Volume 44 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Guang-Xian Tu, Xin-Shuang Zhang, Rui-Run Jiang, Long Zhang, Cheng-Jun Lai, Zhu-Yue Yan, Yan-Rong Lv, Shao-Ping Weng, Li Zhang, Jian-Guo He, Muhua Wang. Long-read genome assemblies reveal a cis-regulatory landscape associated with phenotypic divergence in two sister Siniperca fish species. Zoological Research, 2023, 44(2): 287-302. doi: 10.24272/j.issn.2095-8137.2022.462
Citation: Guang-Xian Tu, Xin-Shuang Zhang, Rui-Run Jiang, Long Zhang, Cheng-Jun Lai, Zhu-Yue Yan, Yan-Rong Lv, Shao-Ping Weng, Li Zhang, Jian-Guo He, Muhua Wang. Long-read genome assemblies reveal a cis-regulatory landscape associated with phenotypic divergence in two sister Siniperca fish species. Zoological Research, 2023, 44(2): 287-302. doi: 10.24272/j.issn.2095-8137.2022.462

Long-read genome assemblies reveal a cis-regulatory landscape associated with phenotypic divergence in two sister Siniperca fish species

doi: 10.24272/j.issn.2095-8137.2022.462
Raw reads and genome assemblies are accessible at the NCBI database under BioProjectID PRJNA867131. Raw reads and genome assemblies are also available at the Genome Sequence Archive (GSA) database of the National Genomics Data Center (https://ngdc.cncb.ac.cn/) under accession number PRJCA013257 and the Science Data Bank (https://www.scidb.cn/en) under DOI: 10.57760/sciencedb.06965. The genome assembly, related annotation files, and source files for generating figures can be accessed through Figshare at https://doi.org/10.6084/m9.figshare.21385059.
Supplementary data to this article can be found online.
Funds:  This study was supported by the National Natural Science Foundation of China (31900309), Guangdong Basic and Applied Basic Research Foundation (2019A1515011644), Key-Area Research and Development Program of Guangdong Province (2021B0202020001), Seed Industry Development Project of Agricultural and Rural Department of Guangdong Province (2022), and Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021006)
More Information
  • Due to the difficulty in accurately identifying structural variants (SVs) across genomes, their impact on cis-regulatory divergence of closely related species, especially fish, remains to be explored. Recently identified broad H3K4me3 domains are essential for the regulation of genes involved in several biological processes. However, the role of broad H3K4me3 domains in phenotypic divergence remains poorly understood. Siniperca chuatsi and S. scherzeri are closely related but divergent in several phenotypic traits, making them an ideal model to study cis-regulatory evolution in sister species. Here, we generated chromosome-level genomes of S. chuatsi and S. scherzeri, with assembled genome sizes of 716.35 and 740.54 Mb, respectively. The evolutionary histories of S. chuatsi and S. scherzeri were studied by inferring dynamic changes in ancestral population sizes. To explore the genetic basis of adaptation in S. chuatsi and S. scherzeri, we performed gene family expansion and contraction analysis and identified positively selected genes (PSGs). To investigate the role of SVs in cis-regulatory divergence of closely related fish species, we identified high-quality SVs as well as divergent H3K27ac and H3K4me3 domains in the genomes of S. chuatsi and S. scherzeri. Integrated analysis revealed that cis-regulatory divergence caused by SVs played an essential role in phenotypic divergence between S. chuatsi and S. scherzeri. Additionally, divergent broad H3K4me3 domains were mostly associated with cancer-related genes in S. chuatsi and S. scherzeri and contributed to their phenotypic divergence.
  • Raw reads and genome assemblies are accessible at the NCBI database under BioProjectID PRJNA867131. Raw reads and genome assemblies are also available at the Genome Sequence Archive (GSA) database of the National Genomics Data Center (https://ngdc.cncb.ac.cn/) under accession number PRJCA013257 and the Science Data Bank (https://www.scidb.cn/en) under DOI: 10.57760/sciencedb.06965. The genome assembly, related annotation files, and source files for generating figures can be accessed through Figshare at https://doi.org/10.6084/m9.figshare.21385059.
