Volume 44 Issue 3
May  2023
Turn off MathJax
Article Contents
Jia-Chen Zhu, Hui Xiao, Pu Tang, Xiao-Fei Li, Xuan-Kun Li, Chao-Dong Zhu, Qiong Wu, Jin-Hua Xiao, Cornelis van Achterberg, Da-Wei Huang, Xue-Xin Chen. Evolutionary timescale of chalcidoid wasps inferred from over one hundred mitochondrial genomes. Zoological Research, 2023, 44(3): 467-482. doi: 10.24272/j.issn.2095-8137.2022.379
Citation: Jia-Chen Zhu, Hui Xiao, Pu Tang, Xiao-Fei Li, Xuan-Kun Li, Chao-Dong Zhu, Qiong Wu, Jin-Hua Xiao, Cornelis van Achterberg, Da-Wei Huang, Xue-Xin Chen. Evolutionary timescale of chalcidoid wasps inferred from over one hundred mitochondrial genomes. Zoological Research, 2023, 44(3): 467-482. doi: 10.24272/j.issn.2095-8137.2022.379

Evolutionary timescale of chalcidoid wasps inferred from over one hundred mitochondrial genomes

doi: 10.24272/j.issn.2095-8137.2022.379
No specific ethics permits were required for this study. The chalcidoids species used in this study are not endangered and are not included in the “List of Protected Animals in China”. No specific permissions were required for sampling activities.
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
J.C.Z. designed the study, collected the samples, analyzed the data, prepared the figures, and wrote the original draft. H.X. identified the species and revised the manuscript. P.T. revised the manuscript and submitted the manuscript. X.F.L. conducted experiments. X.K.L. revised the manuscript. C.D.Z., Q.W., J.H.X., and D.W.H. identified the species. C.V.A. revised the manuscript. X.X.C. applied for the funding, revised the manuscript, and supervised the study. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This work was supported by the Key International Joint Research Program of the National Natural Science Foundation of China (31920103005), General Program of the National Natural Science Foundation of China (32070467), Provincial Key R&D Program of Zhejiang, China (2021C02045), Key Project of Laboratory of Lingnan Modern Agriculture (NT2021003), Fundamental Research Funds for the Central Universities, and Special Research Fund for Distinguished Scholars of Zhejiang Province, China (2018R51004)
More Information
  • Corresponding author: E-mail: xxchen@zju.edu.cn
  • Received Date: 2022-12-26
  • Accepted Date: 2023-03-29
  • Published Online: 2023-03-29
  • Publish Date: 2023-05-18
  • Chalcidoidea is one of the most biologically diverse groups among Hymenoptera. Members are characterized by extraordinary parasitic lifestyles and extensive host ranges, among which several species attack plants or serve as pollinators. However, higher-level chalcidoid relationships remain controversial. Here, we performed mitochondrial phylogenomic analyses for major clades (18 out of 25 families) of Chalcidoidea based on 139 mitochondrial genomes. The compositional heterogeneity and conflicting backbone relationships in Chalcidoidea were assessed using various datasets and tree inferences. Our phylogenetic results supported the monophyly of 16 families and polyphyly of Aphelinidae and Pteromalidae. Our preferred topology recovered the relationship (Mymaridae+(Signiphoridae+Leucospidae)+(Chalcididae+((Perilampidae+Eucharitidae)+ remaining Chalcidoidea)))). The monophyly of Agaonidae and Sycophaginae was rejected, while the gall-associated ((Megastigmidae+Ormyridae)+(Ormocerinae+Eurytomidae)) relationship was supported in most results. A six-gene inversion may be a synapomorphy for most families, whereas other derived gene orders may introduce confusion in phylogenetic signals at deeper nodes. Dating estimates suggested that Chalcidoidea arose near the Jurassic/Cretaceous boundary and that two dynamic shifts in diversification occurred during the evolution of Chalcidoidea. We hypothesized that the potential codiversification between chalcidoids and their hosts may be crucial for accelerating the diversification of Chalcidoidea. Ancestral state reconstruction analyses supported the hypothesis that gall-inducers were mainly derived from parasitoids of gall-inducers, while other gall-inducers were derived from phytophagous groups. Taken together, these findings advance our understanding of mitochondrial genome evolution in the major interfamilial phylogeny of Chalcidoidea.
