Volume 44 Issue 3
May  2023
Turn off MathJax
Article Contents
Wenjuan Zhu, Cecilia W. Lo. Insights into the genetic architecture of congenital heart disease from animal modeling. Zoological Research, 2023, 44(3): 577-590. doi: 10.24272/j.issn.2095-8137.2022.463
Citation: Wenjuan Zhu, Cecilia W. Lo. Insights into the genetic architecture of congenital heart disease from animal modeling. Zoological Research, 2023, 44(3): 577-590. doi: 10.24272/j.issn.2095-8137.2022.463

Insights into the genetic architecture of congenital heart disease from animal modeling

doi: 10.24272/j.issn.2095-8137.2022.463
The authors declare that they have no competing interests.
W.Z. and C.W.L. conceived the project and jointly wrote the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This study was supported by NIH grants HL132024 and HL142788
More Information
  • Corresponding author: E-mail: cel36@pitt.edu
  • Received Date: 2022-01-22
  • Accepted Date: 2023-04-28
  • Published Online: 2023-05-04
  • Publish Date: 2023-05-18
  • Congenital heart disease (CHD) is observed in up to 1% of live births and is one of the leading causes of mortality from birth defects. While hundreds of genes have been implicated in the genetic etiology of CHD, their role in CHD pathogenesis is still poorly understood. This is largely a reflection of the sporadic nature of CHD, as well as its variable expressivity and incomplete penetrance. We reviewed the monogenic causes and evidence for oligogenic etiology of CHD, as well as the role of de novo mutations, common variants, and genetic modifiers. For further mechanistic insight, we leveraged single-cell data across species to investigate the cellular expression characteristics of genes implicated in CHD in developing human and mouse embryonic hearts. Understanding the genetic etiology of CHD may enable the application of precision medicine and prenatal diagnosis, thereby facilitating early intervention to improve outcomes for patients with CHD.
  • The authors declare that they have no competing interests.
    W.Z. and C.W.L. conceived the project and jointly wrote the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Aghajanian H, Cho YK, Rizer NW, et al. 2017. Pdgfrα functions in endothelial-derived cells to regulate neural crest cells and the development of the great arteries. Disease Models & Mechanisms, 10(9): 1101−1108.
    [2]
    Alankarage D, Ip E, Szot JO, et al. 2019. Identification of clinically actionable variants from genome sequencing of families with congenital heart disease. Genetics in Medicine, 21(5): 1111−1120. doi: 10.1038/s41436-018-0296-x
    [3]
    Asp M, Giacomello S, Larsson L, et al. 2019. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell, 179(7): 1647−1660.e19. doi: 10.1016/j.cell.2019.11.025
    [4]
    Bauer RC, Laney AO, Smith R, et al. 2010. Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Human Mutation, 31(5): 594−601. doi: 10.1002/humu.21231
    [5]
    Bleyl SB, Saijoh Y, Bax NA, et al. 2010. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Human Molecular Genetics, 19(7): 1286−1301. doi: 10.1093/hmg/ddq005
    [6]
    Botto LD, Correa A, Erickson JD. 2001. Racial and temporal variations in the prevalence of heart defects. Pediatrics, 107(3): e32. doi: 10.1542/peds.107.3.e32
    [7]
    Boycott KM, Vanstone MR, Bulman DE, et al. 2013. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nature Reviews Genetics, 14(10): 681−691. doi: 10.1038/nrg3555
    [8]
    Caspary T, Larkins CE, Anderson KV. 2007. The graded response to sonic hedgehog depends on cilia architecture. Developmental Cell, 12(5): 767−778. doi: 10.1016/j.devcel.2007.03.004
    [9]
    Chandra S, Lang RM, Nicolarsen J, et al. 2012. Bicuspid aortic valve: inter-racial difference in frequency and aortic dimensions. JACC:Cardiovascular Imaging, 5(10): 981−989. doi: 10.1016/j.jcmg.2012.07.008
    [10]
    Chen R, Shi LS, Hakenberg J, et al. 2016. Analysis of 589, 306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nature Biotechnology, 34(5): 531−538. doi: 10.1038/nbt.3514
    [11]
    Chen YW, Zhao W, Zhang ZF, et al. 2011. Familial nonsyndromic patent ductus arteriosus caused by mutations in TFAP2B. Pediatric Cardiology, 32(7): 958–965.