    Supplementary data to this article can be found online.
  • loading
  • [1]
    Achilleos A, Huffman NT, Marcinkiewicyz E, et al. 2015. MBTPS1/SKI-1/S1P proprotein convertase is required for ECM signaling and axial elongation during somitogenesis and vertebral development. Human Molecular Genetics, 24(10): 2884−2898. doi: 10.1093/hmg/ddv050
    [2]
    Alonge M, Wang XG, Benoit M, et al. 2020. major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell, 182: 145−161.e23. doi: 10.1016/j.cell.2020.05.021
    [3]
    Beacon TH, Delcuve GP, López C, et al. 2021. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clinical Epigenetics, 13(1): 138. doi: 10.1186/s13148-021-01126-1
    [4]
    Belton JM, McCord RP, Gibcus JH, et al. 2012. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 58(3): 268−276. doi: 10.1016/j.ymeth.2012.05.001
    [5]
    Belyeu JR, Chowdhury M, Brown J, et al. 2021. Samplot: a platform for structural variant visual validation and automated filtering. Genome Biology, 22(1): 161. doi: 10.1186/s13059-021-02380-5
    [6]
    Benayoun BA, Pollina EA, Ucar D, et al. 2014. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell, 158(3): 673−688. doi: 10.1016/j.cell.2014.06.027
    [7]
    Berends CJ, Köhler P, Lourens LJ, et al. 2021. On the cause of the mid-Pleistocene transition. Reviews of Geophysics, 59(2): e2020RG000727.
    [8]
    Blakey CA, Litt MD. 2015. Histone modifications—models and mechanisms. In: Huang SM, Litt MD, Blakey CA. Epigenetic Gene Expression and Regulation. Amsterdam: Academic Press, 21–42.
    [9]
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    [10]
    Bowen BW, Muss A, Rocha LA, et al. 2006. Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. Journal of Heredity, 97(1): 1−12.
    [11]
    Brawand D, Wagner CE, Li YI, et al. 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature, 513(7518): 375−381. doi: 10.1038/nature13726
    [12]
    Brisson L, Pouyet L, N'guessan P, et al. 2015. The thymus-specific serine protease TSSP/PRSS16 is crucial for the antitumoral role of CD4+ T cells. Cell Reports, 10(1): 39−46. doi: 10.1016/j.celrep.2014.12.009
    [13]
    Brůna T, Hoff KJ, Lomsadze A, et al. 2021. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics and Bioinformatics, 3(1): lqaa108. doi: 10.1093/nargab/lqaa108
    [14]
    Carroll SB. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134(1): 25−36. doi: 10.1016/j.cell.2008.06.030
    [15]
    Carroll SB. 2013. Evo-devo and an expanding evolutionary synthesis. The FASEB Journal, 27(S1): 194.
    [16]
    Chabowski A, Górski J, Luiken JJFP, et al. 2007. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins, Leukotrienes and Essential Fatty Acids, 77(5–6): 345–353.
    [17]
    Chaisson MJ, Tesler G. 2012. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics, 13: 238. doi: 10.1186/1471-2105-13-238
    [18]
    Chan YF, Marks ME, Jones FC, et al. 2010. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science, 327(5963): 302−305. doi: 10.1126/science.1182213
    [19]
    Chen D, Li Y, Li H, et al. 2014. The genetic diversity of sinipercid fishes based on complete mitochondrial DNA of six sinipercid fishes from different drainages in China. Current Molecular Medicine, 14(10): 1279−1285. doi: 10.2174/1566524014666141202162058
    [20]
    Chen KF, Chen Z, Wu DY, et al. 2015. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nature Genetics, 47(10): 1149−1157. doi: 10.1038/ng.3385
    [21]
    Chen SF, Zhou YQ, Chen YR, et al. 2018a. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
    [22]
    Chen YX, Chen YS, Shi CM, et al. 2018b. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience, 7(1): gix120.