  • No specific ethics permits were required for this study. The chalcidoids species used in this study are not endangered and are not included in the “List of Protected Animals in China”. No specific permissions were required for sampling activities.
    Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    J.C.Z. designed the study, collected the samples, analyzed the data, prepared the figures, and wrote the original draft. H.X. identified the species and revised the manuscript. P.T. revised the manuscript and submitted the manuscript. X.F.L. conducted experiments. X.K.L. revised the manuscript. C.D.Z., Q.W., J.H.X., and D.W.H. identified the species. C.V.A. revised the manuscript. X.X.C. applied for the funding, revised the manuscript, and supervised the study. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Abascal F, Zardoya R, Telford MJ. 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38(S2): W7−W13.
    [2]
    Aberer AJ, Kobert K, Stamatakis A. 2014. ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Molecular Biology and Evolution, 31(10): 2553−2556. doi: 10.1093/molbev/msu236
    [3]
    Austin AD, Gibson GAP, Harvey MS. 1998. Synopsis of Australian Calymmochilus Masi (Hymenoptera: Eupelmidae), description of a new western Australian species associated with a pseudoscorpion, and review of pseudoscorpion parasites. Journal of Natural History, 32(3): 329−350. doi: 10.1080/00222939800770171
    [4]
    Baker AJ, Heraty JM, Mottern J, et al. 2020. Inverse dispersal patterns in a group of ant parasitoids (Hymenoptera: Eucharitidae: Oraseminae) and their ant hosts. Systematic Entomology, 45(1): 1−19. doi: 10.1111/syen.12371
    [5]
    Ban XC, Shao ZK, Wu LJ, et al. 2022. Highly diversified mitochondrial genomes provide new evidence for interordinal relationships in the Arachnida. Cladistics, 38(4): 452−464. doi: 10.1111/cla.12504
    [6]
    Bankevich A, Nurk S, Antipov D, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5): 455−477. doi: 10.1089/cmb.2012.0021
    [7]
    Bernt M, Donath A, Jühling F, et al. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2): 313−319. doi: 10.1016/j.ympev.2012.08.023
    [8]
    Bernt M, Merkle D, Ramsch K, et al. 2007. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics, 23(21): 2957−2958. doi: 10.1093/bioinformatics/btm468
    [9]
    Böhmová J, Rasplus JY, Taylor GS, et al. 2022. Description of two new Australian genera of Megastigmidae (Hymenoptera, Chalcidoidea) with notes on the biology of the genus Bortesia. Journal of Hymenoptera Research, 90: 75–99.
    [10]
    Boisvert S, Raymond F, Godzaridis É, et al. 2012. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biology, 13(12): R122. doi: 10.1186/gb-2012-13-12-r122
    [11]
    Boore JL. 2006. The use of genome-level characters for phylogenetic reconstruction. Trends in Ecology & Evolution, 21(8): 439−446.
    [12]
    Borowiec ML. 2016. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ, 4: e1660. doi: 10.7717/peerj.1660
    [13]
    Bouček Z. 1988. Australasian Chalcidoidea (Hymenoptera): A Biosystematic Revision of Genera of Fourteen Families, with a Reclassification of Species. Wallingford, UK: CAB International. 458.
    [14]
    Bouckaert R, Vaughan TG, Barido-Sottani J, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4): e1006650. doi: 10.1371/journal.pcbi.1006650
    [15]
    Burks RA, Heraty JM, Gebiola M, et al. 2011. Combined molecular and morphological phylogeny of Eulophidae (Hymenoptera: Chalcidoidea), with focus on the subfamily Entedoninae. Cladistics, 27(6): 581−605. doi: 10.1111/j.1096-0031.2011.00358.x
    [16]
    Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59: 95−117. doi: 10.1146/annurev-ento-011613-162007
    [17]
    Campbell B, Heraty JM, Rasplus JY, et al. 2000. Molecular systematics of the Chalcidoidea using 28S–D2 RDNA. In: Austin AD, Dowton M. The Hymenoptera: Evolution, Biodiversity and Biological Control. Melbourne: CSIRO Publishing, 59–73.
