal of Immunology, 193(12): 6124−6134. doi: 10.4049/jimmunol.1401869
    Konno H, Konno K, Barber GN. 2013. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell, 155(3): 688−698. doi: 10.1016/j.cell.2013.09.049
    Kranzusch PJ, Lee ASY, Berger JM, Doudna JA. 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Reports, 3(5): 1362−1368. doi: 10.1016/j.celrep.2013.05.008
    Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, et al. 2020. Structural basis for the inhibition of cGAS by nucleosomes. Science, 370(6515): 455−458. doi: 10.1126/science.abd0237
    Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, et al. 2018. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell, 175(2): 488−501.e22. doi: 10.1016/j.cell.2018.08.062
    Laity JH, Lee BM, Wright PE. 2001. Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology, 11(1): 39−46. doi: 10.1016/S0959-440X(00)00167-6
    Lam E, Stein S, Falck-Pedersen E. 2014. Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. Journal of Virology, 88(2): 974−981. doi: 10.1128/JVI.02702-13
    Lama L, Adura C, Xie W, Tomita D, Kamei T, Kuryavyi V, et al. 2019. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nature Communications, 10(1): 2261. doi: 10.1038/s41467-019-08620-4
    Larabi A, Barnich N, Nguyen HTT. 2020. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy, 16(1): 38−51. doi: 10.1080/15548627.2019.1635384
    Larrick JW, Mendelsohn AR. 2021. Modulation of cGAS-STING pathway by nicotinamide riboside in Alzheimer's disease. Rejuvenation Research, 24(5): 397−402. doi: 10.1089/rej.2021.0062
    Lauterbach-Rivière L, Bergez M, Mönch S, Qu BQ, Riess M, Vondran FWR, et al. 2020. Hepatitis B Virus DNA is a substrate for the cGAS/STING pathway but is not sensed in infected hepatocytes. Viruses, 12(6): 592. doi: 10.3390/v12060592
    Lee JD, Woodruff TM. 2021. TDP-43 puts the STING in ALS. Trends in Neurosciences, 44(2): 81−82. doi: 10.1016/j.tins.2020.12.001
    Lefkopoulos S, Polyzou A, Derecka M, Bergo V, Clapes T, Cauchy P, et al. 2020. Repetitive elements trigger RIG-I-like receptor signaling that regulates the emergence of hematopoietic stem and progenitor cells. Immunity, 53(5): 934−951.e9. doi: 10.1016/j.immuni.2020.10.007
    Lemos H, Mohamed E, Huang L, Ou R, Pacholczyk G, Arbab AS, et al. 2016. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Research, 76(8): 2076−2081. doi: 10.1158/0008-5472.CAN-15-1456
    Lepelley A, Della Mina E, Van Nieuwenhove E, Waumans L, Fraitag S, Rice GI, et al. 2021. Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. Journal of Experimental Medicine, 218(10): e20201560. doi: 10.1084/jem.20201560
    Levey AS, Titan SM, Powe NR, Coresh J, Inker LA. 2020. Kidney disease, race, and GFR estimation. Clinical Journal of the American Society of Nephrology, 15(8): 1203−1212. doi: 10.2215/CJN.12791019
    Li CH, Zhang LL, Qian D, Cheng MX, Hu HY, Hong Z, et al. 2021a. RNF111-facilitated neddylation potentiates cGAS-mediated antiviral innate immune response. PLoS Pathogens, 17(3): e1009401. doi: 10.1371/journal.ppat.1009401
    Li HL, Hu L, Wang LW, Wang YX, Shao MQ, Chen YP, et al. 2022a. Iron activates cGAS-STING signaling and promotes hepatic inflammation. Journal of Agricultural and Food Chemistry, 70(7): 2211−2220. doi: 10.1021/acs.jafc.1c06681
    Li QJ, Lin LB, Tong YL, Liu YT, Mou J, Wang XD, et al. 2018a. TRIM29 negatively controls antiviral immune response through targeting STING for degradation. Cell Discovery, 4: 13.
    Li SL, Hong Z, Wang Z, Li F, Mei JH, Huang LL, et al. 2018b. The cyclopeptide Astin C specifically inhibits the innate immune CDN sensor STING. Cell Reports, 25(12): 3405−3421.e7. doi: 10.1016/j.celrep.2018.11.097
    Li SR, Mirlekar B, Johnson BM, Brickey WJ, Wrobel JA, Yang N, et al. 2022b. STING-induced regulatory B cells compromise NK function in cancer immunity. Nature, 610(7931): 373−380. doi: 10.1038/s41586-022-05254-3
    Li T, Chen ZJ. 2018. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. Journal of Experimental Medicine, 215(5): 1287−1299. doi: 10.1084/jem.20180139
    Li T, Huang TZ, Du MJ, Chen X, Du FH, Ren JY, et al. 2021b. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science, 371(6535): eabc5386. doi: 10.1126/science.abc5386
    Li X, Shu C, Yi GH, Chaton CT, Shelton CL, Diao JS, et al. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity, 39(6): 1019−1031. doi: 10.1016/j.immuni.2013.10.019
    Li XB, Zhu YY, Zhang X, An X, Weng MJ, Shi JQ, et al. 2022c. An alternatively spliced STING isoform localizes in the cytoplasmic membrane and directly senses extracellular cGAMP. The Journal of Clinical Investigation, 132(3): e144339. doi: 10.1172/JCI144339
    Li XC, Li XJ, Xie C, Cai SH, Li MQ, Jin HP, et al. 2022d. cGAS guards against chromosome end-to-end fusions during mitosis and facilitates replicative senescence. Protein & Cell, 13(1): 47−64.
    Li XL, Yu Z, Fang Q, Yang MJ, Huang JY, Li Z, et al. 2022e. The transmembrane endoplasmic reticulum-associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA-triggered inflammatory response. Science Advances, 8(4): 496:eabh0496.
    Li YS, Shi F, Hu JM, Xie LL, Bode AM, Cao Y. 2019. The role of deubiquitinases in oncovirus and host interactions. Journal of Oncology, 2019: 2128410.
