Volume 44 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Yajie Zhou, Tianyang Tong, Mengke Wei, Peng Zhang, Fan Fei, Xiujuan Zhou, Zhen Guo, Jing Zhang, Huangtao Xu, Lei Zhang, Shun Wang, Junfeng Wang, Tiantian Cai, Xin Zhang, Can Xie. Towards magnetism in pigeon MagR: Iron- and iron-sulfur binding work indispensably and synergistically. Zoological Research, 2023, 44(1): 142-152. doi: 10.24272/j.issn.2095-8137.2022.423
Citation: Yajie Zhou, Tianyang Tong, Mengke Wei, Peng Zhang, Fan Fei, Xiujuan Zhou, Zhen Guo, Jing Zhang, Huangtao Xu, Lei Zhang, Shun Wang, Junfeng Wang, Tiantian Cai, Xin Zhang, Can Xie. Towards magnetism in pigeon MagR: Iron- and iron-sulfur binding work indispensably and synergistically. Zoological Research, 2023, 44(1): 142-152. doi: 10.24272/j.issn.2095-8137.2022.423

Towards magnetism in pigeon MagR: Iron- and iron-sulfur binding work indispensably and synergistically

doi: 10.24272/j.issn.2095-8137.2022.423
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
C.X. conceived the idea and designed the study. Y.Z. carried out protein purification, site-directed mutagenesis, ferrozine assay, CD spectroscopy, and EPR experiments. Y.Z. and C.X. performed data analysis. P.Z and L.Z. helped with SQUID measurement and data analysis. T.T, M.W., P.Z., F.F., X.Z., Z.G., J.Z., H.X., L.Z., and S.W. provided valuable suggestions on data analysis. Y.Z. and C.X. wrote the paper. T.C., J.W., and X.Z. provided valuable discussions and edited the manuscript. All authors read and approved the final version of the manuscript.
Funds:  This study was supported by the National Natural Science Foundation of China (31640001 to C.X., U21A20148 to X.Z. and C.X.), and the Presidential Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences (Y96XC11131, E26CCG27, and E26CCD15 to C.X.)
More Information
  • Corresponding author: E-mail: canxie@hmfl.ac.cn
  • Received Date: 2022-11-18
  • Accepted Date: 2022-12-07
  • Published Online: 2022-12-08
  • Publish Date: 2023-01-18
  • The ability to navigate long distances is essential for many animals to locate shelter, food, and breeding grounds. Magnetic sense has evolved in various migratory and homing species to orient them based on the geomagnetic field. A highly conserved iron-sulfur cluster assembly protein IscA is proposed as an animal magnetoreceptor (MagR). Iron-sulfur cluster binding is also suggested to play an essential role in MagR magnetism and is thus critical in animal magnetoreception. In the current study, we provide evidence for distinct iron binding and iron-sulfur cluster binding in MagR in pigeons, an avian species that relies on the geomagnetic field for navigation and homing. Pigeon MagR showed significantly higher total iron content from both iron- and iron-sulfur binding. Y65 in pigeon MagR was shown to directly mediate mononuclear iron binding, and its mutation abolished iron-binding capacity of the protein. Surprisingly, both iron binding and iron-sulfur binding demonstrated synergistic effects, and thus appear to be integral and indispensable to pigeon MagR magnetism. These results not only extend our current understanding of the origin and complexity of MagR magnetism, but also imply a possible molecular explanation for the huge diversity in animal magnetoreception.
  • Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    C.X. conceived the idea and designed the study. Y.Z. carried out protein purification, site-directed mutagenesis, ferrozine assay, CD spectroscopy, and EPR experiments. Y.Z. and C.X. performed data analysis. P.Z and L.Z. helped with SQUID measurement and data analysis. T.T, M.W., P.Z., F.F., X.Z., Z.G., J.Z., H.X., L.Z., and S.W. provided valuable suggestions on data analysis. Y.Z. and C.X. wrote the paper. T.C., J.W., and X.Z. provided valuable discussions and edited the manuscript. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Arai S, Shimizu R, Adachi M, Hirai M. 2022. Magnetic field effects on the structure and molecular behavior of pigeon iron–sulfur protein. Protein Science, 31(6): e4313.