    [18]
    Che LH, Zhang P, Deng SH, et al. 2021. New insights into the phylogeny and evolution of lady beetles (Coleoptera: Coccinellidae) by extensive sampling of genes and species. Molecular Phylogenetics and Evolution, 156: 107045. doi: 10.1016/j.ympev.2020.107045
    [19]
    Chen SF, Zhou YQ, Chen YR, et al. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
    [20]
    Crane PR, Friis EM, Pedersen KR. 1995. The origin and early diversification of angiosperms. Nature, 374(6517): 27−33. doi: 10.1038/374027a0
    [21]
    Crane PR, Herendeen P, Friis EM. 2004. Fossils and plant phylogeny. American Journal of Botany, 91(10): 1683−1699. doi: 10.3732/ajb.91.10.1683
    [22]
    Cruaud A, Delvare G, Nidelet S, et al. 2021. Ultra-conserved elements and morphology reciprocally illuminate conflicting phylogenetic hypotheses in Chalcididae (Hymenoptera, Chalcidoidea). Cladistics, 37(1): 1−35. doi: 10.1111/cla.12416
    [23]
    Cruaud A, Jabbour-Zahab R, Genson G, et al. 2011. Phylogeny and evolution of life-history strategies in the Sycophaginae non-pollinating fig wasps (Hymenoptera, Chalcidoidea). BMC Evolutionary Biology, 11(1): 178. doi: 10.1186/1471-2148-11-178
    [24]
    Cruaud A, Nidelet S, Arnal P, et al. 2019. Optimized DNA extraction and library preparation for minute arthropods: application to target enrichment in chalcid wasps used for biocontrol. Molecular Ecology Resources, 19(3): 702−710. doi: 10.1111/1755-0998.13006
    [25]
    Cruaud A, Rønsted N, Chantarasuwan B, et al. 2012. An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Systematic Biology, 61(6): 1029−1047. doi: 10.1093/sysbio/sys068
    [26]
    Debach P, Rosen D. 1991. Biological Control by Natural Enemies. 2nd ed. Cambridge, UK: Cambridge University Press.
    [27]
    Drummond AJ, Ho SYW, Phillips MJ, et al. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5): e88. doi: 10.1371/journal.pbio.0040088
    [28]
    Gibson GAP. 1999. Sister-group relationships of the Platygastroidea and Chalcidoidea (Hymenoptera) — an alternate hypothesis to Rasnitsyn (1988). Zoologica Scripta, 28(1–2): 125–138.
    [29]
    Gibson GAP, Heraty JM, Woolley JB. 1999. Phylogenetics and classification of Chalcidoidea and Mymarommatoidea — a review of current concepts (Hymenoptera, Apocrita). Zoologica Scripta, 28(1–2): 87–124.
    [30]
    Gómez JF, Nieves-Aldrey JL, Nieves MH. 2008. Comparative morphology, biology and phylogeny of terminal-instar larvae of the European species of Toryminae (Hym., Chalcidoidea, Torymidae) parasitoids of gall wasps (Hym. Cynipidae). Zoological Journal of the Linnean Society, 154(4): 676−721. doi: 10.1111/j.1096-3642.2008.00423.x
    [31]
    Gómez JF, Nieves-Aldrey JL, Nieves MH, et al. 2011. Comparative morphology and biology of terminalinstar larvae of some Eurytoma (Hymenoptera, Eurytomidae) species parasitoids of gall wasps (Hymenoptera, Cynipidae) in western Europe. Zoosystema, 33(3): 287−323. doi: 10.5252/z2011n3a3
    [32]
    Greathead DJ. 1986. Parasitoids in classical biological control. In: Waage J, Greathead DJ. Insect Parasitoids. London: Academic Press, 289–318.
    [33]
    Grissell EE & Schauff ME. 1997. Superfamily chalcidoidea. In: Gibson GAP, Huber JT, Woolley JB. Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). Ottawa, Canada: National Research Council of Canada Research Press, 45–116.