    [23]
    Chiang C, Scott AJ, Davis JR, et al. 2017. The impact of structural variation on human gene expression. Nature Genetics, 49(5): 692−699. doi: 10.1038/ng.3834
    [24]
    Clark EA, Giltiay NV. 2018. CD22: A regulator of innate and adaptive B cell responses and autoimmunity. Frontiers in Immunology, 9: 2235. doi: 10.3389/fimmu.2018.02235
    [25]
    Coolon JD, McManus CJ, Stevenson KR, et al. 2014. Tempo and mode of regulatory evolution in Drosophila. Genome Research, 24(5): 797–808.
    [26]
    Corces MR, Trevino AE, Hamilton EG, et al. 2017. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature Methods, 14(10): 959−962. doi: 10.1038/nmeth.4396
    [27]
    Creyghton MP, Cheng AW, Welstead GG, et al. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences of the United States of America, 107(50): 21931−21936. doi: 10.1073/pnas.1016071107
    [28]
    Cui JX, Ren XH, Yu QX. 1991. Nuclear DNA content variation in fishes. Cytologia, 56(3): 425−429. doi: 10.1508/cytologia.56.425
    [29]
    Curtis AM, Seo SB, Westgate EJ, et al. 2004. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. Journal of Biological Chemistry, 279(8): 7091−7097. doi: 10.1074/jbc.M311973200
    [30]
    Dahl JA, Jung I, Aanes H, et al. 2016. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature, 537(7621): 548−552. doi: 10.1038/nature19360
    [31]
    De Bie T, Cristianini N, Demuth JP, et al. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 22(10): 1269−1271. doi: 10.1093/bioinformatics/btl097
    [32]
    Ding SY, Shi YB, Hao C, et al. 2022. Molecular mechanisms of growth and disease resistance in hybrid mandarin (Siniperca chuatsi ♀ × Siniperca scherzeri♂) revealed by combined miRNA‐mRNA transcriptome analysis. Aquaculture Research, 53(6): 2146−2158. doi: 10.1111/are.15734
    [33]
    Dobin A, Davis CA, Schlesinger F, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15−21. doi: 10.1093/bioinformatics/bts635
    [34]
    Dong XJ, Greven MC, Kundaje A, et al. 2012. Modeling gene expression using chromatin features in various cellular contexts. Genome Biology, 13(9): R53. doi: 10.1186/gb-2012-13-9-r53
    [35]
    Dudchenko O, Batra SS, Omer AD, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356(6333): 92−95. doi: 10.1126/science.aal3327
    [36]
    Durand NC, Shamim MS, Machol I, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems, 3(1): 95−98. doi: 10.1016/j.cels.2016.07.002
    [37]
    Ellertsdottir E, Berthold PR, Bouzaffour M, et al. 2012. Developmental role of zebrafish protease-activated receptor 1 (PAR1) in the cardio-vascular system. PLoS One, 7(7): e42131. doi: 10.1371/journal.pone.0042131
    [38]
    Emerson JJ, Hsieh LC, Sung HM, et al. 2010. Natural selection on cis and trans regulation in yeasts. Genome Research, 20(6): 826−836. doi: 10.1101/gr.101576.109
    [39]
    Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1): 238. doi: 10.1186/s13059-019-1832-y
    [40]
    FAO. 2006(2006-05-30). Siniperca chuatsi. Cultured aquatic species information programme. Rome. https://www.fao.org/fishery/en/culturedspecies/siniperca_chuatsi/en.
    [41]
    Flynn JM, Hubley R, Goubert C, et al. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America, 117(17): 9451−9457. doi: 10.1073/pnas.1921046117
    [42]
    Fu LM, Niu BF, Zhu ZW, et al. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23): 3150−3152. doi: 10.1093/bioinformatics/bts565
    [43]
    Gao FX, Lu WJ, Shi Y, et al. 2021. Transcriptome profiling revealed the growth superiority of hybrid pufferfish derived from Takifugu obscurus ♀ × Takifugu rubripes ♂. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 40: 100912.
    [44]
    Goding CR, Arnheiter H. 2019. MITF-the first 25 years. Genes & Development, 33(15–16): 983–1007.
