Citation: | Zhangting Wang, See-Wing Chan, Hui Zhao, Kai-Kei Miu, Wai-Yee Chan. Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson’s disease, with insights into Pink1 knockout models. Zoological Research, 2023, 44(3): 559-576. doi: 10.24272/j.issn.2095-8137.2022.406 |
[1] |
Adelman JP, Maylie J, Sah P. 2012. Small-conductance Ca2+-activated K+ channels: form and function. Annual Review of Physiology, 74: 245−269. doi: 10.1146/annurev-physiol-020911-153336
|
[2] |
Ahier A, Dai CY, Kirmes I, et al. 2021. PINK1 and parkin shape the organism-wide distribution of a deleterious mitochondrial genome. Cell Reports, 35(9): 109203. doi: 10.1016/j.celrep.2021.109203
|
[3] |
Akundi RS, Huang ZY, Eason J, et al. 2011. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS One, 6(1): e16038. doi: 10.1371/journal.pone.0016038
|
[4] |
Ashrafi G, Schlehe JS, Lavoie MJ, et al. 2014. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. Journal of Cell Biology, 206(5): 655−670. doi: 10.1083/jcb.201401070
|
[5] |
Auburger G, Gispert S, Torres-Odio S, et al. 2019. SerThr-PhosphoProteome of brain from aged PINK1-KO+A53T-SNCA mice reveals pT1928-MAP1B and pS3781-ANK2 deficits, as hub between autophagy and synapse changes. International Journal of Molecular Sciences, 20(13): 3284. doi: 10.3390/ijms20133284
|
[6] |
Azeggagh S, Berwick DC. 2022. The development of inhibitors of leucine-rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson's disease: the current state of play. British Journal of Pharmacology, 179(8): 1478−1495. doi: 10.1111/bph.15575
|
[7] |
Barrett JC, Hansoul S, Nicolae DL, et al. 2008. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genetics, 40(8): 955−962. doi: 10.1038/ng.175
|
[8] |
Bender A, Krishnan KJ, Morris CM, et al. 2006. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics, 38(5): 515−517. doi: 10.1038/ng1769
|
[9] |
Berwick DC, Heaton GR, Azeggagh S, et al. 2019. LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same. Molecular Neurodegeneration, 14(1): 49. doi: 10.1186/s13024-019-0344-2
|
[10] |
Betarbet R, Sherer TB, Mackenzie G, et al. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nature Neuroscience, 3(12): 1301−1306. doi: 10.1038/81834
|
[11] |
Billingsley KJ, Barbosa IA, Bandrés-Ciga S, et al. 2019. Mitochondria function associated genes contribute to Parkinson’s Disease risk and later age at onset. npj Parkinson's Disease, 5: 8. doi: 10.1038/s41531-019-0080-x
|
[12] |
Bingol B, Tea JS, Phu L, et al. 2014. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature, 510(7505): 370−375. doi: 10.1038/nature13418
|
[13] |
Błaszczyk JW. 2016. Parkinson's disease and neurodegeneration: GABA-collapse hypothesis. Frontiers in Neuroscience, 10: 269.
|
[14] |
Bonello F, Hassoun SM, Mouton-Liger F, et al. 2019. LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson’s disease. Human Molecular Genetics, 28(10): 1645−1660. doi: 10.1093/hmg/ddz004
|
[15] |
Bonifati V, Dekker MCJ, Vanacore N, et al. 2002. Autosomal recessive early onset parkinsonism is linked to three loci: PARK2, PARK6, and PARK7. Neurological Sciences, 23 Suppl 2: s59–s60.
|
[16] |
Bonifati V, Rohé CF, Breedveld GJ, et al. 2005. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology, 65(1): 87−95. doi: 10.1212/01.wnl.0000167546.39375.82
|
[17] |
Borsche M, König IR, Delcambre S, et al. 2020. Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain, 143(10): 3041−3051. doi: 10.1093/brain/awaa246
|
[18] |
Borsche M, Pereira SL, Klein C, et al. 2021. Mitochondria and Parkinson's disease: clinical, molecular, and translational aspects. Journal of Parkinson’s Disease, 11(1): 45−60. doi: 10.3233/JPD-201981
|
[19] |
Brooks J, Ding J, Simon-Sanchez J, et al. 2009. Parkin and PINK1 mutations in early-onset Parkinson's disease: comprehensive screening in publicly available cases and control. Journal of Medical Genetics, 46(6): 375−381. doi: 10.1136/jmg.2008.063917
|
[20] |
Buhlman L, Damiano M, Bertolin G, et al. 2014. Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843(9): 2012−2026. doi: 10.1016/j.bbamcr.2014.05.012
|
[21] |
Buneeva O, Fedchenko V, Kopylov A, et al. 2020. Mitochondrial dysfunction in Parkinson's disease: focus on mitochondrial DNA. Biomedicines, 8(12): 591. doi: 10.3390/biomedicines8120591
|
[22] |
Buneeva O, Medvedev A. 2022. Atypical ubiquitination and Parkinson's disease. International Journal of Molecular Sciences, 23(7): 3705. doi: 10.3390/ijms23073705
|
[23] |
Burré J. 2015. The synaptic function of α-synuclein. Journal of Parkinson’s Disease, 5(4): 699−713. doi: 10.3233/JPD-150642
|
[24] |
Cai XZ, Qiao J, Knox T, et al. 2019. In search of early neuroradiological biomarkers for Parkinson's Disease: alterations in resting state functional connectivity and gray matter microarchitecture in PINK1 -/- rats. Brain Research, 1706: 58−67. doi: 10.1016/j.brainres.2018.10.033
|
[25] |
Castillo-Quan JI. 2011. Parkin' control: regulation of PGC-1α through PARIS in Parkinson's disease. Disease Models & Mechanisms, 4(4): 427−429.
|
[26] |
Cenci MA, Lundblad M. 2007. Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson's disease in rats and mice. Current Protocols in Neuroscience,doi: 10.1002/0471142301.ns0925s41.