    [34]
    Guindon S, Dufayard JF, Lefort V, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59(3): 307−321. doi: 10.1093/sysbio/syq010
    [35]
    Haas M, Burks RA, Krogmann L. 2018. A new lineage of Cretaceous jewel wasps (Chalcidoidea: Diversinitidae). PeerJ, 6: e4633. doi: 10.7717/peerj.4633
    [36]
    Hassanin A. 2006. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Molecular Phylogenetics and Evolution, 38(1): 100−116. doi: 10.1016/j.ympev.2005.09.012
    [37]
    Heraty JM. 2017. Parasitoid biodiversity and insect pest management. In: Foottit RG, Adler PH. Insect Biodiversity: Science and Society. Hoboken: John Wiley & Sons, 603–625.
    [38]
    Heraty JM, Burks RA, Cruaud A, et al. 2013. A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics, 29(5): 466−542. doi: 10.1111/cla.12006
    [39]
    Heraty JM, Darling DC. 2009. Fossil Eucharitidae and Perilampidae (Hymenoptera: Chalcidoidea) from Baltic amber. Zootaxa, 2306(1): 1−16. doi: 10.11646/zootaxa.2306.1.1
    [40]
    Heraty JM, Woolley JB, Darling DC. 1997. Phylogenetic implications of the mesofurca in Chalcidoidea (Hymenoptera), with emphasis on Aphelinidae. Systematic Entomology, 22(1): 45−65. doi: 10.1046/j.1365-3113.1997.d01-26.x
    [41]
    Hill DS. 1967. Figs (Ficus spp. ) and fig-wasps (Chalcidoidea). Journal of Natural History, 1(3): 413−434. doi: 10.1080/00222936700770401
    [42]
    Hu F, Lin Y, Tang JJ. 2014. MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinformatics, 15(1): 354. doi: 10.1186/s12859-014-0354-6
    [43]
    Jakovlić I, Zou H, Zhao XM, et al. 2021. Evolutionary history of inversions in directional mutational pressures in crustacean mitochondrial genomes: implications for evolutionary studies. Molecular Phylogenetics and Evolution, 164: 107288. doi: 10.1016/j.ympev.2021.107288
    [44]
    Janšta P, Cruaud A, Delvare G, et al. 2018. Torymidae (Hymenoptera, Chalcidoidea) revised: molecular phylogeny, circumscription and reclassification of the family with discussion of its biogeography and evolution of life-history traits. Cladistics, 34(6): 627−651. doi: 10.1111/cla.12228
    [45]
    Johnson KP, Dietrich CH, Friedrich F, et al. 2018. Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 115(50): 12775−12780. doi: 10.1073/pnas.1815820115
    [46]
    Joseph KJ. 1964. A proposed revision of the classification of the fig insects of the families Agaonidae and Torymidae (Hymenoptera). Proceedings of the Royal Entomological Society of London, Series B, Taxonomy, 33(3–4): 63–66.
    [47]
    Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772−780. doi: 10.1093/molbev/mst010
    [48]
    Kawahara AY, Plotkin D, Espeland M, et al. 2019. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proceedings of the National Academy of Sciences of the United States of America, 116(45): 22657−22663. doi: 10.1073/pnas.1907847116
    [49]
    Kück P, Longo GC. 2014. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology, 11(1): 81. doi: 10.1186/s12983-014-0081-x
    [50]
    La Salle J. 2005. Biology of gall inducers and evolution of gall induction in Chalcidoidea (Hymenoptera: Eulophidae, Eurytomidae, Pteromalidae, Tanaostigmatidae, Torymidae). In: Ramana A, Schaeffer CW, Withers TM. Biology, Ecology, and Evolution of Gall-Inducing Arthropods. Enfield, New Hampshire: Science Publishers, 507–537.
    [51]
    Lanfear R, Frandsen PB, Wright AM, et al. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3): 772−773.
    [52]
    Li FF, Chen XX, Piao MH, et al. 2003. Phylogenetic relationships of the Euphorinae (Hymenoptera: Braconidae) based on the D2 variable region of 28S ribosomal RNA. Entomotaxonomia, 25(3): 217−226.