    [12]
    Cordell HJ, Bentham J, Topf A, et al. 2013a. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nature Genetics, 45(7): 822−824. doi: 10.1038/ng.2637
    [13]
    Cordell HJ, Töpf A, Mamasoula C, et al. 2013b. Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot. Human Molecular Genetics, 22(7): 1473−1481. doi: 10.1093/hmg/dds552
    [14]
    Cowan JR, Ware SM. 2015. Genetics and genetic testing in congenital heart disease. Clinics in Perinatology, 42(2): 373−393. doi: 10.1016/j.clp.2015.02.009
    [15]
    Damrauer SM, Hardie K, Kember RL, et al. 2019. FBN1 coding variants and nonsyndromic aortic disease. Circulation:Genomic and Precision Medicine, 12(6): e002454. doi: 10.1161/CIRCGEN.119.002454
    [16]
    Diab NS, Barish S, Dong WL, et al. 2021. Molecular genetics and complex inheritance of congenital heart disease. Genes, 12(7): 1020. doi: 10.3390/genes12071020
    [17]
    Djenoune L, Berg K, Brueckner M, et al. 2022. A change of heart: new roles for cilia in cardiac development and disease. Nature Reviews Cardiology, 19(4): 211−227. doi: 10.1038/s41569-021-00635-z
    [18]
    Egbe A, Lee S, Ho D, et al. 2014. Prevalence of congenital anomalies in newborns with congenital heart disease diagnosis. Annals of Pediatric Cardiology, 7(2): 86−91. doi: 10.4103/0974-2069.132474
    [19]
    Fahed AC, Gelb BD, Seidman JG, et al. 2013. Genetics of congenital heart disease: the glass half empty. Circulation Research, 112(4): 707−720. doi: 10.1161/CIRCRESAHA.112.300853
    [20]
    Ferencz C, Rubin JD, McCarter RJ, et al. 1985. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. American Journal of Epidemiology, 121(1): 31−36. doi: 10.1093/oxfordjournals.aje.a113979
    [21]
    Firth HV, Wright CF, DDD Study. 2011. The deciphering developmental disorders (DDD) study. Developmental Medicine & Child Neurology, 53(8): 702−703.
    [22]
    Francke U. 1999. Williams-Beuren syndrome: genes and mechanisms. Human Molecular Genetics, 8(10): 1947−1954. doi: 10.1093/hmg/8.10.1947
    [23]
    Gabriel GC, Lo CW. 2020. Left-right patterning in congenital heart disease beyond heterotaxy. American Journal of Medical Genetics Part C:Seminars in Medical Genetics, 184(1): 90−96. doi: 10.1002/ajmg.c.31768
    [24]
    Gabriel GC, Young CB, Lo CW. 2021. Role of cilia in the pathogenesis of congenital heart disease. Seminars in Cell & Developmental Biology, 110: 2−10.
    [25]
    Garg V. 2006. Insights into the genetic basis of congenital heart disease. Cellular and Molecular Life Sciences CMLS, 63(10): 1141−1148. doi: 10.1007/s00018-005-5532-2
    [26]
    Gibbs BC, Damerla RR, Vladar EK, et al. 2016. Prickle1 mutation causes planar cell polarity and directional cell migration defects associated with cardiac outflow tract anomalies and other structural birth defects. Biology Open, 5(3): 323−335. doi: 10.1242/bio.015750
    [27]
    Gifford CA, Ranade SS, Samarakoon R, et al. 2019. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science, 364(6443): 865−870. doi: 10.1126/science.aat5056
    [28]
    Hayano S, Okuno Y, Tsutsumi M, et al. 2019. Frequent intragenic microdeletions of elastin in familial supravalvular aortic stenosis. International Journal of Cardiology, 274: 290−295. doi: 10.1016/j.ijcard.2018.09.032
    [29]
    Hill MC, Kadow ZA, Li LL, et al. 2019. A cellular atlas of Pitx2-dependent cardiac development. Development, 146(12): dev180398. doi: 10.1242/dev.180398
    [30]
    Hoffman JIE, Kaplan S. 2002. The incidence of congenital heart disease. Journal of the American College of Cardiology, 39(12): 1890−1900. doi: 10.1016/S0735-1097(02)01886-7
    [31]
    Homsy J, Zaidi S, Shen Y, et al. 2015. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science, 350(6265): 1262−1266. doi: 10.1126/science.aac9396
    [32]
    Hsieh A, Morton SU, Willcox JAL, et al. 2020. EM-mosaic detects mosaic point mutations that contribute to congenital heart disease. Genome Medicine, 12(1): 42. doi: 10.1186/s13073-020-00738-1
    [33]
    Jenkins KJ, Correa A, Feinstein JA, et al. 2007. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation, 115(23): 2995−3014. doi: 10.1161/CIRCULATIONAHA.106.183216
    [34]
    Jiang T, Huang M, Jiang T, et al. 2018. Genome-wide compound heterozygosity analysis highlighted 4 novel susceptibility loci for congenital heart disease in Chinese population. Clinical Genetics, 94(3–4): 296–302.