    Li ZX, Liu G, Sun LW, Teng Y, Guo XJ, Jia JH, et al. 2015. PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation. PLoS Pathogens, 11(3): e1004783. doi: 10.1371/journal.ppat.1004783
    Liang JQ, Hong Z, Sun BY, Guo ZX, Wang C, Zhu JJ. 2021. The alternatively spliced isoforms of key molecules in the cGAS-STING signaling pathway. Frontiers in Immunology, 12: 771744. doi: 10.3389/fimmu.2021.771744
    Liang Q, Seo GJ, Choi YJ, Kwak MJ, Ge J, Rodgers MA, et al. 2014. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host & Microbe, 15(2): 228−238.
    Linder ME, Deschenes RJ. 2007. Palmitoylation: policing protein stability and traffic. Nature Reviews Molecular Cell Biology, 8(1): 74−84. doi: 10.1038/nrm2084
    Linnerbauer M, Wheeler MA, Quintana FJ. 2020. Astrocyte crosstalk in CNS inflammation. Neuron, 108(4): 608−622. doi: 10.1016/j.neuron.2020.08.012
    Lio CWJ, McDonald B, Takahashi M, Dhanwani R, Sharma N, Huang J, et al. 2016. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. Journal of Virology, 90(17): 7789−7797. doi: 10.1128/JVI.01040-16
    Liu HP, Zhang HP, Wu XY, Ma DP, Wu JH, Wang L, et al. 2018a. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature, 563(7729): 131−136. doi: 10.1038/s41586-018-0629-6
    Liu SD, Chen SS, Li XR, Wu SY, Zhang Q, Jin QH, et al. 2017a. Lck/Hck/Fgr-mediated tyrosine phosphorylation negatively regulates TBK1 to restrain innate antiviral responses. Cell Host & Microbe, 21(6): 754−768.e5.
    Liu SH, Zhao KT, Su X, Lu L, Zhao H, Zhang XW, et al. 2017b. MITA/STING and its alternative splicing isoform MRP restrict Hepatitis B Virus replication. PLoS One, 12(1): e0169701. doi: 10.1371/journal.pone.0169701
    Liu SQ, Cai X, Wu JX, Cong Q, Chen X, Li T, et al. 2015a. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 347(6227): aaa2630. doi: 10.1126/science.aaa2630
    Liu XJ, Pu Y, Cron K, Deng LF, Kline J, Frazier WA, et al. 2015b. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nature Medicine, 21(10): 1209−1215. doi: 10.1038/nm.3931
    Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. 2018b. Inflammation-induced, STING-dependent autophagy restricts Zika Virus infection in the Drosophila brain. Cell Host & Microbe, 24(1): 57−68.e3.
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, et al. 2014. Activated STING in a vascular and pulmonary syndrome. New England Journal of Medicine, 371(6): 507−518. doi: 10.1056/NEJMoa1312625
    Liu Y, Xu PB, Rivara S, Liu C, Ricci J, Ren XF, et al. 2022. Clathrin-associated AP-1 controls termination of STING signalling. Nature, 610(7933): 761−767. doi: 10.1038/s41586-022-05354-0
    Liu YH, Li JH, Chen JL, Li YM, Wang WX, Du XT, et al. 2015c. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. Journal of Virology, 89(4): 2287−2300. doi: 10.1128/JVI.02760-14
    Liu ZF, Ji JF, Jiang XF, Shao T, Fan DD, Jiang XH, et al. 2020. Characterization of cGAS homologs in innate and adaptive mucosal immunities in zebrafish gives evolutionary insights into cGAS-STING pathway. The FASEB Journal, 34(6): 7786−7809. doi: 10.1096/fj.201902833R
    Liu ZS, Zhang ZY, Cai H, Zhao M, Mao J, Dai J, et al. 2018c. RINCK-mediated monoubiquitination of cGAS promotes antiviral innate immune responses. Cell & Bioscience, 8: 35.
    Loo TM, Miyata K, Tanaka Y, Takahashi A. 2020. Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer. Cancer Science, 111(2): 304−311. doi: 10.1111/cas.14266
    Lu DF, Shang GJ, Li J, Lu Y, Bai XC, Zhang XW. 2022. Activation of STING by targeting a pocket in the transmembrane domain. Nature, 604(7906): 557−562. doi: 10.1038/s41586-022-04559-7
    Luo M, Wang H, Wang ZH, Cai HC, Lu ZG, Li Y, et al. 2017. A STING-activating nanovaccine for cancer immunotherapy. Nature Nanotechnology, 12(7): 648−654. doi: 10.1038/nnano.2017.52
    Luo WW, Li S, Li C, Lian H, Yang Q, Zhong B, et al. 2016. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nature Immunology, 17(9): 1057−1066. doi: 10.1038/ni.3510
    Luo XJ, Li HG, Ma LQ, Zhou J, Guo X, Woo SL, et al. 2018. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology, 155(6): 1971−1984.e4. doi: 10.1053/j.gastro.2018.09.010
    Luther J, Khan S, Gala MK, Kedrin D, Sridharan G, Goodman RP, et al. 2020. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. Proceedings of the National Academy of Sciences of the United States of America, 117(21): 11667−11673. doi: 10.1073/pnas.1911870117
    Ma DP, Yang M, Wang QS, Sun CY, Shi HB, Jing WQ, et al. 2021. Arginine methyltransferase PRMT5 negatively regulates cGAS-mediated antiviral immune response. Science Advances, 7(13): eabc1834. doi: 10.1126/sciadv.abc1834
    Ma Z, Jacobs SR, West JA, Stopford C, Zhang ZG, Davis Z, et al. 2015. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proceedings of the National Academy of Sciences of the United States of America, 112(31): E4306−E4315.
    Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, et al. 2019. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Reports, 29(5): 1261−1273.e6. doi: 10.1016/j.celrep.2019.09.050
    Maiuri T, Hung CLK, Suart C, Begeja N, Barba-Bazan C, Peng Y, et al. 2021. DNA repair in huntington's disease and spinocerebellar ataxias: somatic instability and alternative hypotheses. Journal of Huntington’s Disease, 10(1): 165−173. doi: 10.3233/JHD-200414
    Malynn BA, Ma A. 2010. Ubiquitin makes its mark on immune regulation. Immunity, 33(6): 843−852. doi: 10.1016/j.immuni.2010.12.007
    Mao Y, Luo W, Zhang L, Wu WW, Yuan LS, Xu H, et al. 2017. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(5): 920−929. doi: 10.1161/ATVBAHA.117.309017
    Martin GR, Blomquist CM, Henare KL, Jirik FR. 2019. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Scientific Reports, 9(1): 14281. doi: 10.1038/s41598-019-50656-5
    Mathur V, Burai R, Vest RT, Bonanno LN, Lehallier B, Zardeneta ME, et al. 2017. Activation of the STING-dependent type I interferon response reduces microglial reactivity and neuroinflammation. Neuron, 96(6): 1290−1302.e6. doi: 10.1016/j.neuron.2017.11.032
    McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, et al. 2018. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 359(6378): eaao6047. doi: 10.1126/science.aao6047
    Mdkhana B, Askari NSS, Ramakrishnan RK, Goel S, Hamid Q, Halwani R. 2021. Nucleic acid-sensing pathways during SARS-CoV-2 infection: expectations versus reality. Journal of Inflammation Research, 14: 199−216. doi: 10.2147/JIR.S277716
    Michalski S, de Oliveira Mann CC, Stafford CA, Witte G, Bartho J, Lammens K, et al. 2020. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature, 587(7835): 678−682. doi: 10.1038/s41586-020-2748-0
    Min JR, Liu K. 2021. Structures of chromatin modulators in complex with nucleosome. Current Opinion in Chemical Biology, 63: 105−114. doi: 10.1016/j.cbpa.2021.02.018
    Moretti J, Roy S, Bozec D, Martinez J, Chapman JR, Ueberheide B, et al. 2017. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell, 171(4): 809−823.e13. doi: 10.1016/j.cell.2017.09.034
    Nagata M, Kosaka A, Yajima Y, Yasuda S, Ohara M, Ohara K, et al. 2021. A critical role of STING-triggered tumor-migrating neutrophils for anti-tumor effect of intratumoral cGAMP treatment. Cancer Immunology, Immunotherapy, 70(8): 2301−2312. doi: 10.1007/s00262-021-02864-0
    Nascimento M, Gombault A, Lacerda-Queiroz N, Panek C, Savigny F, Sbeity M, et al. 2019. Self-DNA release and STING-dependent sensing drives inflammation to cigarette smoke in mice. Scientific Reports, 9(1): 14848. doi: 10.1038/s41598-019-51427-y
    Ni GX, Konno H, Barber GN. 2017. Ubiquitination of STING at lysine 224 controls IRF3 activation. Science Immunology, 2(11): eaah7119. doi: 10.1126/sciimmunol.aah7119
    Ni GX, Ma Z, Wong JP, Zhang ZG, Cousins E, Major MB, et al. 2020. PPP6C negatively regulates STING-dependent innate immune responses. mBio, 11(4): e01728−20.
    Nicolai CJ, Wolf N, Chang IC, Kirn G, Marcus A, Ndubaku CO, et al. 2020. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Science Immunology, 5(45): eaaz2738. doi: 10.1126/sciimmunol.aaz2738
    Ning XH, Wang YT, Jing M, Sha MY, Lv MZ, Gao PF, et al. 2019. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Molecular Cell, 74(1): 19−31.e7. doi: 10.1016/j.molcel.2019.02.013
    Nitta S, Sakamoto N, Nakagawa M, Kakinuma S, Mishima K, Kusano-Kitazume A, et al. 2013. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology, 57(1): 46−58. doi: 10.1002/hep.26017
    Ogawa E, Mukai K, Saito K, Arai H, Taguchi T. 2018. The binding of TBK1 to STING requires exocytic membrane traffic from the ER. Biochemical and Biophysical Research Communications, 503(1): 138−145. doi: 10.1016/j.bbrc.2018.05.199
    Okin D, Medzhitov R. 2012. Evolution of inflammatory diseases. Current Biology, 22(17): R733−R740. doi: 10.1016/j.cub.2012.07.029
    Oliveira M, Rodrigues DR, Guillory V, Kut E, Giotis ES, Skinner MA, et al. 2021. Chicken cGAS senses fowlpox virus infection and regulates macrophage effector functions. Frontiers in Immunology, 11: 613079. doi: 10.3389/fimmu.2020.613079
    Ordás I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. 2012. Ulcerative colitis. The Lancet, 380(9853): 1606−1619. doi: 10.1016/S0140-6736(12)60150-0
    Ouyang SY, Song XQ, Wang YY, Ru H, Shaw N, Jiang Y, et al. 2012. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity, 36(6): 1073−1086. doi: 10.1016/j.immuni.2012.03.019
    Paijo J, Döring M, Spanier J, Grabski E, Nooruzzaman M, Schmidt T, et al. 2016. CGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathogens, 12(4): e1005546. doi: 10.1371/journal.ppat.1005546
    Pan BS, Perera SA, Piesvaux JA, Presland JP, Schroeder GK, Cumming JN, et al. 2020. An orally available non-nucleotide STING agonist with antitumor activity. Science, 369(6506): eaba6098. doi: 10.1126/science.aba6098
    Park Y, Jin HS, Aki D, Lee J, Liu YC. 2014. The ubiquitin system in immune regulation. Advances in Immunology, 124: 17−66.