    [53]
    Li Q, Wei SJ, Tang P, et al. 2016. Multiple lines of evidence from mitochondrial genomes resolve phylogenetic relationships of parasitic wasps in Braconidae. Genome Biology and Evolution, 8(9): 2651−2662. doi: 10.1093/gbe/evw184
    [54]
    Li WN, Shao RF, Zhang Q, et al. 2019. Mitochondrial genome reorganization characterizes various lineages of mesostigmatid mites (Acari: Parasitiformes). Zoologica Scripta, 48(5): 679−689. doi: 10.1111/zsc.12369
    [55]
    Lidgard S, Crane PR. 1990. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology, 16(1): 77−93. doi: 10.1017/S009483730000974X
    [56]
    Liu YQ, Song F, Jiang P, et al. 2018. Compositional heterogeneity in true bug mitochondrial phylogenomics. Molecular Phylogenetics and Evolution, 118: 135−144. doi: 10.1016/j.ympev.2017.09.025
    [57]
    Lotfalizadeh H, Delvare G, Rasplus JY. 2007. Phylogenetic analysis of Eurytominae (Chalcidoidea: Eurytomidae) based on morphological characters. Zoological Journal of the Linnean Society, 151(3): 441−510. doi: 10.1111/j.1096-3642.2007.00308.x
    [58]
    Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5): 955−964. doi: 10.1093/nar/25.5.955
    [59]
    Maddison W, Maddison DR. 2019. Mesquite: a modular system for evolutionary analysis. Version 3.61, https://www.scirp.org/reference/referencespapers.aspx?referenceid=3344710.
    [60]
    Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, et al. 2015. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist, 207(2): 437−453. doi: 10.1111/nph.13264
    [61]
    Mao M, Gibson T, Dowton M. 2014. Evolutionary dynamics of the mitochondrial genome in the Evaniomorpha (Hymenoptera)—a group with an intermediate rate of gene rearrangement. Genome Biology and Evolution, 6(7): 1862−1874. doi: 10.1093/gbe/evu145
    [62]
    Meng GL, Li YY, Yang CT, et al. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47(11): e63. doi: 10.1093/nar/gkz173
    [63]
    Minh BQ, Nguyen MAT, Von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5): 1188−1195. doi: 10.1093/molbev/mst024
    [64]
    Mohammad H. 1998. Aphelinidae of India (Hymenoptera: Chalcidoidea): A Taxonomic Revision. Gainesville, USA: Associated Publishers.
    [65]
    Munro JB, Heraty JM, Burks RA, et al. 2011. A molecular phylogeny of the Chalcidoidea (Hymenoptera). PLoS One, 6(11): e27023. doi: 10.1371/journal.pone.0027023
    [66]
    Murray EA, Heraty JM. 2020. Neotropical ant parasitoids (Hymenoptera: Eucharitidae): interpreting taxonomy, phylogeny and divergent morphologies. Systematic Entomology, 45(2): 464−480. doi: 10.1111/syen.12407
    [67]
    Narendran TC, Santhosh S, Sudheer K. 2007. Biosystematics and biogeography of oriental Chalcidoidea (Hymenoptera) associated with plant galls. Oriental Insects, 41(1): 141−167. doi: 10.1080/00305316.2007.10417503
    [68]
    Nguyen LT, Schmidt HA, Von Haeseler A, et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268−274. doi: 10.1093/molbev/msu300
    [69]
    Nie RE, Vogler AP, Yang XK, et al. 2021. Higher-level phylogeny of longhorn beetles (Coleoptera: Chrysomeloidea) inferred from mitochondrial genomes. Systematic Entomology, 46(1): 56−70. doi: 10.1111/syen.12447
    [70]
    Noyes J. 2019. Universal Chalcidoidea Database.https://www.nhm.ac.uk/our-science/data/chalcidoids/database/.
    [71]
    Noyes JS. 1990. A word on chalcidoid classification. Pages 6–7 in Chalcid Forum. Vol. 13.
    [72]
    Owen AK, George J, Pinto JD, et al. 2007. A molecular phylogeny of the Trichogrammatidae (Hymenoptera: Chalcidoidea), with an evaluation of the utility of their male genitalia for higher level classification. Systematic Entomology, 32(2): 227−251. doi: 10.1111/j.1365-3113.2006.00361.x
    [73]
    Peng Y, Leung HCM, Yiu SM, et al. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11): 1420−1428. doi: 10.1093/bioinformatics/bts174
    [74]
    Peters RS, Krogmann L, Mayer C, et al. 2017. Evolutionary history of the Hymenoptera. Current Biology, 27(7): 1013−1018. doi: 10.1016/j.cub.2017.01.027
    [75]
    Peters RS, Niehuis O, Gunkel S, et al. 2018. Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular Phylogenetics and Evolution, 120: 286−296. doi: 10.1016/j.ympev.2017.12.005
    [76]
    Rambaut A. 2012. FigTree v. 1.4. 2: Tree Figure Drawing Tool.