|
[27] |
Chen LN, Xie ZG, Turkson S, et al. 2015. A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. The Journal of Neuroscience, 35(3): 890−905. doi: 10.1523/JNEUROSCI.0089-14.2015
|
[28] |
Chen Q, Sun LJ, Chen ZJ. 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nature Immunology, 17(10): 1142−1149. doi: 10.1038/ni.3558
|
[29] |
Chen Y, Dorn II GW. 2013. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science, 340(6131): 471−475. doi: 10.1126/science.1231031
|
[30] |
Chen ZZ, Wang JY, Kang Y, et al. 2021. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zoological Research, 42(4): 469−477. doi: 10.24272/j.issn.2095-8137.2021.023
|
[31] |
Chou JS, Chen CY, Chen YL, et al. 2014. (G2019S) LRRK2 causes early-phase dysfunction of SNpc dopaminergic neurons and impairment of corticostriatal long-term depression in the PD transgenic mouse. Neurobiology of Disease, 68: 190−199. doi: 10.1016/j.nbd.2014.04.021
|
[32] |
Choudhury SP, Bano S, Sen S, et al. 2022. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson’s disease. npj Parkinson's Disease, 8(1): 66. doi: 10.1038/s41531-022-00324-9
|
[33] |
Clark EH, de la Torre A V, Hoshikawa T, et al. 2021. Targeting mitophagy in Parkinson's disease. Journal of Biological Chemistry, 296: 100209. doi: 10.1074/jbc.REV120.014294
|
[34] |
Connolly BS, Lang AE. 2014. Pharmacological treatment of Parkinson disease: a review. JAMA, 311(16): 1670−1683. doi: 10.1001/jama.2014.3654
|
[35] |
Cook DA, Kannarkat GT, Cintron AF, et al. 2017. LRRK2 levels in immune cells are increased in Parkinson’s disease. npj Parkinson's Disease, 3: 11. doi: 10.1038/s41531-017-0010-8
|
[36] |
Creed RB, Goldberg MS. 2019. Analysis of α-synuclein pathology in PINK1 knockout rat brains. Frontiers in Neuroscience, 12: 1034. doi: 10.3389/fnins.2018.01034
|
[37] |
Creed RB, Goldberg MS. 2020. Enhanced susceptibility of PINK1 knockout rats to α-synuclein fibrils. Neuroscience, 437: 64−75. doi: 10.1016/j.neuroscience.2020.04.032
|
[38] |
Creed RB, Roberts RC, Farmer CB, et al. 2021. Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats. Neurobiology of Disease, 150: 105246. doi: 10.1016/j.nbd.2020.105246
|
[39] |
Dagda RK, Das Banerjee TD. 2015. Role of protein kinase A in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Reviews in the Neurosciences, 26(3): 359−370.
|
[40] |
Dagda RK, Gusdon AM, Pien I, et al. 2011. Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease. Cell Death & Differentiation, 18(12): 1914−1923.
|
[41] |
Dagra A, Miller DR, Lin M, et al. 2021. α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability. npj Parkinson's Disease, 7(1): 76. doi: 10.1038/s41531-021-00210-w
|
[42] |
Daher JPL, Abdelmotilib HA, Hu XZ, et al. 2015. Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates α-synuclein gene-induced neurodegeneration. Journal of Biological Chemistry, 290(32): 19433−19444. doi: 10.1074/jbc.M115.660001
|
[43] |
Daher JPL, Volpicelli-Daley LA, Blackburn JP, et al. 2014. Abrogation of α-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proceedings of the National Academy of Sciences of the United States of America, 111(25): 9289−9294. doi: 10.1073/pnas.1403215111
|
[44] |
Dai K, Radin DP, Leonardi D. 2021. Deciphering the dual role and prognostic potential of PINK1 across cancer types. Neural Regeneration Research, 16(4): 659−665. doi: 10.4103/1673-5374.295314
|
[45] |
Das Banerjee T, Dagda RY, Dagda M, et al. 2017. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA. Journal of Neurochemistry, 142(4): 545−559. doi: 10.1111/jnc.14083
|
[46] |
Dauer W, Przedborski S. 2003. Parkinson's disease: mechanisms and models. Neuron, 39(6): 889−909. doi: 10.1016/S0896-6273(03)00568-3
|
[47] |
Dave KD, De Silva S, Sheth NP, et al. 2014. Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiology of Disease, 70: 190−203. doi: 10.1016/j.nbd.2014.06.009
|
[48] |
Dawson TM, Dawson VL. 2014. Parkin plays a role in sporadic Parkinson's disease. Neurodegenerative Diseases, 13(2–3): 69–71.
|
[49] |
De Gaetano A, Solodka K, Zanini G, et al. 2021. Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells, 10(11): 2898. doi: 10.3390/cells10112898
|
[50] |
De Haas R, Heltzel LCMW, Tax D, et al. 2019. To be or not to be pink(1): contradictory findings in an animal model for Parkinson's disease. Brain Communications, 1(1): fcz016. doi: 10.1093/braincomms/fcz016
|
[51] |
DeAngelo VM, Hilliard JD, Mcconnell GC. 2022. Dopaminergic but not cholinergic neurodegeneration is correlated with gait disturbances in PINK1 knockout rats. Behavioural Brain Research, 417: 113575. doi: 10.1016/j.bbr.2021.113575
|
[52] |
Deas E, Plun-Favreau H, Gandhi S, et al. 2011. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Human Molecular Genetics, 20(5): 867−879. doi: 10.1093/hmg/ddq526
|
[53] |
Delcambre S, Ghelfi J, Ouzren N, et al. 2020. Mitochondrial Mechanisms of LRRK2 G2019S Penetrance. Frontiers in Neurology, 11: 881. doi: 10.3389/fneur.2020.00881
|
[54] |
Di Maio R, Hoffman EK, Rocha EM, et al. 2018. LRRK2 activation in idiopathic Parkinson's disease. Science Translational Medicine, 10(451): eaar5429. doi: 10.1126/scitranslmed.aar5429
|
[55] |
Dolga AM, Netter MF, Perocchi F, et al. 2013. Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction. Journal of Biological Chemistry, 288(15): 10792−10804. doi: 10.1074/jbc.M113.453522
|
[56] |
Ekstrand MI, Terzioglu M, Galter D, et al. 2007. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 104(4): 1325−1330. doi: 10.1073/pnas.0605208103
|
[57] |
Estrada AA, Liu XR, Baker-Glenn C, et al. 2012. Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. Journal of Medicinal Chemistry, 55(22): 9416−9433. doi: 10.1021/jm301020q
|
[58] |
Faber ESL, Sah P. 2007. Functions of SK channels in central neurons. Clinical and Experimental Pharmacology and Physiology, 34(10): 1077−1083. doi: 10.1111/j.1440-1681.2007.04725.x
|
[59] |
Farassat N, Costa KM, Stojanovic S, et al. 2019. In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. eLife, 8: e48408. doi: 10.7554/eLife.48408
|
[60] |
Fatiga FF, Wang LJ, Hsu T, et al. 2021. Miro1 functions as an inhibitory regulator of MFN at elevated mitochondrial Ca2+ levels. Journal of Cellular Biochemistry, 122(12): 1848−1862. doi: 10.1002/jcb.30138
|
[61] |
Fearnley JM, Lees AJ. 1991. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain, 114(Pt 5): 2283–2301.