    Parmar JJ, Padinhateeri R. 2020. Nucleosome positioning and chromatin organization. Current Opinion in Structural Biology, 64: 111−118. doi: 10.1016/j.sbi.2020.06.021
    Pathare GR, Decout A, Glück S, Cavadini S, Makasheva K, Hovius R, et al. 2020. Structural mechanism of cGAS inhibition by the nucleosome. Nature, 587(7835): 668−672. doi: 10.1038/s41586-020-2750-6
    Paul BD, Snyder SH, Bohr VA. 2021. Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging. Trends in Neurosciences, 44(2): 83−96. doi: 10.1016/j.tins.2020.10.008
    Petrasek J, Iracheta-Vellve A, Csak T, Satishchandran A, Kodys K, Kurt-Jones EA, et al. 2013. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proceedings of the National Academy of Sciences of the United States of America, 110(41): 16544−16549. doi: 10.1073/pnas.1308331110
    Pokatayev V, Yang K, Tu XT, Dobbs N, Wu JJ, Kalb RG, et al. 2020. Homeostatic regulation of STING protein at the resting state by stabilizer TOLLIP. Nature Immunology, 21(2): 158−167. doi: 10.1038/s41590-019-0569-9
    Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun CL, et al. 2018. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. The EMBO Journal, 37(8): e97858.
    Pryde DC, Middya S, Banerjee M, Shrivastava R, Basu S, Ghosh R, et al. 2021. The discovery of potent small molecule activators of human STING. European Journal of Medicinal Chemistry, 209: 112869. doi: 10.1016/j.ejmech.2020.112869
    Qiao JT, Cui C, Qing L, Wang LS, He TY, Yan F, et al. 2018. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism, 81: 13−24. doi: 10.1016/j.metabol.2017.09.010
    Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J, Guo L, et al. 2014. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathogens, 10(9): e1004358. doi: 10.1371/journal.ppat.1004358
    Rabellino A, Andreani C, Scaglioni PP. 2017. The role of PIAS SUMO E3-Ligases in cancer. Cancer Research, 77(7): 1542−1547. doi: 10.1158/0008-5472.CAN-16-2958
    Rabut G, Peter M. 2008. Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. EMBO Reports, 9(10): 969−976. doi: 10.1038/embor.2008.183
    Ramanjulu JM, Pesiridis GS, Yang JS, Concha N, Singhaus R, Zhang SY, et al. 2018. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature, 564(7736): 439−443. doi: 10.1038/s41586-018-0705-y
    Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, et al. 2013. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature, 503(7476): 402−405. doi: 10.1038/nature12769
    Regulski MJ. 2017. Cellular senescence: what, why, and how. Wounds, 29(6): 168−174.
    Rehwinkel J, Gack MU. 2020. RIG-I-like receptors: their regulation and roles in RNA sensing. Nature Reviews:Immunology, 20(9): 537−551. doi: 10.1038/s41577-020-0288-3
    Reich DS, Lucchinetti CF, Calabresi PA. 2018. Multiple sclerosis. New England Journal of Medicine, 378(2): 169−180. doi: 10.1056/NEJMra1401483
    Rodríguez-García E, Olagüe C, Ríus-Rocabert S, Ferrero R, Llorens C, Larrea E, et al. 2018. TMEM173 alternative spliced isoforms modulate viral replication through the STING pathway. Immunohorizons, 2(11): 363−376. doi: 10.4049/immunohorizons.1800068
    Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme JC, Bosson A, et al. 2010. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell, 143(4): 564−578. doi: 10.1016/j.cell.2010.10.014
    Rui YJ, Su JM, Shen S, Hu Y, Huang DB, Zheng WW, et al. 2021. Unique and complementary suppression of cGAS-STING and RNA sensing- triggered innate immune responses by SARS-CoV-2 proteins. Signal Transduction and Targeted Therapy, 6(1): 123. doi: 10.1038/s41392-021-00515-5
    Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW, et al. 2011. The N-ethyl-N-nitrosourea-induced goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infection and Immunity, 79(2): 688−694. doi: 10.1128/IAI.00999-10
    Scheres SHW. 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. Journal of Structural Biology, 180(3): 519−530. doi: 10.1016/j.jsb.2012.09.006
    Sen T, Rodriguez BL, Chen LM, Corte CMD, Morikawa N, Fujimoto J, et al. 2019. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discovery, 9(5): 646−661. doi: 10.1158/2159-8290.CD-18-1020
    Seo GJ, Kim C, Shin WJ, Sklan EH, Eoh H, Jung JU. 2018. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nature Communications, 9(1): 613. doi: 10.1038/s41467-018-02936-3
    Seo GJ, Yang A, Tan B, Kim S, Liang QM, Choi Y, et al. 2015. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Reports, 13(2): 440−449. doi: 10.1016/j.celrep.2015.09.007
    Shang GJ, Zhang CG, Chen ZJ, Bai XC, Zhang XW. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature, 567(7748): 389−393. doi: 10.1038/s41586-019-0998-5
    Sharma M, Rajendrarao S, Shahani N, Ramírez-Jarquín UN, Subramaniam S. 2020. Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 117(27): 15989−15999. doi: 10.1073/pnas.2002144117
    Shi CR, Yang XK, Liu Y, Li HP, Chu HY, Li GH, et al. 2022. ZDHHC18 negatively regulates cGAS-mediated innate immunity through palmitoylation. The EMBO Journal, 41(11): e109272.