    [77]
    Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2): 217−223. doi: 10.1111/j.2041-210X.2011.00169.x
    [78]
    Reyes A, Gissi C, Pesole G, et al. 1998. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Molecular Biology and Evolution, 15(8): 957−966. doi: 10.1093/oxfordjournals.molbev.a026011
    [79]
    Rønsted N, Weiblen GD, Cook JM, et al. 2005. 60 million years of co-divergence in the fig–wasp symbiosis. Proceedings of the Royal Society B:Biological Sciences, 272(1581): 2593−2599. doi: 10.1098/rspb.2005.3249
    [80]
    Rota-Stabelli O, Kayal E, Gleeson D, et al. 2010. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biology and Evolution, 2: 425−440. doi: 10.1093/gbe/evq030
    [81]
    Rozas J, Ferrer-Mata A, Sánchez-Delbarrio JC, et al. 2017. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 34(12): 3299−3302. doi: 10.1093/molbev/msx248
    [82]
    Saenz Manchola OF, Virrueta Herrera S, D'alessio LM, et al. 2021. Mitochondrial genomes within bark lice (Insecta: Psocodea: Psocomorpha) reveal novel gene rearrangements containing phylogenetic signal. Systematic Entomology, 46(4): 938−951. doi: 10.1111/syen.12504
    [83]
    Song SN, Tang P, Wei SJ, et al. 2016. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Scientific Reports, 6(1): 20972. doi: 10.1038/srep20972
    [84]
    Tang P, Zhu JC, Zheng BY, et al. 2019. Mitochondrial phylogenomics of the Hymenoptera. Molecular Phylogenetics and Evolution, 131: 8−18. doi: 10.1016/j.ympev.2018.10.040
    [85]
    Timmermans MJTN, Barton C, Haran J, et al. 2016. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biology and Evolution, 8(1): 161−175. doi: 10.1093/gbe/evv241
    [86]
    Timmermans MJTN, Vogler AP. 2012. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Molecular Phylogenetics and Evolution, 63(2): 299−304. doi: 10.1016/j.ympev.2011.12.021
    [87]
    Wang YY, Liu XY, Garzón-Orduña IJ, et al. 2017. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics, 33(6): 617−636. doi: 10.1111/cla.12186
    [88]
    Wei SJ, Li Q, Van Achterberg K, et al. 2014. Two mitochondrial genomes from the families Bethylidae and Mutillidae: independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera. Molecular Phylogenetics and Evolution, 77: 1−10. doi: 10.1016/j.ympev.2014.03.023
    [89]
    Wei SJ, Shi M, Chen XX, et al. 2010a. New views on strand asymmetry in insect mitochondrial genomes. PLoS One, 5(9): e12708. doi: 10.1371/journal.pone.0012708
    [90]
    Wei SJ, Shi M, Sharkey MJ, et al. 2010b. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects. BMC Genomics, 11(1): 371. doi: 10.1186/1471-2164-11-371
    [91]
    Wiebes JT. 1976. A short history of fig wasp research. Garden’s Bulletin of Straits Settlement, 29: 207−232.