    [45]
    Goel M, Sun HQ, Jiao WB, et al. 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology, 20(1): 277. doi: 10.1186/s13059-019-1911-0
    [46]
    Gordon KL, Ruvinsky I. 2012. Tempo and mode in evolution of transcriptional regulation. PLoS Genetics, 8(1): e1002432. doi: 10.1371/journal.pgen.1002432
    [47]
    Grabherr MG, Haas BJ, Yassour M, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644−652. doi: 10.1038/nbt.1883
    [48]
    Gremme G, Brendel V, Sparks ME, et al. 2005. Engineering a software tool for gene structure prediction in higher organisms. Information and Software Technology, 47(15): 965−978. doi: 10.1016/j.infsof.2005.09.005
    [49]
    Grone BP, Marchese M, Hamling KR, et al. 2016. Epilepsy, behavioral abnormalities, and physiological comorbidities in syntaxin-binding protein 1 (STXBP1) mutant zebrafish. PLoS One, 11(3): e0151148. doi: 10.1371/journal.pone.0151148
    [50]
    Guan WZF, Qiu G, Feng L. 2022. Comparative analysis of the morphology, karyotypes and biochemical composition of muscle in Siniperca chuatsi, Siniperca scherzeri and the F1 hybrid (S. chuatsi ♀ × S. scherzeri ♂). Aquaculture and Fisheries, 7(4): 382−388. doi: 10.1016/j.aaf.2020.07.020
    [51]
    Gunn TM, Inui T, Kitada K, et al. 2001. Molecular and phenotypic analysis of Attractin mutant mice. Genetics, 158(4): 1683−1695. doi: 10.1093/genetics/158.4.1683
    [52]
    Haas BJ, Salzberg SL, Zhu W, et al. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology, 9(1): R7. doi: 10.1186/gb-2008-9-1-r7
    [53]
    Hara TJ. 1975. Olfaction in fish. Progress in Neurobiology, 5(4): 271−335.
    [54]
    Hara TJ, Zhang CB. 1996. Spatial projections to the olfactory bulb of functionally distinct and randomly distributed primary neurons in salmonid fishes. Neuroscience Research, 26(1): 65−74.
    [55]
    He F, Arce AL, Schmitz G, et al. 2016. The footprint of polygenic adaptation on stress-responsive Cis-regulatory divergence in the Arabidopsis Genus. Molecular Biology and Evolution, 33(8): 2088–2101.
    [56]
    He S, Li L, Lv LY, et al. 2020. Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding. Communications Biology, 3(1): 361. doi: 10.1038/s42003-020-1094-y
    [57]
    He S, Liang XF, Sun J, et al. 2013. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genomics, 14: 601. doi: 10.1186/1471-2164-14-601
    [58]
    Heisler FF, Loebrich S, Pechmann Y, et al. 2011. Muskelin regulates actin filament- and microtubule-based GABAA receptor transport in neurons. Neuron, 70(1): 66−81. doi: 10.1016/j.neuron.2011.03.008
    [59]
    Hoang DT, Chernomor O, Von Haeseler A, et al. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2): 518−522. doi: 10.1093/molbev/msx281
    [60]
    Hoekstra HE, Coyne JA. 2007. The locus of evolution: evo devo and the genetics of adaptation. Evolution, 61(5): 995−1016. doi: 10.1111/j.1558-5646.2007.00105.x
    [61]
    Hoffman JS, Clark PU, Parnell AC, et al. 2017. Regional and global sea-surface temperatures during the last interglaciation. Science, 355(6322): 276−279. doi: 10.1126/science.aai8464
    [62]
    Huerta-Cepas J, Forslund K, Coelho LP, et al. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution, 34(8): 2115−2122. doi: 10.1093/molbev/msx148
    [63]
    Huerta-Cepas J, Szklarczyk D, Heller D, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1): D309−D314. doi: 10.1093/nar/gky1085
    [64]
    Iyer NG, Özdag H, Caldas C. 2004. p300/CBP and cancer. Oncogene, 23(24): 4225−4231. doi: 10.1038/sj.onc.1207118
    [65]
    Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6): 587−589. doi: 10.1038/nmeth.4285
    [66]
    Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology, 428(4): 726−731. doi: 10.1016/j.jmb.2015.11.006
    [67]
