Volume 44 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Yan Zhao, Chang-Le Wang, Zhi-Yun Gao, Hong-Xiu Qiao, Wei-Jie Wang, Xin-Yan Liu, Xia Chuai. Ferrets: A powerful model of SARS-CoV-2. Zoological Research, 2023, 44(2): 323-330. doi: 10.24272/j.issn.2095-8137.2022.351
Citation: Yan Zhao, Chang-Le Wang, Zhi-Yun Gao, Hong-Xiu Qiao, Wei-Jie Wang, Xin-Yan Liu, Xia Chuai. Ferrets: A powerful model of SARS-CoV-2. Zoological Research, 2023, 44(2): 323-330. doi: 10.24272/j.issn.2095-8137.2022.351

Ferrets: A powerful model of SARS-CoV-2

doi: 10.24272/j.issn.2095-8137.2022.351
The authors declare that they have no competing interests.
X.C. conceptualized and supervised the project. Y.Z., C.L.W., and Z.Y.G. wrote and edited the manuscript. H.X.Q., W.J.W., and X.Y.L. searched the references. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This work was supported by the S&T Program of Hebei (20277705D and 20372601D), Natural Science Foundation of Hebei Province, China (H2020206352), Science and Technology Project of Hebei Education Department (QN2018150), Hebei Medical Science Research Project (20220973), and Chinese Medicine Research Program of Hebei Province (2021119)
More Information
  • Corresponding author: E-mail: chuaixiahb@126.com
  • Received Date: 2022-12-13
  • Accepted Date: 2023-02-16
  • Published Online: 2023-02-17
  • Publish Date: 2023-03-18
  • The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent years not only caused a global pandemic but resulted in enormous social, economic, and health burdens worldwide. Despite considerable efforts to combat coronavirus disease 2019 (COVID-19), various SARS-CoV-2 variants have emerged, and their underlying mechanisms of pathogenicity remain largely unknown. Furthermore, effective therapeutic drugs are still under development. Thus, an ideal animal model is crucial for studying the pathogenesis of COVID-19 and for the preclinical evaluation of vaccines and antivirals against SARS-CoV-2 and variant infections. Currently, several animal models, including mice, hamsters, ferrets, and non-human primates (NHPs), have been established to study COVID-19. Among them, ferrets are naturally susceptible to SARS-CoV-2 infection and are considered suitable for COVID-19 study. Here, we summarize recent developments and application of SARS-CoV-2 ferret models in studies on pathogenesis, therapeutic agents, and vaccines, and provide a perspective on the role of these models in preventing COVID-19 spread.
  • The authors declare that they have no competing interests.
    X.C. conceptualized and supervised the project. Y.Z., C.L.W., and Z.Y.G. wrote and edited the manuscript. H.X.Q., W.J.W., and X.Y.L. searched the references. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Au GG, Marsh GA, Mcauley AJ, et al. 2022. Characterisation and natural progression of SARS-CoV-2 infection in ferrets. Scientific Reports, 12(1): 5680. doi: 10.1038/s41598-022-08431-6
    [2]
    Bao LL, Deng W, Huang BY, et al. 2020a. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 583(7818): 830−833. doi: 10.1038/s41586-020-2312-y
    [3]
    Bao LL, Deng W, Qi FF, et al. 2021. Sequential infection with H1N1 and SARS-CoV-2 aggravated COVID-19 pathogenesis in a mammalian model, and co-vaccination as an effective method of prevention of COVID-19 and influenza. Signal Transduction and Targeted Therapy, 6(1): 200. doi: 10.1038/s41392-021-00618-z
    [4]
    Bao LL, Gao H, Deng W, et al. 2020b. Transmission of severe acute respiratory syndrome coronavirus 2 via close contact and respiratory droplets among human angiotensin-converting enzyme 2 mice. The Journal of Infectious Diseases, 222(4): 551−555. doi: 10.1093/infdis/jiaa281
    [5]
    Baughn LB, Sharma N, Elhaik E, et al. 2020. Targeting TMPRSS2 in SARS-CoV-2 infection. Mayo Clinic Proceedings, 95(9): 1989−1999. doi: 10.1016/j.mayocp.2020.06.018
    [6]
    Beale DJ, Shah R, Karpe AV, et al. 2021. Metabolic profiling from an asymptomatic ferret model of SARS-CoV-2 infection. Metabolites, 11(5): 327. doi: 10.3390/metabo11050327
    [7]
    Beavis AC, Li Z, Briggs K, et al. 2022. Efficacy of parainfluenza virus 5 (PIV5)-vectored intranasal COVID-19 vaccine as a single dose vaccine and as a booster against SARS-CoV-2 variants. bioRxiv,doi: 10.1101/2022.06.07.495215.