    [35]
    Jin SC, Homsy J, Zaidi S, et al. 2017. Contribution of rare inherited and de novo variants in 2, 871 congenital heart disease probands. Nature Genetics, 49(11): 1593−1601. doi: 10.1038/ng.3970
    [36]
    Khetyar M, Syrris P, Tinworth L, et al. 2008. Novel TFAP2B mutation in nonsyndromic patent ductus arteriosus. Genetic Testing, 12(3): 457−459. doi: 10.1089/gte.2008.0015
    [37]
    Koefoed K, Veland IR, Pedersen LB, et al. 2014. Cilia and coordination of signaling networks during heart development. Organogenesis, 10(1): 108−125. doi: 10.4161/org.27483
    [38]
    Lahm H, Deutsch MA, Dreßen M, et al. 2013. Mutational analysis of the human MESP1 gene in patients with congenital heart disease reveals a highly variable sequence in exon 1. European Journal of Medical Genetics, 56(11): 591−598. doi: 10.1016/j.ejmg.2013.09.001
    [39]
    Larson MG, Atwood LD, Benjamin EJ, et al. 2007. Framingham Heart Study 100K project: genome-wide associations for cardiovascular disease outcomes. BMC Medical Genetics, 8 Suppl 1(Suppl 1): S5.
    [40]
    Lewandowski SL, Janardhan HP, Trivedi CM. 2015. Histone deacetylase 3 coordinates deacetylase-independent epigenetic silencing of transforming growth factor-β (TGF-β) to orchestrate second heart field development. Journal of Biological Chemistry, 290(45): 27067−27089. doi: 10.1074/jbc.M115.684753
    [41]
    Li LH, Krantz ID, Deng Y, et al. 1997. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genetics, 16(3): 243−251. doi: 10.1038/ng0797-243
    [42]
    Li Y, Klena NT, Gabriel GC, et al. 2015. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature, 521(7553): 520−524. doi: 10.1038/nature14269
    [43]
    Li YJ, Wei X, Zhao ZG, et al. 2017. Prevalence and complications of bicuspid aortic valve in Chinese according to echocardiographic database. The American Journal of Cardiology, 120(2): 287−291. doi: 10.1016/j.amjcard.2017.04.025
    [44]
    Lickert H, Takeuchi JK, von Both I, et al. 2004. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature, 432(7013): 107−112. doi: 10.1038/nature03071
    [45]
    Liu XQ, Yagi H, Saeed S, et al. 2017. The complex genetics of hypoplastic left heart syndrome. Nature Genetics, 49(7): 1152−1159. doi: 10.1038/ng.3870
    [46]
    Liu XY, Chen W, Li WK, et al. 2020. Exome-based case-control analysis highlights the pathogenic role of ciliary genes in transposition of the great arteries. Circulation Research, 126(7): 811−821. doi: 10.1161/CIRCRESAHA.119.315821
    [47]
    Manheimer KB, Richter F, Edelmann LJ, et al. 2018. Robust identification of mosaic variants in congenital heart disease. Human Genetics, 137(2): 183−193. doi: 10.1007/s00439-018-1871-6
    [48]
    Mantri M, Scuderi GJ, Abedini-Nassab R, et al. 2021. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nature Communications, 12(1): 1771. doi: 10.1038/s41467-021-21892-z
    [49]
    Marelli AJ, Mackie AS, Ionescu-Ittu R, et al. 2007. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation, 115(2): 163−172. doi: 10.1161/CIRCULATIONAHA.106.627224
    [50]
    McGrath J, Somlo S, Makova S, et al. 2003. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell, 114(1): 61−73. doi: 10.1016/S0092-8674(03)00511-7
    [51]
    Miao YF, Tian L, Martin M, et al. 2020. Intrinsic endocardial defects contribute to hypoplastic left heart syndrome. Cell Stem Cell, 27(4): 574−589.e8. doi: 10.1016/j.stem.2020.07.015
    [52]
    Micale L, Turturo MG, Fusco C, et al. 2010. Identification and characterization of seven novel mutations of elastin gene in a cohort of patients affected by supravalvular aortic stenosis. European Journal of Human Genetics, 18(3): 317−323. doi: 10.1038/ejhg.2009.181
    [53]
    Mone F, Eberhardt RY, Morris RK, et al. 2021. COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. Ultrasound in Obstetrics & Gynecology, 57(1): 43−51.