    Katoh K, Misawa K, Kuma K, et al. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14): 3059−3066. doi: 10.1093/nar/gkf436
    [68]
    Kaya-Okur HS, Wu SJ, Codomo CA, et al. 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nature Communications, 10(1): 1930. doi: 10.1038/s41467-019-09982-5
    [69]
    Kenne E, Soehnlein O, Genové G, et al. 2010. Immune cell recruitment to inflammatory loci is impaired in mice deficient in basement membrane protein laminin α4. Journal of Leukocyte Biology, 88(3): 523−528. doi: 10.1189/jlb.0110043
    [70]
    Kim D, Paggi JM, Park C, et al. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8): 907−915. doi: 10.1038/s41587-019-0201-4
    [71]
    Kozma R, Melsted P, Magnússon KP, et al. 2016. Looking into the past - the reaction of three grouse species to climate change over the last million years using whole genome sequences. Molecular Ecology, 25(2): 570−580. doi: 10.1111/mec.13496
    [72]
    Kronenberg ZN, Fiddes IT, Gordon D, et al. 2018. High-resolution comparative analysis of great ape genomes. Science, 360(6393): eaar6343. doi: 10.1126/science.aar6343
    [73]
    Kumar S, Stecher G, Suleski M, et al. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34(7): 1812−1819. doi: 10.1093/molbev/msx116
    [74]
    Kurtz DM, Tolwani RJ, Wood PA. 1998. Structural characterization of the mouse long-chain acyl-CoA dehydrogenase gene and 5' regulatory region. Mammalian Genome, 9(5): 361−365. doi: 10.1007/s003359900770
    [75]
    Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4): 357−359. doi: 10.1038/nmeth.1923
    [76]
    Levine M. 2010. Transcriptional enhancers in animal development and evolution. Current Biology, 20(17): R754−R763. doi: 10.1016/j.cub.2010.06.070
    [77]
    Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12: 323. doi: 10.1186/1471-2105-12-323
    [78]
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [79]
    Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature, 475(7357): 493−496. doi: 10.1038/nature10231
    [80]
    Li H, Handsaker B, Wysoker A, et al. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [81]
    Li SZ. 1991. Geographical distribution of the Sinipercine fishes. Chinese Journal of Zoology, 26(4): 40−44. (in Chinese)
    [82]
    Liang XF, Kiu JK, Huang BY. 1998. The role of sense organs in the feeding behaviour of Chinese perch. Journal of Fish Biology, 52(5): 1058−1067. doi: 10.1111/j.1095-8649.1998.tb00603.x
    [83]
    Liu H, Chen CH, Lv ML, et al. 2021. A chromosome-level assembly of blunt snout bream (Megalobrama amblycephala) genome reveals an expansion of olfactory receptor genes in freshwater fish. Molecular Biology and Evolution, 38(10): 4238−4251. doi: 10.1093/molbev/msab152
    [84]
    Livraghi L, Hanly JJ, Van Bellghem SM, et al. 2021. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife, 10: e68549.
    [85]
    Long HK, Prescott SL, Wysocka J. 2016. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell, 167(5): 1170−1187. doi: 10.1016/j.cell.2016.09.018
    [86]
    Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [87]
    Lu L, Zhao JL, Li CH. 2020. High-quality genome assembly and annotation of the big-eye mandarin fish (Siniperca knerii). G3 Genes| Genomes| Genetics, 10(3): 877−880.
    [88]
    Lv J, Chen KF. 2016. Broad H3K4me3 as a novel epigenetic signature for normal development and disease. Genomics, Proteomics & Bioinformatics, 14(5): 262−264.
    [89]
    Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6): 764−770. doi: 10.1093/bioinformatics/btr011
    [90]
    Mérot C, Oomen RA, Tigano A, et al. 2020. A roadmap for understanding the evolutionary significance of structural genomic variation. Trends in Ecology & Evolution, 35(7): 561−572.