    Shi HP, Wu JX, Chen ZJ, Chen C. 2015. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proceedings of the National Academy of Sciences of the United States of America, 112(29): 8947−8952. doi: 10.1073/pnas.1507317112
    Siu T, Altman MD, Baltus GA, Childers M, Ellis JM, Gunaydin H, et al. 2019. Discovery of a novel cGAMP competitive ligand of the inactive form of STING. ACS Medicinal Chemistry Letters, 10(1): 92−97. doi: 10.1021/acsmedchemlett.8b00466
    Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, et al. 2018. Parkin and PINK1 mitigate STING-induced inflammation. Nature, 561(7722): 258−262. doi: 10.1038/s41586-018-0448-9
    Snyder NA, Silva GM. 2021. Deubiquitinating enzymes (DUBs): regulation, homeostasis, and oxidative stress response. Journal of Biological Chemistry, 297(3): 101077. doi: 10.1016/j.jbc.2021.101077
    Song L, Luo ZQ. 2019. Post-translational regulation of ubiquitin signaling. Journal of Cell Biology, 218(6): 1776−1786. doi: 10.1083/jcb.201902074
    Song X, Ma FL, Herrup K. 2019. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. Journal of Neuroscience, 39(32): 6378−6394. doi: 10.1523/JNEUROSCI.0774-19.2019
    Song ZL, Wang XY, Zhang Y, Gu WT, Shen AC, Ding CY, et al. 2021. Structure-activity relationship study of amidobenzimidazole analogues leading to potent and systemically administrable stimulator of interferon gene (STING) agonists. Journal of Medicinal Chemistry, 64(3): 1649−1669. doi: 10.1021/acs.jmedchem.0c01900
    Song ZM, Lin H, Yi XM, Guo W, Hu MM, Shu HB. 2020. KAT5 acetylates cGAS to promote innate immune response to DNA virus. Proceedings of the National Academy of Sciences of the United States of America, 117(35): 21568−21575. doi: 10.1073/pnas.1922330117
    Sprenger HG, Macvicar T, Bahat A, Fiedler KU, Hermans S, Ehrentraut D, et al. 2021. Cellular pyrimidine imbalance triggers mitochondrial DNA-dependent innate immunity. Nature Metabolism, 3(5): 636−650. doi: 10.1038/s42255-021-00385-9
    Srikanth S, Woo JS, Wu BB, El-Sherbiny YM, Leung J, Chupradit K, et al. 2019. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nature Immunology, 20(2): 152−162. doi: 10.1038/s41590-018-0287-8
    Steinhagen F, Zillinger T, Peukert K, Fox M, Thudium M, Barchet W, et al. 2018. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes. European Journal of Immunology, 48(4): 605−611. doi: 10.1002/eji.201747338
    Su JM, Shen S, Hu Y, Chen SQ, Cheng LY, Cai Y, et al. 2022. SARS-CoV-2 ORF3a inhibits cGAS-STING-mediated autophagy flux and antiviral function. Journal of Medical Virology,doi: 10.1002/jmv.28175.
    Sun H, Zhang Q, Jing YY, Zhang M, Wang HY, Cai Z, et al. 2017. USP13 negatively regulates antiviral responses by deubiquitinating STING. Nature Communications, 8: 15534. doi: 10.1038/ncomms15534
    Sun LJ, Wu JX, Du FH, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 339(6121): 786−791. doi: 10.1126/science.1232458
    Sun WX, Li Y, Chen L, Chen HH, You FP, Zhou X, et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences of the United States of America, 106(21): 8653−8658. doi: 10.1073/pnas.0900850106
    Sun XN, Liu T, Zhao J, Xia HS, Xie J, Guo Y, et al. 2020. DNA-PK deficiency potentiates cGAS-mediated antiviral innate immunity. Nature Communications, 11(1): 6182. doi: 10.1038/s41467-020-19941-0
    Takahashi M, Lio CJ, Campeau A, Steger M, Ay F, Mann M, et al. 2021. The tumor suppressor kinase DAPK3 drives tumor-intrinsic immunity through the STING-IFN-β pathway. Nature Immunology, 22(4): 485−496. doi: 10.1038/s41590-021-00896-3
    Tan J, Wu B, Chen TT, Fan C, Zhao JN, Xiong CD, et al. 2021. Synthesis and pharmacological evaluation of tetrahydro-γ-carboline derivatives as potent anti-inflammatory agents targeting cyclic GMP-AMP synthase. Journal of Medicinal Chemistry, 64(11): 7667−7690. doi: 10.1021/acs.jmedchem.1c00398
    Tanaka Y, Chen ZJ. 2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Science Signaling, 5(214): ra20.
    Tao JL, Zhou X, Jiang ZF. 2016. cGAS-cGAMP-STING: the three musketeers of cytosolic DNA sensing and signaling. IUBMB Life, 68(11): 858−870. doi: 10.1002/iub.1566
    Tian MF, Liu WY, Zhang Q, Huang YQ, Li W, Wang WB, et al. 2020. MYSM1 represses innate immunity and autoimmunity through suppressing the cGAS-STING pathway. Cell Reports, 33(3): 108297. doi: 10.1016/j.celrep.2020.108297
    Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, et al. 2010. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity, 33(5): 765−776. doi: 10.1016/j.immuni.2010.10.013
    Tu DQ, Zhu ZH, Zhou AY, Yun CH, Lee KE, Toms AV, et al. 2013. Structure and ubiquitination-dependent activation of TANK-binding kinase 1. Cell Reports, 3(3): 747−758. doi: 10.1016/j.celrep.2013.01.033
    Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, et al. 2004. PINK1 mutations are associated with sporadic early-onset parkinsonism. Annals of Neurology, 56(3): 336−341. doi: 10.1002/ana.20256
    Vane JR, Botting RM. 2003. The mechanism of action of aspirin. Thrombosis Research, 110(5–6): 255–258.
    Vanpouille-Box C, Formenti SC, Demaria S. 2017. TREX1 dictates the immune fate of irradiated cancer cells. OncoImmunology, 6(9): e1339857. doi: 10.1080/2162402X.2017.1339857
    Varshavsky A. 2017. The ubiquitin system, autophagy, and regulated protein degradation. Annual Review of Biochemistry, 86: 123−128. doi: 10.1146/annurev-biochem-061516-044859
    Verrier ER, Yim SA, Heydmann L, El Saghire H, Bach C, Turon-Lagot V, et al. 2018. Hepatitis B Virus evasion from cyclic guanosine monophosphate-adenosine monophosphate synthase sensing in human hepatocytes. Hepatology, 68(5): 1695−1709. doi: 10.1002/hep.30054
    Vila IK, Chamma H, Steer A, Saccas M, Taffoni C, Turtoi E, et al. 2022. STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses. Cell Metabolism, 34(1): 125−139.e8. doi: 10.1016/j.cmet.2021.12.007
    Vincent J, Adura C, Gao P, Luz A, Lama L, Asano Y, et al. 2017. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nature Communications, 8(1): 750. doi: 10.1038/s41467-017-00833-9
    Vinogradova EV, Zhang XY, Remillard D, Lazar DC, Suciu RM, Wang YJ, et al. 2020. An activity-guided map of electrophile-cysteine interactions in primary human T cells. Cell, 182(4): 1009−1026.e29. doi: 10.1016/j.cell.2020.07.001
    Volkman HE, Cambier S, Gray EE, Stetson DB. 2019. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife, 8: e47491. doi: 10.7554/eLife.47491
    Wang C, Sun ZY, Zhao CX, Zhang ZW, Wang HR, Liu Y, et al. 2021a. Maintaining manganese in tumor to activate cGAS-STING pathway evokes a robust abscopal anti-tumor effect. Journal of Controlled Release, 331: 480−490. doi: 10.1016/j.jconrel.2021.01.036
    Wang CY, Sharma N, Veleeparambil M, Kessler PM, Willard B, Sen GC. 2021b. STING-mediated interferon induction by Herpes Simplex Virus 1 requires the protein tyrosine kinase Syk. mBio, 12(6): e0322821. doi: 10.1128/mbio.03228-21
    Wang CY, Wang X, Veleeparambil M, Kessler PM, Willard B, Chattopadhyay S, et al. 2020a. EGFR-mediated tyrosine phosphorylation of STING determines its trafficking route and cellular innate immunity functions. The EMBO Journal, 39(22): e104106.