|
[62] |
Feligioni M, Mango D, Piccinin S, et al. 2016. Subtle alterations of excitatory transmission are linked to presynaptic changes in the hippocampus of PINK1-deficient mice. Synapse, 70(6): 223−230. doi: 10.1002/syn.21894
|
[63] |
Ferris CF, Morrison TR, Iriah S, et al. 2018. Evidence of neurobiological changes in the presymptomatic PINK1 knockout rat. Journal of Parkinson’s Disease, 8(2): 281−301. doi: 10.3233/JPD-171273
|
[64] |
Fivenson EM, Lautrup S, Sun N, et al. 2017. Mitophagy in neurodegeneration and aging. Neurochemistry International, 109: 202−209. doi: 10.1016/j.neuint.2017.02.007
|
[65] |
Gandhi S, Wood-Kaczmar A, Yao Z, et al. 2009. PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Molecular Cell, 33(5): 627−638. doi: 10.1016/j.molcel.2009.02.013
|
[66] |
Gardet A, Benita Y, Li C, et al. 2010. LRRK2 is involved in the IFN-γ response and host response to pathogens. The Journal of Immunology, 185(9): 5577−5585. doi: 10.4049/jimmunol.1000548
|
[67] |
Gautier CA, Kitada T, Shen J. 2008. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 105(32): 11364−11369. doi: 10.1073/pnas.0802076105
|
[68] |
Ge P, Dawson VL, Dawson TM. 2020. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Molecular Neurodegeneration, 15(1): 20. doi: 10.1186/s13024-020-00367-7
|
[69] |
Gegg ME, Schapira AHV. 2011. PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: implications for Parkinson disease pathogenesis. Autophagy, 7(2): 243−245. doi: 10.4161/auto.7.2.14332
|
[70] |
Geisler S, Holmström KM, Skujat D, et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 12(2): 119−131. doi: 10.1038/ncb2012
|
[71] |
Gispert S, Brehm N, Weil J, et al. 2015. Potentiation of neurotoxicity in double-mutant mice with Pink1 ablation and A53T-SNCA overexpression. Human Molecular Genetics, 24(4): 1061−1076. doi: 10.1093/hmg/ddu520
|
[72] |
Gispert S, Ricciardi F, Kurz A, et al. 2009. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One, 4(6): e5777. doi: 10.1371/journal.pone.0005777
|
[73] |
Glasl L, Kloos K, Giesert F, et al. 2012. Pink1-deficiency in mice impairs gait, olfaction and serotonergic innervation of the olfactory bulb. Experimental Neurology, 235(1): 214−227. doi: 10.1016/j.expneurol.2012.01.002
|
[74] |
Glass TJ, Kelm-Nelson CA, Russell JA, et al. 2019. Laryngeal muscle biology in the Pink1-/- rat model of Parkinson disease. Journal of Applied Physiology, 126(5): 1326−1334. doi: 10.1152/japplphysiol.00557.2018
|
[75] |
Glass TJ, Kelm-Nelson CA, Szot JC, et al. 2020. Functional characterization of extrinsic tongue muscles in the Pink1-/- rat model of Parkinson disease. PLoS One, 15(10): e0240366. doi: 10.1371/journal.pone.0240366
|
[76] |
Glater EE, Megeath LJ, Stowers RS, et al. 2006. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. Journal of Cell Biology, 173(4): 545−557. doi: 10.1083/jcb.200601067
|
[77] |
Godena VK, Brookes-Hocking N, Moller A, et al. 2014. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nature Communications, 5: 5245. doi: 10.1038/ncomms6245
|
[78] |
Goldberg MS, Fleming SM, Palacino JJ, et al. 2003. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. Journal of Biological Chemistry, 278(44): 43628−43635. doi: 10.1074/jbc.M308947200
|
[79] |
González-Hernández T, Cruz-Muros I, Afonso-Oramas D, et al. 2010. Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Frontiers in Neuroanatomy, 4: 140.
|
[80] |
Grant LM, Kelm-Nelson CA, Hilby BL, et al. 2015. Evidence for early and progressive ultrasonic vocalization and oromotor deficits in a PINK1 gene knockout rat model of Parkinson's disease. Journal of Neuroscience Research, 93(11): 1713−1727. doi: 10.1002/jnr.23625
|
[81] |
Greene AW, Grenier K, Aguileta MA, et al. 2012. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Reports, 13(4): 378−385. doi: 10.1038/embor.2012.14
|
[82] |
Grigoruţă M, Martínez-Martínez A, Dagda RY, et al. 2020. Psychological stress phenocopies brain mitochondrial dysfunction and motor deficits as observed in a parkinsonian rat model. Molecular Neurobiology, 57(4): 1781−1798. doi: 10.1007/s12035-019-01838-9
|
[83] |
Grünewald A, Kumar KR, Sue CM. 2019. New insights into the complex role of mitochondria in Parkinson's disease. Progress in Neurobiology, 177: 73−93. doi: 10.1016/j.pneurobio.2018.09.003
|
[84] |
Henderson JL, Kormos BL, Hayward MM, et al. 2015. Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2, 3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. Journal of Medicinal Chemistry, 58(1): 419−432. doi: 10.1021/jm5014055
|
[85] |
Herrik KF, Christophersen P, Shepard PD. 2010. Pharmacological modulation of the gating properties of small conductance Ca2+-activated K+ channels alters the firing pattern of dopamine neurons in vivo. Journal of Neurophysiology, 104(3): 1726−1735. doi: 10.1152/jn.01126.2009
|
[86] |
Hisahara S, Shimohama S. 2011. Toxin-induced and genetic animal models of Parkinson's disease. Parkinson’s Disease, 2011: 951709.