    [54]
    Montgomery RL, Davis CA, Potthoff MJ, et al. 2007. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes & Development, 21(14): 1790−1802.
    [55]
    Morton SU, Quiat D, Seidman JG, et al. 2022. Genomic frontiers in congenital heart disease. Nature Reviews Cardiology, 19(1): 26−42. doi: 10.1038/s41569-021-00587-4
    [56]
    Nakhleh N, Francis R, Giese RA, et al. 2012. High prevalence of respiratory ciliary dysfunction in congenital heart disease patients with heterotaxy. Circulation, 125(18): 2232−2242. doi: 10.1161/CIRCULATIONAHA.111.079780
    [57]
    Nees SN, Chung WK. 2020. Genetic basis of human congenital heart disease. Cold Spring Harbor Perspectives in Biology, 12(9): a036749. doi: 10.1101/cshperspect.a036749
    [58]
    Noonan JP, Li J, Nguyen L, et al. 2003. Extensive linkage disequilibrium, a common 16.7-kilobase deletion, and evidence of balancing selection in the human protocadherin α cluster. American Journal of Human Genetics, 72(3): 621−635. doi: 10.1086/368060
    [59]
    Nora JJ, Dodd PF, McNamara DG, et al. 1969. Risk to offspring of parents with congenital heart defects. JAMA, 209(13): 2052−2053. doi: 10.1001/jama.1969.03160260056018
    [60]
    Oda T, Elkahloun AG, Pike BL, et al. 1997. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genetics, 16(3): 235−242. doi: 10.1038/ng0797-235
    [61]
    Ohtani K, Dimmeler S. 2011. Epigenetic regulation of cardiovascular differentiation. Cardiovascular Research, 90(3): 404−412. doi: 10.1093/cvr/cvr019
    [62]
    Oster ME, Lee KA, Honein MA, et al. 2013. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics, 131(5): e1502−e1508. doi: 10.1542/peds.2012-3435
    [63]
    Øyen N, Poulsen G, Boyd HA, et al. 2009. Recurrence of congenital heart defects in families. Circulation, 120(4): 295−301. doi: 10.1161/CIRCULATIONAHA.109.857987
    [64]
    Pediatric Cardiac Genomics Consortium Writing Committee, Gelb B, Brueckner M, et al. 2013. The congenital heart disease genetic network study: rationale, design, and early results. Circulation Research, 112(4): 698−706. doi: 10.1161/CIRCRESAHA.111.300297
    [65]
    Pickardt T, Niggemeyer E, Bauer UMM, et al. 2016. A biobank for long-term and sustainable research in the field of congenital heart disease in Germany. Genomics, Proteomics & Bioinformatics, 14(4): 181−190.
    [66]
    Pierpont ME, Brueckner M, Chung WK, et al. 2018. Genetic basis for congenital heart disease: revisited: a scientific statement from the american heart association. Circulation, 138(21): e653−e711.