    Wang H, Hu SQ, Chen X, Shi HP, Chen C, Sun LJ, et al. 2017a. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of America, 114(7): 1637−1642. doi: 10.1073/pnas.1621363114
    Wang J, Yang S, Liu L, Wang H, Yang B. 2017b. HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity. Virus Research, 232: 13−21. doi: 10.1016/j.virusres.2017.01.016
    Wang MD, Sooreshjani MA, Mikek C, Opoku-Temeng C, Sintim HO. 2018a. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Medicinal Chemistry, 10(11): 1301−1317. doi: 10.4155/fmc-2017-0322
    Wang PH, Fung SY, Gao WW, Deng JJ, Cheng Y, Chaudhary V, et al. 2018b. A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing. Nucleic Acids Research, 46(8): 4054−4071. doi: 10.1093/nar/gky186
    Wang Q, Huang LY, Hong Z, Lv ZS, Mao ZM, Tang YJ, et al. 2017c. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLoS Pathogens, 13(3): e1006264. doi: 10.1371/journal.ppat.1006264
    Wang Q, Liu X, Cui Y, Tang YJ, Chen W, Li SL, et al. 2014. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity, 41(6): 919−933. doi: 10.1016/j.immuni.2014.11.011
    Wang X, Yang C, Wang XJ, Miao JM, Chen WT, Zhou YR, et al. 2022a. Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNγ-cGAS-STING axis. Neuron,doi: 10.1016/j.neuron.2022.10.028.
    Wang XX, Rao HY, Zhao JM, Wee A, Li XH, Fei R, et al. 2020b. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Laboratory Investigation, 100(4): 542−552. doi: 10.1038/s41374-019-0342-6
    Wang Y, Qian G, Zhu LY, Zhao Z, Liu YN, Han WD, et al. 2022b. HIV-1 Vif suppresses antiviral immunity by targeting STING. Cellular & Molecular Immunology, 19(1): 108−121.
    Wang YG, Dasso M. 2009. SUMOylation and deSUMOylation at a glance. Journal of Cell Science, 122(23): 4249−4252. doi: 10.1242/jcs.050542
    Wang YM, Lian QS, Yang B, Yan SS, Zhou HY, He L, et al. 2015. TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathogens, 11(6): e1005012. doi: 10.1371/journal.ppat.1005012
    Wang YT, Lu HJ, Fang CY, Xu J. 2020c. Palmitoylation as a signal for delivery. In: Xu J. Regulation of Cancer Immune Checkpoints. Singapore: Springer, 399–424.
    Wang YY, Nie L, Xu XX, Shao T, Fan DD, Lin AF, et al. 2022c. Essential role of RIG-I in hematopoietic precursor emergence in primitive hematopoiesis during zebrafish development. Immunohorizons, 6(5): 283−298. doi: 10.4049/immunohorizons.2200028
    Wang ZY, Chen Q, Zhu HM, Yin XN, Wang K, Liu YH, et al. 2021c. Enhancing the immune response and tumor suppression effect of antitumor vaccines adjuvanted with non-nucleotide small molecule STING agonist. Chinese Chemical Letters, 32(6): 1888−1892. doi: 10.1016/j.cclet.2021.01.036
    Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, et al. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host & Microbe, 17(6): 811−819.
    West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 520(7548): 553−557. doi: 10.1038/nature14156
    White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. 2014. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell, 159(7): 1549−1562. doi: 10.1016/j.cell.2014.11.036
    WHO. 2017. Global Hepatitis Report, 2017. Geneva: World Health Organization.
    Wiens KE, Ernst JD. 2016. The mechanism for Type I interferon induction by Mycobacterium tuberculosis is bacterial strain-dependent. PLoS Pathogens, 12(8): e1005809. doi: 10.1371/journal.ppat.1005809
    Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MYK, et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity, 41(5): 830−842. doi: 10.1016/j.immuni.2014.10.017
    Wu JJ, Li WW, Shao YM, Avey D, Fu BS, Gillen J, et al. 2015. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host & Microbe, 18(3): 333−344.