|
[87] |
Ho DH, Je AR, Lee H, et al. 2018. LRRK2 kinase activity induces mitochondrial fission in microglia via Drp1 and modulates neuroinflammation. Experimental Neurobiology, 27(3): 171−180. doi: 10.5607/en.2018.27.3.171
|
[88] |
Hoepken HH, Gispert S, Morales B, et al. 2007. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiology of Disease, 25(2): 401−411. doi: 10.1016/j.nbd.2006.10.007
|
[89] |
Hsieh PC, Wang CC, Tsai CL, et al. 2019. POLG R964C and GBA L444P mutations in familial Parkinson's disease: case report and literature review. Brain and Behavior, 9(5): e01281. doi: 10.1002/brb3.1281
|
[90] |
Huang E, Qu DB, Huang TW, et al. 2017. PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress. Nature Communications, 8(1): 1399. doi: 10.1038/s41467-017-01435-1
|
[91] |
Iyer R, Ungless MA, Faisal AA. 2017. Calcium-activated SK channels control firing regularity by modulating sodium channel availability in midbrain dopamine neurons. Scientific Reports, 7(1): 5248. doi: 10.1038/s41598-017-05578-5
|
[92] |
Janezic S, Threlfell S, Dodson PD, et al. 2013. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proceedings of the National Academy of Sciences of the United States of America, 110(42): E4016−E4025.
|
[93] |
Jin SM, Youle RJ. 2012. PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 125(Pt 4): 795–799.
|
[94] |
Jung H, Kim SY, Canbakis Cecen FS, et al. 2020. Dysfunction of mitochondrial Ca2+ regulatory machineries in brain aging and neurodegenerative diseases. Frontiers in Cell and Developmental Biology, 8: 599792. doi: 10.3389/fcell.2020.599792
|
[95] |
Kageyama Y, Hoshijima M, Seo K, et al. 2014. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO Journal, 33(23): 2798−2813. doi: 10.15252/embj.201488658
|
[96] |
Kaku H, Ozturk M, Viswanathan A, et al. 2020. Unsupervised clustering reveals spatially varying single neuronal firing patterns in the subthalamic nucleus of patients with Parkinson's disease. Clinical Parkinsonism & Related Disorders, 3: 100032.
|
[97] |
Kang R, Xie YC, Zeh HJ, et al. 2019. Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity. Autophagy, 15(1): 172−173. doi: 10.1080/15548627.2018.1526611
|
[98] |
Kazlauskaite A, Kondapalli C, Gourlay R, et al. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochemical Journal, 460(1): 127−141. doi: 10.1042/BJ20140334
|
[99] |
Kazlauskaite A, Martínez-Torres RJ, Wilkie S, et al. 2015. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Reports, 16(8): 939−954. doi: 10.15252/embr.201540352
|
[100] |
Keeney PM, Xie J, Capaldi RA, et al. 2006. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. The Journal of Neuroscience, 26(19): 5256−5264. doi: 10.1523/JNEUROSCI.0984-06.2006
|
[101] |
Kelm-Nelson CA, Brauer AFL, Barth KJ, et al. 2018. Characterization of early-onset motor deficits in the Pink1-/- mouse model of Parkinson disease. Brain Research, 1680: 1−12. doi: 10.1016/j.brainres.2017.12.002
|
[102] |
Kelm-Nelson CA, Brauer AFL, Ciucci MR. 2016a. Vocal training, levodopa, and environment effects on ultrasonic vocalizations in a rat neurotoxin model of Parkinson disease. Behavioural Brain Research, 307: 54−64. doi: 10.1016/j.bbr.2016.03.006
|
[103] |
Kelm-Nelson CA, Lechner SA, Lettenberger SE, et al. 2021. Pink1-/- rats are a useful tool to study early Parkinson disease. Brain Communications, 3(2): fcab077. doi: 10.1093/braincomms/fcab077
|
[104] |
Kelm-Nelson CA, Stevenson SA, Ciucci MR. 2016b. Atp13a2 expression in the periaqueductal gray is decreased in the Pink1 -/- rat model of Parkinson disease. Neuroscience Letters, 621: 75−82. doi: 10.1016/j.neulet.2016.04.003
|
[105] |
Kim B, Yang MS, Choi D, et al. 2012. Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One, 7(4): e34693. doi: 10.1371/journal.pone.0034693
|
[106] |
Kim J, Byun JW, Choi I, et al. 2013. PINK1 deficiency enhances inflammatory cytokine release from acutely prepared brain slices. Experimental Neurobiology, 22(1): 38−44. doi: 10.5607/en.2013.22.1.38
|
[107] |
Kitada T, Asakawa S, Hattori N, et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676): 605−608. doi: 10.1038/33416
|
[108] |
Kitada T, Pisani A, Porter DR, et al. 2007. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 104(27): 11441−11446. doi: 10.1073/pnas.0702717104
|
[109] |
Kitada T, Tong YR, Gautier CA, et al. 2009. Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. Journal of Neurochemistry, 111(3): 696−702. doi: 10.1111/j.1471-4159.2009.06350.x
|
[110] |
Klein CL, Rovelli G, Springer W, et al. 2009. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. Journal of Neurochemistry, 111(3): 703−715. doi: 10.1111/j.1471-4159.2009.06358.x
|
[111] |
Korecka JA, Thomas R, Christensen DP, et al. 2019. Mitochondrial clearance and maturation of autophagosomes are compromised in LRRK2 G2019S familial Parkinson's disease patient fibroblasts. Human Molecular Genetics, 28(19): 3232−3243. doi: 10.1093/hmg/ddz126
|
[112] |
Koyano F, Okatsu K, Kosako H, et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510(7503): 162−166. doi: 10.1038/nature13392
|
[113] |
Kraytsberg Y, Kudryavtseva E, Mckee AC, et al. 2006. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nature Genetics, 38(5): 518−520. doi: 10.1038/ng1778
|
[114] |
Kruppa AJ, Buss F. 2021. Motor proteins at the mitochondria-cytoskeleton interface. Journal of Cell Science, 134(7): jcs226084. doi: 10.1242/jcs.226084
|
[115] |
Kumar A, Aguirre JD, Condos TE, et al. 2015. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. The EMBO Journal, 34(20): 2506−2521. doi: 10.15252/embj.201592337
|
[116] |
Kumazawa R, Tomiyama H, Li Y, et al. 2008. Mutation analysis of the PINK1 gene in 391 patients with Parkinson disease. Archives of Neurology, 65(6): 802−808.