    [91]
    Møller N, Jørgensen JOL. 2009. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocrine Reviews, 30(2): 152−177. doi: 10.1210/er.2008-0027
    [92]
    Moriyama M, Osawa M, Mak SS, et al. 2006. Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. Journal of Cell Biology, 173(3): 333−339. doi: 10.1083/jcb.200509084
    [93]
    Nicoli S, Knyphausen CP, Zhu LJ, et al. 2012. miR-221 is required for endothelial tip cell behaviors during vascular development. Developmental Cell, 22(2): 418−429. doi: 10.1016/j.devcel.2012.01.008
    [94]
    Niimura Y. 2009. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biology and Evolution, 1: 34−44. doi: 10.1093/gbe/evp003
    [95]
    Niimura Y, Matsui A, Touhara K. 2014. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Research, 24(9): 1485−1496. doi: 10.1101/gr.169532.113
    [96]
    Niimura Y, Nei M. 2003. Evolution of olfactory receptor genes in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 100(21): 12235−12240. doi: 10.1073/pnas.1635157100
    [97]
    O'Reilly-Pol T, Johnson SL. 2013. Kit signaling is involved in melanocyte stem cell fate decisions in zebrafish embryos. Development, 140(5): 996−1002. doi: 10.1242/dev.088112
    [98]
    Ogawa M, Yoshikawa Y, Kobayashi T, et al. 2011. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host & Microbe, 9(5): 376−389.
    [99]
    Ong CT, Corces VG. 2011. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nature Reviews Genetics, 12(4): 283−293. doi: 10.1038/nrg2957
    [100]
    Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nature Reviews Genetics, 10(10): 669−680. doi: 10.1038/nrg2641
    [101]
    Pertea M, Kim D, Pertea GM, et al. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9): 1650−1667. doi: 10.1038/nprot.2016.095
    [102]
    Policarpo M, Bemis KE, Tyler JC, et al. 2021. Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape. Molecular Biology and Evolution, 38(9): 3742−3753. doi: 10.1093/molbev/msab145
    [103]
    Ramírez F, Ryan DP, Grüning B, et al. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research, 44(W1): W160−W165. doi: 10.1093/nar/gkw257
    [104]
    Ranallo-Benavidez TR, Jaron KS, et al. 2020. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications, 11(1): 1432. doi: 10.1038/s41467-020-14998-3
    [105]
    Rhie A, Walenz BP, Koren S, et al. 2020. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biology, 21(1): 245. doi: 10.1186/s13059-020-02134-9
    [106]
    Robinson JT, Turner D, Durand NC, et al. 2018. Juicebox. js provides a cloud-based visualization system for Hi-C data. Cell Systems, 6(2): 256−258.e1. doi: 10.1016/j.cels.2018.01.001
    [107]
    Ruan J, Li H. 2020. Fast and accurate long-read assembly with wtdbg2. Nature Methods, 17(2): 155−158. doi: 10.1038/s41592-019-0669-3
    [108]
    Sahm A, Bens M, Platzer M, et al. 2017. PosiGene: automated and easy-to-use pipeline for genome-wide detection of positively selected genes. Nucleic Acids Research, 45(11): e100. doi: 10.1093/nar/gkx179
    [109]
    Salmela L, Rivals E. 2014. LoRDEC: accurate and efficient long read error correction. Bioinformatics, 30(24): 3506−3514. doi: 10.1093/bioinformatics/btu538
    [110]
    Sedlazeck FJ, Rescheneder P, Smolka M, et al. 2018. Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods, 15(6): 461−468. doi: 10.1038/s41592-018-0001-7
    [111]
    Semenova E, Wang XF, Jablonski MM, et al. 2003. An engineered 800 kilobase deletion of Uchl3 and Lmo7 on mouse chromosome 14 causes defects in viability, postnatal growth and degeneration of muscle and retina. Human Molecular Genetics, 12(11): 1301−1312. doi: 10.1093/hmg/ddg140
    [112]
    Shao Z, Zhang YJ, Yuan GC, et al. 2012. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biology, 13(3): R16. doi: 10.1186/gb-2012-13-3-r16
    [113]
    Simão FA, Waterhouse RM, Ioannidis P, et al. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19): 3210−3212. doi: 10.1093/bioinformatics/btv351
    [114]
    Slater GSC, Birney E. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 6: 31. doi: 10.1186/1471-2105-6-31
    [115]
    Smith NGC, Eyre-Walker A. 2002. Adaptive protein evolution in Drosophila. Nature, 415(6875): 1022–1024.