    Wu JJ, Zhao L, Han BB, Hu HG, Zhang BD, Li WH, et al. 2021a. A novel STING agonist for cancer immunotherapy and a SARS-CoV-2 vaccine adjuvant. Chemical Communications, 57(4): 504−507. doi: 10.1039/D0CC06959K
    Wu JX, Sun LJ, Chen X, Du FH, Shi HP, Chen C, et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 339(6121): 826−830. doi: 10.1126/science.1229963
    Wu XC, Wang ZY, Qiao D, Yuan Y, Han C, Yang N, et al. 2021b. Porcine circovirus type 2 infection attenuates the K63-linked ubiquitination of STING to inhibit IFN-β induction via p38-MAPK pathway. Veterinary Microbiology, 258: 109098. doi: 10.1016/j.vetmic.2021.109098
    Wu XM, Wu FH, Wang XQ, Wang LL, Siedow JN, Zhang WG, et al. 2014. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Research, 42(13): 8243−8257. doi: 10.1093/nar/gku569
    Wu YK, Li ST. 2020. Role of post-translational modifications of cGAS in innate immunity. International Journal of Molecular Sciences, 21(21): 7842. doi: 10.3390/ijms21217842
    Wu YK, Song K, Hao WZ, Li J, Wang LY, Li ST. 2022. Nuclear soluble cGAS senses double-stranded DNA virus infection. Communications Biology, 5(1): 433. doi: 10.1038/s42003-022-03400-1
    Xi QM, Wang MJ, Jia WQ, Yang MJ, Hu JP, Jin J, et al. 2020. Design, synthesis, and biological evaluation of amidobenzimidazole derivatives as stimulator of interferon genes (STING) receptor agonists. Journal of Medicinal Chemistry, 63(1): 260−282. doi: 10.1021/acs.jmedchem.9b01567
    Xia PY, Ye BQ, Wang S, Zhu XX, Du Y, Xiong Z, et al. 2016. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nature Immunology, 17(4): 369−378. doi: 10.1038/ni.3356
    Xia T, Yi XM, Wu X, Shang J, Shu HB. 2019. PTPN1/2-mediated dephosphorylation of MITA/STING promotes its 20S proteasomal degradation and attenuates innate antiviral response. Proceedings of the National Academy of Sciences of the United States of America, 116(40): 20063−20069. doi: 10.1073/pnas.1906431116
    Xie W, Lama L, Adura C, Tomita D, Glickman JF, Tuschl T, et al. 2019. Human cGAS catalytic domain has an additional DNA-binding interface that enhances enzymatic activity and liquid-phase condensation. Proceedings of the National Academy of Sciences of the United States of America, 116(24): 11946−11955. doi: 10.1073/pnas.1905013116
    Xing JJ, Zhang A, Zhang H, Wang J, Li XC, Zeng MS, et al. 2017. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nature Communications, 8(1): 945. doi: 10.1038/s41467-017-00101-w
    Xu DW, Tian YZ, Xia Q, Ke BB. 2021. The cGAS-STING pathway: novel perspectives in liver diseases. Frontiers in Immunology, 12: 682736. doi: 10.3389/fimmu.2021.682736
    Xu L, Yu DD, Peng L, Wu Y, Fan Y, Gu TL, et al. 2020a. An alternative splicing of Tupaia STING modulated anti-RNA virus responses by targeting MDA5-LGP2 and IRF3. Journal of Immunology, 204(12): 3191−3204. doi: 10.4049/jimmunol.1901320
    Xu MM, Pu Y, Han DL, Shi YY, Cao XZ, Liang H, et al. 2017. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity, 47(2): 363−373.e5. doi: 10.1016/j.immuni.2017.07.016
    Xu QQ, Xiong HL, Zhu WX, Liu YP, Du Y. 2020b. Small molecule inhibition of cyclic GMP-AMP synthase ameliorates sepsis-induced cardiac dysfunction in mice. Life Sciences, 260: 118315. doi: 10.1016/j.lfs.2020.118315
    Yamashiro LH, Wilson SC, Morrison HM, Karalis V, Chung JYJ, Chen KJ, et al. 2020. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nature Communications, 11(1): 3382. doi: 10.1038/s41467-020-17156-x
    Yang B, Liu Y, Cui YH, Song D, Zhang G, Ma SJ, et al. 2020. RNF90 negatively regulates cellular antiviral responses by targeting MITA for degradation. PLoS Pathogens, 16(3): e1008387. doi: 10.1371/journal.ppat.1008387
    Yang H, Wang HZ, Ren JY, Chen Q, Chen ZJ. 2017a. CGAS is essential for cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 114(23): E4612−E4620.
    Yang JJ, Tang XS, Nandakumar KS, Cheng K. 2019. Autophagy induced by STING, an unnoticed and primordial function of cGAS. Cellular & Molecular Immunology, 16(8): 683−684.
    Yang KD, Huang QT, Wang RY, Zeng Y, Cheng MY, Xue Y, et al. 2021. African swine fever virus MGF505–11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway. Veterinary Microbiology, 263: 109265. doi: 10.1016/j.vetmic.2021.109265
    Yang L, Wang LL, Ketkar H, Ma JZ, Yang G, Cui S, et al. 2018. UBXN3B positively regulates STING-mediated antiviral immune responses. Nature Communications, 9(1): 2329. doi: 10.1038/s41467-018-04759-8
    Yang YF, He Y, Wang XX, Liang ZW, He G, Zhang P, et al. 2017b. Protein SUMOylation modification and its associations with disease. Open Biology, 7(10): 170167. doi: 10.1098/rsob.170167
    Ye LY, Zhang Q, Liuyu TZ, Xu ZG, Zhang MX, Luo MH, et al. 2019. USP49 negatively regulates cellular antiviral responses via deconjugating K63-linked ubiquitination of MITA. PLoS Pathogens, 15(4): e1007680. doi: 10.1371/journal.ppat.1007680
    Yi GH, Wen YH, Shu C, Han QX, Konan KV, Li PW, et al. 2016. Hepatitis C virus NS4B can suppress STING accumulation to evade innate immune responses. Journal of Virology, 90(1): 254−265. doi: 10.1128/JVI.01720-15
    Yin Q, Tian Y, Kabaleeswaran V, Jiang XM, Tu DQ, Eck MJ, et al. 2012. Cyclic di-GMP sensing via the innate immune signaling protein STING. Molecular Cell, 46(6): 735−745. doi: 10.1016/j.molcel.2012.05.029
    Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T. 2015. Viral RNA detection by RIG-I-like receptors. Current Opinion in Immunology, 32: 48−53. doi: 10.1016/j.coi.2014.12.012
    York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, et al. 2015. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell, 163(7): 1716−1729. doi: 10.1016/j.cell.2015.11.045
    Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. 2020a. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell, 183(3): 636−649.e18. doi: 10.1016/j.cell.2020.09.020
    Yu K, Tian HB, Deng HY. 2020b. PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. Science Advances, 6(47): eabd0276. doi: 10.1126/sciadv.abd0276
    Yu XY, Zhang LY, Shen JX, Zhai YF, Jiang QF, Yi MR, et al. 2021. The STING phase-separator suppresses innate immune signalling. Nature Cell Biology, 23(4): 330−340. doi: 10.1038/s41556-021-00659-0
    Yu YS, Liu Y, An WS, Song JW, Zhang YF, Zhao XX. 2019. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. The Journal of Clinical Investigation, 129(2): 546−555.