    [92]
    Wu YF, Yang HL, Feng ZB, et al. 2020. Novel gene rearrangement in the mitochondrial genome of Pachyneuron aphidis (Hymenoptera: Pteromalidae). International Journal of Biological Macromolecules, 149: 1207−1212. doi: 10.1016/j.ijbiomac.2020.01.308
    [93]
    Xia XH. 2018. DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 35(6): 1550−1552. doi: 10.1093/molbev/msy073
    [94]
    Xia XH, Xie Z, Salemi M, et al. 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26(1): 1−7. doi: 10.1016/S1055-7903(02)00326-3
    [95]
    Xiao JH, Jia JG, Murphy RW, et al. 2011. Rapid evolution of the mitochondrial genome in chalcidoid wasps (Hymenoptera: Chalcidoidea) driven by parasitic lifestyles. PLoS One, 6(11): e26645. doi: 10.1371/journal.pone.0026645
    [96]
    Xu SL, Han BP, Martínez A, et al. 2021. Mitogenomics of Cladocera (Branchiopoda): marked gene order rearrangements and independent predation roots. Molecular Phylogenetics and Evolution, 164: 107275. doi: 10.1016/j.ympev.2021.107275
    [97]
    Yan ZC, Ye GY, Werren JH. 2019. Evolutionary rate correlation between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins in insects. Molecular Biology and Evolution, 36(5): 1022−1036. doi: 10.1093/molbev/msz036
    [98]
    Yang ZH, Rannala B. 2006. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution, 23(1): 212−226. doi: 10.1093/molbev/msj024
    [99]
    Yi JQ, Wu H, Liu JB, et al. 2022. Novel gene rearrangement in the mitochondrial genome of Anastatus fulloi (Hymenoptera Chalcidoidea) and phylogenetic implications for Chalcidoidea. Scientific Reports, 12(1): 1351. doi: 10.1038/s41598-022-05419-0
    [100]
    Zerova M. 1993. The new group of phytophagous chalcids of the family Eurytomidae (Hymenoptera, Chalcidoidea). Zoologičhesky Žhurnal, 72(10): 68−74.
    [101]
    Zerova MD, Fursov VN. 1991. The Palaearctic species of Eurytoma (Hymenoptera: Eurytomidae) developing in stone fruits (Rosaceae: Prunoideae). Bulletin of Entomological Research, 81(2): 209−219. doi: 10.1017/S0007485300051294
    [102]
    Zhang D, Gao FL, Jakovlić I, et al. 2020a. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1): 348−355. doi: 10.1111/1755-0998.13096
    [103]
    Zhang D, Zou H, Hua CJ, et al. 2019. Mitochondrial architecture rearrangements produce asymmetrical nonadaptive mutational pressures that subvert the phylogenetic reconstruction in Isopoda. Genome Biology and Evolution, 11(7): 1797−1812. doi: 10.1093/gbe/evz121
    [104]
    Zhang JX, Heraty JM, Darling C, et al. 2022. Anchored phylogenomics and a revised classification of the planidial larva clade of jewel wasps (Hymenoptera: Chalcidoidea). Systematic Entomology, 47(2): 329−353. doi: 10.1111/syen.12533
    [105]
    Zhang JX, Lindsey ARI, Peters RS, et al. 2020b. Conflicting signal in transcriptomic markers leads to a poorly resolved backbone phylogeny of chalcidoid wasps. Systematic Entomology, 45(4): 783−802. doi: 10.1111/syen.12427
    [106]
    Zhang SQ, Che LH, Li Y, et al. 2018. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications, 9(1): 205. doi: 10.1038/s41467-017-02644-4
    [107]
    Zhao HF, Chen Y, Wang ZT, et al. 2021. Two complete mitogenomes of Chalcididae (Hymenoptera: Chalcidoidea): genome description and phylogenetic implications. Insects, 12(12): 1049. doi: 10.3390/insects12121049
    [108]
    Zheng XY, Cao LJ, Chen PY, et al. 2021. Comparative mitogenomics and phylogenetics of the stinging wasps (Hymenoptera: Aculeata). Molecular Phylogenetics and Evolution, 159: 107119. doi: 10.1016/j.ympev.2021.107119
    [109]
    Zhou QS, Xiong M, Luo AR, et al. 2021. The complete mitochondrial genome of Metaphycus eriococci (Timberlake) (Hymenoptera: Encyrtidae). Mitochondrial DNA Part B:Resources, 6(2): 550−552. doi: 10.1080/23802359.2021.1872450
    [110]
    Zhu JC, Tang P, Zheng BY, et al. 2018. The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications. International Journal of Biological Macromolecules, 118: 386−396. doi: 10.1016/j.ijbiomac.2018.06.087
  • ZR-2022-379-Supplementary Materials.rar
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (696) PDF downloads(170) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return