    [2]
    Cadiou H, McNaughton PA. 2010. Avian magnetite-based magnetoreception: a physiologist's perspective. Journal of the Royal Society Interface, 7 Suppl 2(Suppl 2): S193–S205.
    [3]
    Cao YS, Yan P. 2018. Role of atomic spin-mechanical coupling in the problem of a magnetic biocompass. Physical Review E, 97(4): 042409. doi: 10.1103/PhysRevE.97.042409
    [4]
    De Mello Gabriel GV, Pitombo LM, Rosa LMT, Navarrete AA, Botero WG, Do Carmo JB, et al. 2021. The environmental importance of iron speciation in soils: evaluation of classic methodologies. Environmental Monitoring and Assessment, 193(2): 63. doi: 10.1007/s10661-021-08874-w
    [5]
    Dennis TE, Rayner MJ, Walker MM. 2007. Evidence that pigeons orient to geomagnetic intensity during homing. Proceedings of the Royal Society B:Biological Sciences, 274(1614): 1153−1158. doi: 10.1098/rspb.2007.3768
    [6]
    Ding BJ, Smith ES, Ding HG. 2005. Mobilization of the iron centre in IscA for the iron-sulphur cluster assembly in IscU. Biochemical Journal, 389(Pt 3): 797–802.
    [7]
    Ding H, Clark RJ. 2004. Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein. Biochemical Journal, 379(Pt 2): 433–440.
    [8]
    Fontecave M. 2006. Iron-sulfur clusters: ever-expanding roles. Nature Chemical Biology, 2(4): 171−174. doi: 10.1038/nchembio0406-171
    [9]
    Garcia JS, de Magalhães CS, Arruda MAZ. 2006. Trends in metal-binding and metalloprotein analysis. Talanta, 69(1): 1−15. doi: 10.1016/j.talanta.2005.08.041
    [10]
    Guo Z, Xu S, Chen X, Wang CH, Yang PL, Qin SY, et al. 2021. Modulation of MagR magnetic properties via iron–sulfur cluster binding. Scientific Reports, 11(1): 23941. doi: 10.1038/s41598-021-03344-2
    [11]
    Heyers D, Manns M, Luksch H, Güntürkün O, Mouritsen H. 2007. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One, 2(9): e937. doi: 10.1371/journal.pone.0000937
    [12]
    Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H. 2010. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proceedings of the National Academy of Sciences of the United States of America, 107(20): 9394−9399. doi: 10.1073/pnas.0907068107
    [13]
    Hore PJ, Mouritsen H. 2016. The radical-pair mechanism of magnetoreception. Annual Review of Biophysics, 45: 299−344. doi: 10.1146/annurev-biophys-032116-094545
    [14]
    Im J, Lee J, Löffler FE. 2013. Interference of ferric ions with ferrous iron quantification using the ferrozine assay. Journal of Microbiological Methods, 95(3): 366−367. doi: 10.1016/j.mimet.2013.10.005
    [15]
    Jacobson MR, Brigle KE, Bennett LT, Setterquist RA, Wilson MS, Cash VL, et al. 1989. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. Journal of Bacteriology, 171(2): 1017−1027. doi: 10.1128/jb.171.2.1017-1027.1989
    [16]
    Jeitner TM. 2014. Optimized ferrozine-based assay for dissolved iron. Analytical Biochemistry, 454: 36−37. doi: 10.1016/j.ab.2014.02.026
    [17]
    Johnsen S, Lohmann K. 2008. Magnetoreception in animals. Physics Today, 61(3): 29−35. doi: 10.1063/1.2897947
    [18]
    Johnson DC, Dean DR, Smith AD, Johnson MK. 2005. Structure, function, and formation of biological iron-sulfur clusters. Annual Review of Biochemistry, 74: 247−281. doi: 10.1146/annurev.biochem.74.082803.133518
    [19]