|
[117] |
Langston JW, Ballard P, Tetrud JW, et al. 1983. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587): 979−980. doi: 10.1126/science.6823561
|
[118] |
Lavie J, De Belvalet H, Sonon S, et al. 2018. Ubiquitin-dependent degradation of mitochondrial proteins regulates energy metabolism. Cell Reports, 23(10): 2852−2863. doi: 10.1016/j.celrep.2018.05.013
|
[119] |
Lee JJ, Sanchez-Martinez A, Zarate AM, et al. 2018. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. Journal of Cell Biology, 217(5): 1613−1622. doi: 10.1083/jcb.201801044
|
[120] |
Lee K, Park TIH, Heppner P, et al. 2020. Human in vitro systems for examining synaptic function and plasticity in the brain. Journal of Neurophysiology, 123(3): 945−965. doi: 10.1152/jn.00411.2019
|
[121] |
Li B, He DJ, Li XJ, et al. 2022a. Modeling neurodegenerative diseases using non-human primates: advances and challenges. Ageing and Neurodegenerative Diseases, 2(3): 12. doi: 10.20517/and.2022.14
|
[122] |
Li CF, Zhang Y, Liu J, et al. 2021a. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy, 17(4): 948−960. doi: 10.1080/15548627.2020.1739447
|
[123] |
Li H, Su LY, Yang LX, et al. 2021b. A cynomolgus monkey with naturally occurring Parkinson's disease. National Science Review, 8(3): nwaa292. doi: 10.1093/nsr/nwaa292
|
[124] |
Li H, Wu SH, Ma X, et al. 2021c. Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neuroscience Bulletin, 37(9): 1271−1288. doi: 10.1007/s12264-021-00732-6
|
[125] |
Li H, Yao YG, Hu XT. 2021d. Biological implications and limitations of a cynomolgus monkey with naturally occurring Parkinson's disease. Zoological Research, 42(2): 138−140. doi: 10.24272/j.issn.2095-8137.2021.004
|
[126] |
Li J, Wu MY, Gong YT, et al. 2022b. Inhibition of LRRK2-Rab10 pathway improves secondary brain injury after Surgical Brain injury in rats. Frontiers in Surgery, 8: 749310. doi: 10.3389/fsurg.2021.749310
|
[127] |
Liguori I, Russo G, Curcio F, et al. 2018. Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13: 757−772. doi: 10.2147/CIA.S158513
|
[128] |
Lin X, Parisiadou L, Gu XL, et al. 2009. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant α-synuclein. Neuron, 64(6): 807−827. doi: 10.1016/j.neuron.2009.11.006
|
[129] |
Liu J, Liu WJ, Li RL, et al. 2019. Mitophagy in Parkinson's disease: from pathogenesis to treatment. Cells, 8(7): 712. doi: 10.3390/cells8070712
|
[130] |
Magnusen AF, Hatton SL, Rani R, et al. 2021. Genetic defects and pro-inflammatory cytokines in Parkinson's disease. Frontiers in Neurology, 12: 636139. doi: 10.3389/fneur.2021.636139
|
[131] |
Magrinelli F, Picelli A, Tocco P, et al. 2016. Pathophysiology of motor dysfunction in Parkinson's disease as the rationale for drug treatment and rehabilitation. Parkinson’s Disease, 2016: 9832839.
|
[132] |
Malpartida AB, Williamson M, Narendra DP, et al. 2021. Mitochondrial dysfunction and mitophagy in Parkinson's disease: from mechanism to therapy. Trends in Biochemical Sciences, 46(4): 329−343. doi: 10.1016/j.tibs.2020.11.007
|
[133] |
Marquis JM, Lettenberger SE, Kelm-Nelson CA. 2020. Early-onset Parkinsonian behaviors in female Pink1-/- rats. Behavioural Brain Research, 377: 112175. doi: 10.1016/j.bbr.2019.112175
|
[134] |
Matheoud D, Sugiura A, Bellemare-Pelletier A, et al. 2016. Parkinson's disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation. Cell, 166(2): 314−327. doi: 10.1016/j.cell.2016.05.039
|
[135] |
Matsuda N, Sato S, Shiba K, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology, 189(2): 211−221. doi: 10.1083/jcb.200910140
|
[136] |
McLelland GL, Soubannier V, Chen CX, et al. 2014. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. The EMBO Journal, 33(4): 282−295.
|
[137] |
McWilliams TG, Prescott AR, Allen GFG, et al. 2016. mito-QC illuminates mitophagy and mitochondrial architecture in vivo. Journal of Cell Biology, 214(3): 333−345. doi: 10.1083/jcb.201603039
|
[138] |
McWilliams TG, Prescott AR, Montava-Garriga L, et al. 2018. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metabolism, 27(2): 439−449.e5. doi: 10.1016/j.cmet.2017.12.008
|
[139] |
Meredith GE, Rademacher DJ. 2011. MPTP mouse models of Parkinson's disease: an update. Journal of Parkinson’s Disease, 1(1): 19−33. doi: 10.3233/JPD-2011-11023
|
[140] |
Moehle MS, Webber PJ, Tse T, et al. 2012. LRRK2 inhibition attenuates microglial inflammatory responses. The Journal of Neuroscience, 32(5): 1602−1611. doi: 10.1523/JNEUROSCI.5601-11.2012
|
[141] |
Moisoi N, Fedele V, Edwards J, et al. 2014. Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson's disease triggered by mitochondrial stress. Neuropharmacology, 77: 350−357. doi: 10.1016/j.neuropharm.2013.10.009
|
[142] |
Möller M, Möser CV, Weiß U, et al. 2022. The role of AlphαSynuclein in mouse models of acute, inflammatory and neuropathic pain. Cells, 11(12): 1967. doi: 10.3390/cells11121967
|
[143] |
Moon HE, Paek SH. 2015. Mitochondrial dysfunction in Parkinson's disease. Experimental Neurobiology, 24(2): 103−116. doi: 10.5607/en.2015.24.2.103
|
[144] |
Moore TM, Zhou ZQ, Strumwasser AR, et al. 2020. Age-induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge. Aging Cell, 19(11): e13166.