    Zeng M, Hu ZP, Shi XL, Li XH, Zhan XM, Li XD, et al. 2014. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science, 346(6216): 1486−1492. doi: 10.1126/science.346.6216.1486
    Zeng WW, Chen ZJ. 2008. MITAgating viral infection. Immunity, 29(4): 513−515. doi: 10.1016/j.immuni.2008.09.010
    Zhang CG, Shang GJ, Gui X, Zhang XW, Bai XC, Chen ZJ. 2019a. Structural basis of STING binding with and phosphorylation by TBK1. Nature, 567(7748): 394−398. doi: 10.1038/s41586-019-1000-2
    Zhang D, Liu YT, Zhu YZ, Zhang Q, Guan HX, Liu SD, et al. 2022. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nature Cell Biology, 24(5): 766−782. doi: 10.1038/s41556-022-00894-z
    Zhang GG, Chan B, Samarina N, Abere B, Weidner-Glunde M, Buch A, et al. 2016a. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proceedings of the National Academy of Sciences of the United States of America, 113(8): E1034−E1043.
    Zhang HY, Liao BW, Xu ZS, Ran Y, Wang DP, Yang Y, et al. 2020a. USP44 positively regulates innate immune response to DNA viruses through deubiquitinating MITA. PLoS Pathogens, 16(1): e1008178. doi: 10.1371/journal.ppat.1008178
    Zhang J, Hu MM, Wang YY, Shu HB. 2012. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. Journal of Biological Chemistry, 287(34): 28646−28655. doi: 10.1074/jbc.M112.362608
    Zhang JJ, Zhao J, Xu SM, Li JH, He SP, Zeng Y, et al. 2018. Species-specific deamidation of cGAS by herpes simplex virus UL37 protein facilitates viral replication. Cell Host & Microbe, 24(2): 234−248.e5.
    Zhang M, Zhang MX, Zhang Q, Zhu GF, Yuan L, Zhang DE, et al. 2016b. USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Cell Research, 26(12): 1302−1319. doi: 10.1038/cr.2016.125
    Zhang MX, Cai Z, Zhang M, Wang XM, Wang YQ, Zhao F, et al. 2019b. USP20 promotes cellular antiviral responses via deconjugating K48-Linked ubiquitination of MITA. The Journal of Immunology, 202(8): 2397−2406. doi: 10.4049/jimmunol.1801447
    Zhang Q, Tang Z, An R, Ye LY, Zhong B. 2020b. USP29 maintains the stability of cGAS and promotes cellular antiviral responses and autoimmunity. Cell Research, 30(10): 914−927. doi: 10.1038/s41422-020-0341-6
    Zhang X, Wu JX, Du FH, Xu H, Sun LJ, Chen Z, et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Reports, 6(3): 421−430. doi: 10.1016/j.celrep.2014.01.003
    Zhang XZ, Wu HX, Liu CG, Sun X, Zu SP, Tian J, et al. 2016c. The function of feline stimulator of interferon gene (STING) is evolutionarily conserved. Veterinary Immunology and Immunopathology, 169: 54−62. doi: 10.1016/j.vetimm.2015.12.005
    Zhao BY, Xu PB, Rowlett CM, Jing T, Shinde O, Lei YJ, et al. 2020. The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature, 587(7835): 673−677. doi: 10.1038/s41586-020-2749-z
    Zhao JN, Xiao RX, Zeng RQ, He ED, Zhang A. 2022. Small molecules targeting cGAS-STING pathway for autoimmune disease. European Journal of Medicinal Chemistry, 238: 114480. doi: 10.1016/j.ejmech.2022.114480
    Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao FC, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity, 29(4): 538−550. doi: 10.1016/j.immuni.2008.09.003
    Zhong B, Zhang L, Lei CQ, Li Y, Mao AP, Yang Y, et al. 2009. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity, 30(3): 397−407. doi: 10.1016/j.immuni.2009.01.008
    Zhong L, Hu MM, Bian LJ, Liu Y, Chen Q, Shu HB. 2020. Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discovery, 6: 26.
    Zhou L, Zhang YF, Yang FH, Mao HQ, Chen Z, Zhang L. 2021a. Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway. Cell Communication and Signaling, 19(1): 58. doi: 10.1186/s12964-021-00738-7
    Zhou Q, Lin H, Wang SY, Wang S, Ran Y, Liu Y, et al. 2014. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling. Cell Host & Microbe, 16(4): 450−461.
    Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, et al. 2018. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell, 174(2): 300−311.e11. doi: 10.1016/j.cell.2018.06.026
    Zhou W, Whiteley AT, Kranzusch PJ. 2019. Analysis of human cGAS activity and structure. Methods in Enzymology, 625: 13−40.
    Zhou YL, He CX, Wang L, Ge BX. 2017. Post-translational regulation of antiviral innate signaling. European Journal of Immunology, 47(9): 1414−1426. doi: 10.1002/eji.201746959
    Zhou Z, Zhang XY, Lei XB, Xiao X, Jiao T, Ma RY, et al. 2021b. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 6(1): 382. doi: 10.1038/s41392-021-00800-3
    Zhu P, Zhou WL, Wang JX, Puc J, Ohgi KA, Erdjument-Bromage H, et al. 2007. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Molecular Cell, 27(4): 609−621. doi: 10.1016/j.molcel.2007.07.024
    Zhu QY, Zhang YL, Wang L, Yao XY, Wu D, Cheng JJ, et al. 2021. Inhibition of coronavirus infection by a synthetic STING agonist in primary human airway system. Antiviral Research, 187: 105015. doi: 10.1016/j.antiviral.2021.105015
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (2985) PDF downloads(513) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint