Citation: | Biao Yu, Chao Song, Chuan-Lin Feng, Jing Zhang, Ying Wang, Yi-Ming Zhu, Lei Zhang, Xin-Miao Ji, Xiao-Fei Tian, Guo-Feng Cheng, Wei-Li Chen, Vitalii Zablotskii, Hua Wang, Xin Zhang. Effects of gradient high-field static magnetic fields on diabetic mice. Zoological Research, 2023, 44(2): 249-258. doi: 10.24272/j.issn.2095-8137.2022.460 |
[1] |
Abbas Z, Gras V, Mollenhoff K, et al. 2015. Quantitative water content mapping at clinically relevant field strengths: a comparative study at 1.5 T and 3 T. Neuroimage, 106: 404−413. doi: 10.1016/j.neuroimage.2014.11.017
|
[2] |
American Diabetes Association. 2013. Diagnosis and classification of diabetes mellitus. Diabetes Care, 36(S1): S62−S69.
|
[3] |
Atkinson IC, Thulborn KR. 2010. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage, 51(2): 723−733. doi: 10.1016/j.neuroimage.2010.02.056
|
[4] |
Biessels GJ, Reijmer YD. 2014. Brain changes underlying cognitive dysfunction in diabetes: What can we learn from MRI?. Diabetes, 63(7): 2244−2252. doi: 10.2337/db14-0348
|
[5] |
Carter CS, Huang SC, Searby CC, et al. 2020. Exposure to static magnetic and electric fields treats type 2 diabetes. Cell Metabolism, 32(4): 561−574. doi: 10.1016/j.cmet.2020.09.012
|
[6] |
Chen HZ, Yang HY, Zhong K, et al. 2020. Preliminary study on fine structures of subcortical nuclei in rhesus monkeys by ex vivo 9.4 T MRI. Zoological Research, 41(2): 199−202. doi: 10.24272/j.issn.2095-8137.2020.013
|
[7] |
Chen SQ, Han JY, Liu YQ. 2015. Dual opposing roles of metallothionein overexpression in C57BL/6J mouse pancreatic β-cells. PLoS One, 10(9): e0137583. doi: 10.1371/journal.pone.0137583
|
[8] |
Clotman K, Twickler MB. 2020. Diabetes or endocrinopathy admitted in the COVID-19 ward. European Journal of Clinical Investigation, 50(7): e13262.
|
[9] |
Crooks L, Arakawa M, Hoenninger J, et al. 1982. Nuclear magnetic resonance whole-body imager operating at 3.5 Kgauss. Radiology, 143(1): 169−174. doi: 10.1148/radiology.143.1.7063722
|
[10] |
de Jesus Gomes J, del Carlo RJ, da Silva MF, et al. 2019. Swimming training potentiates the recovery of femoral neck strength in young diabetic rats under insulin therapy. Clinics, 74: e829. doi: 10.6061/clinics/2019/e829
|
[11] |
Feng AL, Xiang YY, Gui L, et al. 2017. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes. Diabetologia, 60(6): 1033−1042. doi: 10.1007/s00125-017-4239-x
|
[12] |
Fujita I, Utoh R, Yamamoto M, et al. 2018. The liver surface as a favorable site for islet cell sheet transplantation in type 1 diabetes model mice. Regenerative Therapy, 8: 65−72. doi: 10.1016/j.reth.2018.04.002
|
[13] |
Furman BL. 2015. Streptozotocin-induced diabetic models in mice and rats. Current Protocols in Pharmacology, 70: 5.47.1−5.47.20.
|
[14] |
Geijselaers SLC, Sep SJS, Stehouwer CDA, et al. 2015. Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. Lancet Diabetes & Endocrinology, 3(1): 75−89.
|
[15] |
Hodgson S, Cheema S, Rani Z, et al. 2022. Population stratification in type 2 diabetes mellitus: a systematic review. Diabetic Medicine, 39(1): e14688.
|
[16] |
Hogan MF, Liu AW, Peters MJ, et al. 2017. Markers of islet endothelial dysfunction occur in male B6. BKS(D)- Leprdb/J mice and may contribute to reduced insulin release. Endocrinology, 158(2): 293−303. doi: 10.1210/en.2016-1393
|
[17] |
Khan H, Huang XF, Tian XF, et al. 2022. Short- and long-term effects of 3.5–23.0 Tesla ultra-high magnetic fields on mice behaviour. European Radiology, 32(8): 5596−5605. doi: 10.1007/s00330-022-08677-8
|
[18] |
Lammert E, Cleaver O, Melton D. 2001. Induction of pancreatic differentiation by signals from blood vessels. Science, 294(5542): 564−567. doi: 10.1126/science.1064344
|
[19] |
László JF, Szilvási J, Fényi A, et al. 2011. Daily exposure to inhomogeneous static magnetic field significantly reduces blood glucose level in diabetic mice. International Journal of Radiation Biology, 87(1): 36−45. doi: 10.3109/09553002.2010.518200
|
[20] |
Lin R, Brown F, James S, et al. 2021. Continuous glucose monitoring: a review of the evidence in type 1 and 2 diabetes mellitus. Diabetic Medicine, 38(5): e14528.
|
[21] |
Lv Y, Fan YX, Tian XF, et al. 2022. The anti-depressive effects of ultra-high static magnetic field. Journal of Magnetic Resonance Imaging, 56(2): 354−365. doi: 10.1002/jmri.28035
|
[22] |
Patterson CC, Dahlquist G, Harjutsalo V, et al. 2007. Early mortality in EURODIAB population-based cohorts of type 1 diabetes diagnosed in childhood since 1989. Diabetologia, 50(12): 2439−2442. doi: 10.1007/s00125-007-0824-8
|
[23] |
Rose KJ, Scibilia R. 2021. The COVID19 pandemic–Perspectives from people living with diabetes. Diabetes Research And Clinical Practice, 173: 108343. doi: 10.1016/j.diabres.2020.108343
|
[24] |
Sarkisian J, Klee P, Dirlewanger M, et al. 2021. Benign COVID19 in a highly vulnerable adolescent with type 1 diabetes and leukemia. Swiss Medical Weekly, 151: 16−17.
|
[25] |
Smith FW, Mallard JR, Reid A, et al. 1981. Nuclear magnetic resonance tomographic imaging in liver disease. The Lancet, 317(8227): 963−966. doi: 10.1016/S0140-6736(81)91731-1
|
[26] |
Sun H, Saeedi P, Karuranga S, et al. 2022. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183: 109119. doi: 10.1016/j.diabres.2021.109119
|
[27] |
Tian XF, Lv Y, Fan YX, et al. 2021. Safety evaluation of mice exposed to 7.0–33.0 T high-static magnetic fields. Journal of Magnetic Resonance Imaging, 53(6): 1872−1884. doi: 10.1002/jmri.27496
|
[28] |
Tian XF, Wang DM, Feng S, et al. 2019. Effects of 3.5–23.0 T static magnetic fields on mice: a safety study. Neuroimage, 199: 273−280. doi: 10.1016/j.neuroimage.2019.05.070
|
[29] |
Tian XF, Wang Z, Zhang L, et al. 2018. Effects of 3.7 T-24.5 T high magnetic fields on tumor-bearing mice. Chinese Physics B, 27(11): 118703. doi: 10.1088/1674-1056/27/11/118703
|
[30] |
Wang HZ, Zhang X. 2017. Magnetic fields and reactive oxygen species. International Journal of Molecular Sciences, 18(10): 2175. doi: 10.3390/ijms18102175
|
[31] |
Wang SH, Luo J, Lv HH, et al. 2019. Safety of exposure to high static magnetic fields (2 T-12 T): a study on mice. European Radiology, 29(11): 6029−6037. doi: 10.1007/s00330-019-06256-y
|
[32] |
Yang XX, Song C, Zhang L, et al. 2021. An upward 9.4 T static magnetic field inhibits DNA synthesis and increases ROS-P53 to suppress lung cancer growth. Translational Oncology, 14(7): 101103. doi: 10.1016/j.tranon.2021.101103
|
[33] |
Yu B, Liu JJ, Cheng J, et al. 2021. A static magnetic field improves iron metabolism and prevents high-fat-diet/streptozocin-induced diabetes. The Innovation, 2(1): 100077. doi: 10.1016/j.xinn.2021.100077
|
[34] |
Zablotskii V, Lunov O, Kubinova S, et al. 2016. Effects of high-gradient magnetic fields on living cell machinery. Journal of Physics D:Applied Physics, 49(49): 493003. doi: 10.1088/0022-3727/49/49/493003
|
[35] |
Zablotskii V, Polyakova T, Dejneka A. 2018. Cells in the non-uniform magnetic world: How cells respond to high-gradient magnetic fields. Bioessays, 40(8): 1800017. doi: 10.1002/bies.201800017
|
[36] |
Zaiss M, Schuppert M, Deshmane A, et al. 2018. Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T. Neuroimage, 179: 144−155. doi: 10.1016/j.neuroimage.2018.06.026
|
[37] |
Zhang X, Yarema K, Xu A. 2017. Biological Effects of Static Magnetic Fields. Singapore: Springer.
|