|
[145] |
Morais VA, Haddad D, Craessaerts K, et al. 2014. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science, 344(6180): 203−207. doi: 10.1126/science.1249161
|
[146] |
Mouton-Liger F, Rosazza T, Sepulveda-Diaz J, et al. 2018. Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop. Glia, 66(8): 1736−1751. doi: 10.1002/glia.23337
|
[147] |
Nakabeppu Y, Tsuchimoto D, Yamaguchi H, et al. 2007. Oxidative damage in nucleic acids and Parkinson's disease. Journal of Neuroscience Research, 85(5): 919−934. doi: 10.1002/jnr.21191
|
[148] |
Nanjaiah H, Vallikannan B. 2019. Lutein upregulates the PGC-1α, NRF1, and TFAM expression by AMPK activation and downregulates ROS to maintain mtDNA integrity and mitochondrial biogenesis in hyperglycemic ARPE-19 cells and rat retina. Biotechnology and Applied Biochemistry, 66(6): 999−1009. doi: 10.1002/bab.1821
|
[149] |
Narendra DP, Jin SM, Tanaka A, et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology, 8(1): e1000298. doi: 10.1371/journal.pbio.1000298
|
[150] |
Nissanka N, Moraes CT. 2018. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Letters, 592(5): 728−742. doi: 10.1002/1873-3468.12956
|
[151] |
Niu YJ, Nie ZW, Shin KT, et al. 2019. PINK1 regulates mitochondrial morphology via promoting mitochondrial fission in porcine preimplantation embryos. The FASEB Journal, 33(7): 7882−7895. doi: 10.1096/fj.201802473R
|
[152] |
Okarmus J, Bogetofte H, Schmidt SI, et al. 2020. Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation. Scientific Reports, 10(1): 10278. doi: 10.1038/s41598-020-67091-6
|
[153] |
Oliveras-Salvá M, Macchi F, Coessens V, et al. 2014. Alpha-synuclein-induced neurodegeneration is exacerbated in PINK1 knockout mice. Neurobiology of Aging, 35(11): 2625−2636. doi: 10.1016/j.neurobiolaging.2014.04.032
|
[154] |
Orenstein SJ, Kuo SH, Tasset I, et al. 2013. Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neuroscience, 16(4): 394−406. doi: 10.1038/nn.3350
|
[155] |
Orr AL, Rutaganira FU, Roulet D, et al. 2017. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease. Neurochemistry International, 109: 106−116. doi: 10.1016/j.neuint.2017.04.006
|
[156] |
Orsucci D, Caldarazzo Ienco E, Mancuso M, et al. 2011. POLG1-related and other "mitochondrial Parkinsonisms": an overview. Journal of Molecular Neuroscience, 44(1): 17−24. doi: 10.1007/s12031-010-9488-9
|
[157] |
Perez FA, Palmiter RD. 2005. Parkin-deficient mice are not a robust model of parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 102(6): 2174−2179. doi: 10.1073/pnas.0409598102
|
[158] |
Piccoli C, Ripoli M, Quarato G, et al. 2008. Coexistence of mutations in PINK1 and mitochondrial DNA in early onset parkinsonism. Journal of Medical Genetics, 45(9): 596−602. doi: 10.1136/jmg.2008.058628
|
[159] |
Pickrell AM, Huang CH, Kennedy SR, et al. 2015. Endogenous parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron, 87(2): 371−381. doi: 10.1016/j.neuron.2015.06.034
|
[160] |
Pickrell AM, Youle RJ. 2015. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron, 85(2): 257−273. doi: 10.1016/j.neuron.2014.12.007
|
[161] |
Pultorak JD, Kelm-Nelson CA, Holt LR, et al. 2016. Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats. Social Neuroscience, 11(4): 365−379. doi: 10.1080/17470919.2015.1086434
|
[162] |
Qiao JD, Mao YL. 2020. Knockout of PINK1 altered the neural connectivity of Drosophila dopamine PPM3 neurons at input and output sites. Invertebrate Neuroscience, 20(3): 11. doi: 10.1007/s10158-020-00244-4
|
[163] |
Qu L, Wang Y, Zhang HT, et al. 2014. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons. Neuroscience Letters, 575: 1−6. doi: 10.1016/j.neulet.2014.05.038
|
[164] |
Quinn PMJ, Moreira PI, Ambrósio AF, et al. 2020. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathologica Communications, 8(1): 189. doi: 10.1186/s40478-020-01062-w
|
[165] |
Rcom-H'cheo-Gauthier A, Goodwin J, Pountney DL. 2014. Interactions between calcium and alpha-synuclein in neurodegeneration. Biomolecules, 4(3): 795−811. doi: 10.3390/biom4030795
|
[166] |
Reeve A, Meagher M, Lax N, et al. 2013. The impact of pathogenic mitochondrial DNA mutations on substantia nigra neurons. Journal of Neuroscience, 33(26): 10790−10801. doi: 10.1523/JNEUROSCI.3525-12.2013
|
[167] |
Ren XJ, Butterfield DA. 2021. Fidelity of the PINK1 knockout rat to oxidative stress and other characteristics of Parkinson disease. Free Radical Biology and Medicine, 163: 88−101. doi: 10.1016/j.freeradbiomed.2020.12.004
|
[168] |
Riley JS, Tait SW. 2020. Mitochondrial DNA in inflammation and immunity. EMBO Reports, 21(4): e49799.
|
[169] |
Rocha SM, Bantle CM, Aboellail T, et al. 2022. Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice. Neurobiology of Disease, 167: 105685. doi: 10.1016/j.nbd.2022.105685
|
[170] |
Rothfuss O, Fischer H, Hasegawa T, et al. 2009. Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Human Molecular Genetics, 18(20): 3832−3850. doi: 10.1093/hmg/ddp327
|
[171] |
Russo I, Bubacco L, Greggio E. 2022. LRRK2 as a target for modulating immune system responses. Neurobiology of Disease, 169: 105724. doi: 10.1016/j.nbd.2022.105724
|
[172] |
Samaranch L, Lorenzo-Betancor O, Arbelo JM, et al. 2010. PINK1-linked parkinsonism is associated with Lewy body pathology. Brain, 133(Pt 4): 1128–1142.