    Kiley PJ, Beinert H. 2003. The role of Fe–S proteins in sensing and regulation in bacteria. Current Opinion in Microbiology, 6(2): 181−185. doi: 10.1016/S1369-5274(03)00039-0
    [20]
    Kirschvink JL, Walker MM, Diebel CE. 2001. Magnetite-based magnetoreception. Current Opinion in Neurobiology, 11(4): 462−467. doi: 10.1016/S0959-4388(00)00235-X
    [21]
    Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH, et al. 2001. IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry, 40(46): 14069−14080. doi: 10.1021/bi015656z
    [22]
    Landry AP, Cheng ZS, Ding HG. 2013. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. Dalton Transactions, 42(9): 3100−3106. doi: 10.1039/C2DT32000B
    [23]
    Lill R. 2009. Function and biogenesis of iron-sulphur proteins. Nature, 460(7257): 831−838. doi: 10.1038/nature08301
    [24]
    Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, et al. 2012. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 1823(9): 1491−1508. doi: 10.1016/j.bbamcr.2012.05.009
    [25]
    Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian SL, Petrik I, et al. 2014. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chemical Reviews, 114(8): 4366−4469. doi: 10.1021/cr400479b
    [26]
    Lohmann KJ. 2016. Protein complexes: a candidate magnetoreceptor. Nature Materials, 15(2): 136−138. doi: 10.1038/nmat4550
    [27]
    Lu HM, Li JD, Zhang YD, Lu XL, Xu C, Huang Y, et al. 2020. The evolution history of Fe-S cluster A-type assembly protein reveals multiple gene duplication events and essential protein motifs. Genome Biology and Evolution, 12(3): 160−173. doi: 10.1093/gbe/evaa038
    [28]
    Lu JX, Bitoun JP, Tan GQ, Wang W, Min WG, Ding HG. 2010. Iron-binding activity of human iron-sulfur cluster assembly protein hIscA1. Biochemical Journal, 428(1): 125−131. doi: 10.1042/BJ20100122
    [29]
    Maeda K, Henbest KB, Cintolesi F, Kuprov I, Rodgers CT, Liddell PA, et al. 2008. Chemical compass model of avian magnetoreception. Nature, 453(7193): 387−390. doi: 10.1038/nature06834
    [30]
    Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK. 2012. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii NifIscA. Biochemistry, 51(41): 8071−8084. doi: 10.1021/bi3006658
    [31]
    Meister M. 2016. Physical limits to magnetogenetics. eLife, 5: e17210. doi: 10.7554/eLife.17210
    [32]
    Mettert EL, Kiley PJ. 2015. How is Fe-S cluster formation regulated?. Annual Review of Microbiology, 69: 505−526. doi: 10.1146/annurev-micro-091014-104457
    [33]
    Morimoto K, Yamashita E, Kondou Y, Lee SJ, Arisaka F, Tsukihara T, et al. 2006. The asymmetric IscA homodimer with an exposed [2Fe-2S] cluster suggests the structural basis of the Fe-S cluster biosynthetic scaffold. Journal of Molecular Biology, 360(1): 117−132. doi: 10.1016/j.jmb.2006.04.067
    [34]
    Mouritsen H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature, 558(7708): 50−59. doi: 10.1038/s41586-018-0176-1
    [35]
    Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. 2011. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. Journal of Biological Chemistry, 286(48): 41205−41216. doi: 10.1074/jbc.M111.296152
    [36]
    Natan E, Fitak RR, Werber Y, Vortman Y. 2020. Symbiotic magnetic sensing: raising evidence and beyond. Philosophical Transactions of the Royal Society B:Biological Sciences, 375(1808): 20190595. doi: 10.1098/rstb.2019.0595