    [67]
    Reuter MS, Chaturvedi RR, Liston E, et al. 2020. The Cardiac Genome Clinic: implementing genome sequencing in pediatric heart disease. Genetics in Medicine, 22(6): 1015−1024. doi: 10.1038/s41436-020-0757-x
    [68]
    Richter F, Morton SU, Kim SW, et al. 2020. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nature Genetics, 52(8): 769−777. doi: 10.1038/s41588-020-0652-z
    [69]
    Satoda M, Zhao F, Diaz GA, et al. 2000. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nature Genetics, 25(1): 42−46. doi: 10.1038/75578
    [70]
    Sifrim A, Hitz MP, Wilsdon A, et al. 2016. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nature Genetics, 48(9): 1060−1065. doi: 10.1038/ng.3627
    [71]
    Siu SC, Silversides CK. 2010. Bicuspid aortic valve disease. Journal of the American College of Cardiology, 55(25): 2789−2800. doi: 10.1016/j.jacc.2009.12.068
    [72]
    Smemo S, Campos LC, Moskowitz IP, et al. 2012. Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. Human Molecular Genetics, 21(14): 3255−3263. doi: 10.1093/hmg/dds165
    [73]
    Smith T, Rajakaruna C, Caputo M, et al. 2015. MicroRNAs in congenital heart disease. Annals of Translational Medicine, 3(21): 333.
    [74]
    Soemedi R, Wilson IJ, Bentham J, et al. 2012. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. The American Journal of Human Genetics, 91(3): 489−501. doi: 10.1016/j.ajhg.2012.08.003
    [75]
    Sund KL, Roelker S, Ramachandran V, et al. 2009. Analysis of Ellis van Creveld syndrome gene products: implications for cardiovascular development and disease. Human Molecular Genetics, 18(10): 1813−1824. doi: 10.1093/hmg/ddp098
    [76]
    Teekakirikul P, Zhu WJ, Gabriel GC, et al. 2021. Common deletion variants causing protocadherin-α deficiency contribute to the complex genetics of BAV and left-sided congenital heart disease. Human Genetics and Genomics Advances, 2(3): 100037. doi: 10.1016/j.xhgg.2021.100037
    [77]
    Teekakirikul P, Zhu WJ, Xu XX, et al. 2022. Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. Cell Reports Medicine, 3(2): 100501. doi: 10.1016/j.xcrm.2021.100501
    [78]
    Toomer KA, Yu MY, Fulmer D, et al. 2019. Primary cilia defects causing mitral valve prolapse. Science Translational Medicine, 11(493): eaax0290. doi: 10.1126/scitranslmed.aax0290
    [79]
    Triedman JK, Newburger JW. 2016. Trends in congenital heart disease: the next decade. Circulation, 133(25): 2716−2733. doi: 10.1161/CIRCULATIONAHA.116.023544
    [80]
    van der Bom T, Zomer AC, Zwinderman AH, et al. 2011. The changing epidemiology of congenital heart disease. Nature Reviews Cardiology, 8(1): 50−60. doi: 10.1038/nrcardio.2010.166
    [81]
    Wang GL, Wang BB, Yang PX. 2022. Epigenetics in congenital heart disease. Journal of the American Heart Association, 11(7): e025163. doi: 10.1161/JAHA.121.025163
    [82]
    Watkins WS, Hernandez EJ, Wesolowski S, et al. 2019. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nature Communications, 10(1): 4722. doi: 10.1038/s41467-019-12582-y
    [83]
    Werner P, Latney B, Deardorff MA, e al. 2016. MESP1 mutations in patients with congenital heart defects. Human Mutation, 37(3): 308−314. doi: 10.1002/humu.22947
    [84]
    Williams K, Carson J, Lo C. 2019. Genetics of congenital heart disease. Biomolecules, 9(12): 879. doi: 10.3390/biom9120879
    [85]
    Xu J, Hu ZB, Xu ZF, et al. 2009. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Human Mutation, 30(8): 1231−1236. doi: 10.1002/humu.21044
    [86]
    Yagi H, Liu XQ, Gabriel GC, et al. 2018. The genetic landscape of hypoplastic left heart syndrome. Pediatric Cardiology, 39(6): 1069−1081. doi: 10.1007/s00246-018-1861-4
    [87]
    Zaidi S, Brueckner M. 2017. Genetics and genomics of congenital heart disease. Circulation Research, 120(6): 923−940. doi: 10.1161/CIRCRESAHA.116.309140
    [88]
    Zaidi S, Choi M, Wakimoto H, et al. 2013. De novo mutations in histone-modifying genes in congenital heart disease. Nature, 498(7453): 220−223. doi: 10.1038/nature12141
    [89]
    Zhang M, Li FX, Liu XY, et al. 2017. MESP1 loss-of-function mutation contributes to double outlet right ventricle. Molecular Medicine Reports, 16(3): 2747−2754. doi: 10.3892/mmr.2017.6875
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (824) PDF downloads(194) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return