|
[173] |
Sawada H, Oeda T, Yamamoto K. 2013. Catecholamines and neurodegeneration in Parkinson's disease-from diagnostic marker to aggregations of α-synuclein. Diagnostics, 3(2): 210−221. doi: 10.3390/diagnostics3020210
|
[174] |
Schiemann J, Schlaudraff F, Klose V, et al. 2012. K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nature Neuroscience, 15(9): 1272−1280. doi: 10.1038/nn.3185
|
[175] |
Sellbach AN, Boyle RS, Silburn PA, et al. 2006. Parkinson's disease and family history. Parkinsonism & Related Disorders, 12(7): 399−409.
|
[176] |
Sherer TB, Kim JH, Betarbet R, et al. 2003. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Experimental Neurology, 179(1): 9−16. doi: 10.1006/exnr.2002.8072
|
[177] |
Shin JH, Ko HS, Kang H, et al. 2011. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell, 144(5): 689−702. doi: 10.1016/j.cell.2011.02.010
|
[178] |
Shin N, Jeong H, Kwon J, et al. 2008. LRRK2 regulates synaptic vesicle endocytosis. Experimental Cell Research, 314(10): 2055−2065. doi: 10.1016/j.yexcr.2008.02.015
|
[179] |
Simola N, Morelli M, Carta AR. 2007. The 6-hydroxydopamine model of Parkinson's disease. Neurotoxicity Research, 11(3–4): 151–167.
|
[180] |
Singh F, Ganley IG. 2021. Parkinson's disease and mitophagy: an emerging role for LRRK2. Biochemical Society Transactions, 49(2): 551−562. doi: 10.1042/BST20190236
|
[181] |
Singh F, Prescott AR, Rosewell P, et al. 2021. Pharmacological rescue of impaired mitophagy in Parkinson's disease-related LRRK2 G2019S knock-in mice. eLife, 10: e67604. doi: 10.7554/eLife.67604
|
[182] |
Sliter DA, Martinez J, Hao L, et al. 2018. Parkin and PINK1 mitigate STING-induced inflammation. Nature, 561(7722): 258−262. doi: 10.1038/s41586-018-0448-9
|
[183] |
Smulders K, Dale ML, Carlson-Kuhta P, et al. 2016. Pharmacological treatment in Parkinson's disease: effects on gait. Parkinsonism & Related Disorders, 31: 3−13.
|
[184] |
Song PP, Trajkovic K, Tsunemi T, et al. 2016. Parkin modulates endosomal organization and function of the endo-lysosomal pathway. Journal of Neuroscience, 36(8): 2425−2437. doi: 10.1523/JNEUROSCI.2569-15.2016
|
[185] |
Squillaro T, Cambi F, Ciacci G, et al. 2007. Frequency of the LRRK2 G2019S mutation in Italian patients affected by Parkinson's disease. Journal of Human Genetics, 52(3): 201−204. doi: 10.1007/s10038-006-0105-2
|
[186] |
Stauch KL, Villeneuve LM, Purnell PR, et al. 2016. Loss of Pink1 modulates synaptic mitochondrial bioenergetics in the rat striatum prior to motor symptoms: concomitant complex I respiratory defects and increased complex II-mediated respiration. Proteomics - Clinical Applications, 10(12): 1205−1217. doi: 10.1002/prca.201600005
|
[187] |
Steger M, Diez F, Dhekne HS, et al. 2017. Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. Elife, 6: e31012. doi: 10.7554/eLife.31012
|
[188] |
Stephenson SEM, Aumann TD, Taylor JM, et al. 2018. Generation and characterisation of a parkin-Pacrg knockout mouse line and a Pacrg knockout mouse line. Scientific Reports, 8(1): 7528. doi: 10.1038/s41598-018-25766-1
|
[189] |
Sugiura A, McLelland GL, Fon EA, et al. 2014. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. The EMBO Journal, 33(19): 2142−2156. doi: 10.15252/embj.201488104
|
[190] |
Sun JJ, Kouranova E, Cui XX, et al. 2013. Regulation of dopamine presynaptic markers and receptors in the striatum of DJ-1 and Pink1 knockout rats. Neuroscience Letters, 557 Pt B: 123–128.
|
[191] |
Sun ZY, Ye JY, Yuan JY. 2022. PINK1 mediates neuronal survival in monkey. Protein & Cell, 13(1): 4−5.
|
[192] |
Tanguay W, Ducrot C, Giguère N, et al. 2021. Neonatal 6-OHDA lesion of the SNc induces striatal compensatory sprouting from surviving SNc dopaminergic neurons without VTA contribution. European Journal of Neuroscience, 54(7): 6618−6632. doi: 10.1111/ejn.15437
|
[193] |
Taymans JM, Greggio E. 2016. LRRK2 kinase inhibition as a therapeutic strategy for Parkinson's disease, where do we stand?. Current Neuropharmacology, 14(3): 214−225. doi: 10.2174/1570159X13666151030102847
|
[194] |
Tong YR, Pisani A, Martella G, et al. 2009. R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proceedings of the National Academy of Sciences of the United States of America, 106(34): 14622−14627. doi: 10.1073/pnas.0906334106
|
[195] |
Tozzi A, Sciaccaluga M, Loffredo V, et al. 2021. Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain, 144(11): 3477−3491. doi: 10.1093/brain/awab242
|
[196] |
Trevathan JK, Asp AJ, Nicolai EN, et al. 2021. Calcium imaging in freely moving mice during electrical stimulation of deep brain structures. Journal of Neural Engineering, 18(2): 026008. doi: 10.1088/1741-2552/abb7a4
|
[197] |
Valek L, Tran B, Wilken-Schmitz A, et al. 2021. Prodromal sensory neuropathy in Pink1-/- SNCAA53T double mutant Parkinson mice. Neuropathology and Applied Neurobiology, 47(7): 1060−1079. doi: 10.1111/nan.12734
|
[198] |
Vazquez-Mayorga E, Grigoruta M, Dagda R, et al. 2022. Intraperitoneal administration of forskolin reverses motor symptoms and loss of midbrain dopamine neurons in PINK1 knockout rats. Journal of Parkinson’s Disease, 12(3): 831−850. doi: 10.3233/JPD-213016
|
[199] |
Vieweg S, Mulholland K, Bräuning B, et al. 2020. PINK1-dependent phosphorylation of Serine111 within the SF3 motif of Rab GTPases impairs effector interactions and LRRK2-mediated phosphorylation at Threonine72. Biochemical Journal, 477(9): 1651−1668. doi: 10.1042/BCJ20190664
|
[200] |
Villeneuve LM, Purnell PR, Boska MD, et al. 2016. Early expression of Parkinson's disease-related mitochondrial abnormalities in PINK1 knockout rats. Molecular Neurobiology, 53(1): 171−186. doi: 10.1007/s12035-014-8927-y
|
[201] |
Vincow ES, Merrihew G, Thomas RE, et al. 2013. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proceedings of the National Academy of Sciences of the United States of America, 110(16): 6400−6405. doi: 10.1073/pnas.1221132110
|
[202] |
Wallings RL, Tansey MG. 2019. LRRK2 regulation of immune-pathways and inflammatory disease. Biochemical Society Transactions, 47(6): 1581−1595. doi: 10.1042/BST20180463
|
[203] |
Wang K, Klionsky DJ. 2011. Mitochondria removal by autophagy. Autophagy, 7(3): 297−300. doi: 10.4161/auto.7.3.14502
|
[204] |
Wang XL, Cao CW, Huang JJ, et al. 2016. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Scientific Reports, 6: 20620. doi: 10.1038/srep20620
|
[205] |
Wang XL, Yan MH, Fujioka H, et al. 2012. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Human Molecular Genetics, 21(9): 1931−1944. doi: 10.1093/hmg/dds003
|
[206] |
Wauters F, Cornelissen T, Imberechts D, et al. 2020. LRRK2 mutations impair depolarization-induced mitophagy through inhibition of mitochondrial accumulation of RAB10. Autophagy, 16(2): 203−222. doi: 10.1080/15548627.2019.1603548
|
[207] |
West AP, Shadel GS. 2017. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nature Reviews Immunology, 17(6): 363−375. doi: 10.1038/nri.2017.21
|
[208] |
Wiemerslage L, Schultz BJ, Ganguly A, et al. 2013. Selective degeneration of dopaminergic neurons by MPP+ and its rescue by D2 autoreceptors in Drosophila primary culture. Journal of Neurochemistry, 126(4): 529−540. doi: 10.1111/jnc.12228
|
[209] |
Winklhofer KF, Haass C. 2010. Mitochondrial dysfunction in Parkinson's disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802(1): 29−44. doi: 10.1016/j.bbadis.2009.08.013
|
[210] |
Wright R. 2022. Mitochondrial dysfunction and Parkinson's disease. Nature Neuroscience, 25(1): 2.
|
[211] |
Wu DM, Wang S, Wen X, et al. 2018. Inhibition of microRNA-200a upregulates the expression of striatal dopamine receptor D2 to repress apoptosis of striatum via the cAMP/PKA signaling pathway in rats with Parkinson's disease. Cellular Physiology and Biochemistry, 51(4): 1600−1615. doi: 10.1159/000495649
|
[212] |
Yadava N, Nicholls DG. 2007. Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. The Journal of Neuroscience, 27(27): 7310−7317. doi: 10.1523/JNEUROSCI.0212-07.2007
|
[213] |
Yakhine-Diop SMS, Rodríguez-Arribas M, Canales-Cortés S, et al. 2022. The parkinsonian LRRK2 R1441G mutation shows macroautophagy-mitophagy dysregulation concomitant with endoplasmic reticulum stress. Cell Biology and Toxicology, 38(5): 889−911. doi: 10.1007/s10565-021-09617-w
|
[214] |
Yang WL, Guo XY, Tu ZC, et al. 2022. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis. Protein & Cell, 13(1): 26−46.
|
[215] |
Yang WL, Li SH, Li XJ. 2019a. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Molecular Neurodegeneration, 14(1): 17. doi: 10.1186/s13024-019-0321-9
|
[216] |
Yang WL, Liu YB, Tu ZC, et al. 2019b. CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Research, 29(4): 334−336. doi: 10.1038/s41422-019-0142-y
|
[217] |
Yang YF, Lu BW. 2009. Mitochondrial morphogenesis, distribution, and Parkinson disease: insights from PINK1. Journal of Neuropathology & Experimental Neurology, 68(9): 953−963.
|
[218] |
Yao S, Zhang X, Zou SC, et al. 2021. A transcriptome-wide association study identifies susceptibility genes for Parkinson's disease. npj Parkinson's Disease, 7(1): 79. doi: 10.1038/s41531-021-00221-7
|
[219] |
Youle RJ, Van Der Bliek AM. 2012. Mitochondrial fission, fusion, and stress. Science, 337(6098): 1062−1065. doi: 10.1126/science.1219855
|
[220] |
Yu WD, Sun YP, Guo S, et al. 2011. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Human Molecular Genetics, 20(16): 3227−3240. doi: 10.1093/hmg/ddr235
|
[221] |
Zaichick SV, McGrath KM, Caraveo G. 2017. The role of Ca2+ signaling in Parkinson's disease. Disease Models & Mechanisms, 10(5): 519−535.
|
[222] |
Zhai SY, Tanimura A, Graves SM, et al. 2018. Striatal synapses, circuits, and Parkinson's disease. Current Opinion in Neurobiology, 48: 9−16. doi: 10.1016/j.conb.2017.08.004
|
[223] |
Zhang BR, Hu ZX, Yin XZ, et al. 2010. Mutation analysis of parkin and PINK1 genes in early-onset Parkinson's disease in China. Neuroscience Letters, 477(1): 19−22. doi: 10.1016/j.neulet.2010.04.026
|
[224] |
Zhong WZ, Rao ZQ, Xu J, et al. 2022. Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate STING signaling during liver sterile inflammation. Aging Cell, 21(6): e13622.
|
[225] |
Zhou RB, Yazdi AS, Menu P, et al. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329): 221−225. doi: 10.1038/nature09663
|
[226] |
Zorov DB, Juhaszova M, Sollott SJ. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94(3): 909−950. doi: 10.1152/physrev.00026.2013
|