    [37]
    Nimpf S, Nordmann GC, Kagerbauer D, Malkemper EP, Landler L, Papadaki-Anastasopoulou A, et al. 2019. A putative mechanism for magnetoreception by electromagnetic induction in the Pigeon Inner Ear. Current Biology, 29(23): 4052−4059.e4. doi: 10.1016/j.cub.2019.09.048
    [38]
    Ollagnier-De-Choudens S, Mattioli T, Takahashi Y, Fontecave M. 2001. Iron-sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. Journal of Biological Chemistry, 276(25): 22604−22607. doi: 10.1074/jbc.M102902200
    [39]
    Qin SY, Yin H, Yang CL, Dou YF, Liu ZM, Zhang P, et al. 2016. A magnetic protein biocompass. Nature Materials, 15(2): 217−226. doi: 10.1038/nmat4484
    [40]
    Ritz T, Adem S, Schulten K. 2000. A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 78(2): 707−718. doi: 10.1016/S0006-3495(00)76629-X
    [41]
    Rodgers CT, Hore PJ. 2009. Chemical magnetoreception in birds: the radical pair mechanism. Proceedings of the National Academy of Sciences of the United States of America, 106(2): 353−360. doi: 10.1073/pnas.0711968106
    [42]
    Rouault TA. 2015. Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nature Reviews Molecular Cell Biology, 16(1): 45−55. doi: 10.1038/nrm3909
    [43]
    Voss J, Keary N, Bischof HJ. 2007. The use of the geomagnetic field for short distance orientation in zebra finches. NeuroReport, 18(10): 1053−1057. doi: 10.1097/WNR.0b013e32818b2a21
    [44]
    Walcott C, Gould JL, Kirschvink JL. 1979. Pigeons have magnets. Science, 205(4410): 1027−1029. doi: 10.1126/science.472725
    [45]
    Waldron KJ, Rutherford JC, Ford D, Robinson NJ. 2009. Metalloproteins and metal sensing. Nature, 460(7257): 823−830. doi: 10.1038/nature08300
    [46]
    Wiltschko R, Wiltschko W. 1995. Magnetic Orientation in Animals. Berlin, Heidelberg: Springer.
    [47]
    Wiltschko W, Wiltschko R. 2005. Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology A, 191(8): 675−693. doi: 10.1007/s00359-005-0627-7
    [48]
    Xiao DW, Hu WH, Cai YF, Zhao N. 2020. Magnetic noise enabled biocompass. Physical Review Letters, 124(12): 128101. doi: 10.1103/PhysRevLett.124.128101
    [49]
    Xie C. 2022. Searching for unity in diversity of animal magnetoreception: from biology to quantum mechanics and back. The Innovation, 3(3): 100229. doi: 10.1016/j.xinn.2022.100229
    [50]
    Yang J, Tan GQ, Zhang T, White RH, Lu JX, Ding HG. 2015. Deletion of the proposed iron chaperones IscA/SufA results in accumulation of a red intermediate cysteine desulfurase IscS in Escherichia coli. Journal of Biological Chemistry, 290(22): 14226–14234.
    [51]
    Yang PL, Cai TT, Zhang L, Yu DQ, Guo Z, Zhang YB, et al. 2022. A rationally designed building block of the putative magnetoreceptor MagR. Bioelectromagnetics, 43(5): 317−326. doi: 10.1002/bem.22413
    [52]
    Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, et al. 2009. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature, 461(7268): 1274−1277. doi: 10.1038/nature08528
    [53]
    Zhao X, Chen HB, Lu LH, Li YQ. 2022. A mechanism of compass-free migratory navigation. Journal of Physics D:Applied Physics, 55(24): 245004. doi: 10.1088/1361-6463/ac5554
  • ZR-2022-423-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (881) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return