    [116]
    Song SL, Zhao JL, Li CH. 2017. Species delimitation and phylogenetic reconstruction of the sinipercids (Perciformes: Sinipercidae) based on target enrichment of thousands of nuclear coding sequences. Molecular Phylogenetics and Evolution, 111: 44−55. doi: 10.1016/j.ympev.2017.03.014
    [117]
    Soupene E, Kuypers FA. 2008. Mammalian long-chain acyl-CoA synthetases. Experimental Biology and Medicine, 233(5): 507−521. doi: 10.3181/0710-MR-287
    [118]
    Stoffel W, Jenke B, Blöck B, et al. 2005. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proceedings of the National Academy of Sciences of the United States of America, 102(12): 4554−4559. doi: 10.1073/pnas.0406380102
    [119]
    Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4): 564−577. doi: 10.1080/10635150701472164
    [120]
    Terhorst J, Kamm JA, Song YS. 2017. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics, 49(2): 303−309. doi: 10.1038/ng.3748
    [121]
    Verta JP, Jones FC. 2019. Predominance of cis-regulatory changes in parallel expression divergence of sticklebacks. eLife, 8: e43785. doi: 10.7554/eLife.43785
    [122]
    Walker BJ, Abeel T, Shea T, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9(11): e112963. doi: 10.1371/journal.pone.0112963
    [123]
    Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics, 13(1): 59−69. doi: 10.1038/nrg3095
    [124]
    Woodham EF, Paul NR, Tyrrell B, et al. 2017. Coordination by Cdc42 of actin, contractility, and adhesion for melanoblast movement in mouse skin. Current Biology, 27(5): 624−637. doi: 10.1016/j.cub.2017.01.033
    [125]
    Wray GA. 2007. The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics, 8(3): 206−216. doi: 10.1038/nrg2063
    [126]
    Wu TD, Watanabe CK. 2005. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21(9): 1859−1875. doi: 10.1093/bioinformatics/bti310
    [127]
    Xu DM, Zalmas LP, La Thangue NB. 2008. A transcription cofactor required for the heat-shock response. EMBO Reports, 9(7): 662−669. doi: 10.1038/embor.2008.70
    [128]
    Yang ZH. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    [129]
    Yates AD, Achuthan P, Akanni W, et al. 2020. Ensembl 2020. Nucleic Acids Research, 48(D1): D682−D688.
    [130]
    Yin QZ, Berger A. 2010. Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event. Nature Geoscience, 3(4): 243−246. doi: 10.1038/ngeo771
    [131]
    Yu GC, Wang LG, He QY. 2015. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31(14): 2382−2383. doi: 10.1093/bioinformatics/btv145
    [132]
    Zhan TZ, Poppelreuther M, Ehehalt R, et al. 2012. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS One, 7(9): e45087. doi: 10.1371/journal.pone.0045087
    [133]
    Zhang L, He J, Tan PP, et al. 2022. The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Communications Biology, 5(1): 224. doi: 10.1038/s42003-022-03176-4
    [134]
    Zhang Y, Liu T, Meyer CA, et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9(9): R137. doi: 10.1186/gb-2008-9-9-r137
    [135]
    Zhou Q, Gao HY, Zhang Y, et al. 2019. A chromosome-level genome assembly of the giant grouper (Epinephelus lanceolatus) provides insights into its innate immunity and rapid growth. Molecular Ecology Resources, 19(5): 1322−1332. doi: 10.1111/1755-0998.13048
  • ZR-2022-462-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1435) PDF downloads(278) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return