    [8]
    Bedford J, Enria D, Giesecke J, et al. 2020. COVID-19: towards controlling of a pandemic. The Lancet, 395(10229): 1015−1018. doi: 10.1016/S0140-6736(20)30673-5
    [9]
    Belser JA, Pulit-Penaloza JA, Maines TR. 2020. Ferreting out influenza virus pathogenicity and transmissibility: past and future risk assessments in the ferret model. Cold Spring Harbor Perspectives in Medicine, 10(7): a038323. doi: 10.1101/cshperspect.a038323
    [10]
    Chan JFW, Zhang AJ, Yuan SF, et al. 2020. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden syrian hamster model: implications for disease pathogenesis and transmissibility. Clinical Infectious Diseases, 71(9): 2428−2446.
    [11]
    Compagnone M, Pinto E, Salvatori E, et al. 2022. DNA-vaccine-induced immune response correlates with lower viral SARS-CoV-2 titers in a ferret model. Vaccines, 10(8): 1178. doi: 10.3390/vaccines10081178
    [12]
    Conforti A, Marra E, Palombo F, et al. 2022. COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Molecular Therapy, 30(1): 311−326. doi: 10.1016/j.ymthe.2021.09.011
    [13]
    Cox RM, Wolf JD, Lieber CM, et al. 2021a. Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nature Communications, 12(1): 6415. doi: 10.1038/s41467-021-26760-4
    [14]
    Cox RM, Wolf JD, Plemper RK. 2021b. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nature Microbiology, 6(1): 11−18.
    [15]
    De Vries RD, Schmitz KS, Bovier FT, et al. 2021. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science, 371(6536): 1379−1382. doi: 10.1126/science.abf4896
    [16]
    Everett HE, Lean FZX, Byrne AMP, et al. 2021. Intranasal infection of ferrets with SARS-CoV-2 as a model for asymptomatic human infection. Viruses, 13(1): 113. doi: 10.3390/v13010113
    [17]
    Francis ME, Richardson B, Goncin U, et al. 2021. Sex and age bias viral burden and interferon responses during SARS-CoV-2 infection in ferrets. Scientific Reports, 11(1): 14536. doi: 10.1038/s41598-021-93855-9
    [18]
    Hamming I, Timens W, Bulthuis MLC, et al. 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology, 203(2): 631−637. doi: 10.1002/path.1570
    [19]
    He QY, Mok TN, Yun L, et al. 2020. Single-cell RNA sequencing analysis of human kidney reveals the presence of ACE2 receptor: A potential pathway of COVID-19 infection. Molecular Genetics & Genomic Medicine, 8(10): e1442.
    [20]
    Imai M, Iwatsuki-Horimoto K, Hatta M, et al. 2020. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences of the United States of America, 117(28): 16587−16595. doi: 10.1073/pnas.2009799117
    [21]
    Israelow B, Song E, Mao TY, et al. 2020. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. The Journal of Experimental Medicine, 217(12): e20201241. doi: 10.1084/jem.20201241
    [22]
    Jeong SK, Heo YK, Jeong JH, et al. 2021. COVID-19 subunit vaccine with a combination of TLR1/2 and TLR3 agonists induces robust and protective immunity. Vaccines, 9(9): 957. doi: 10.3390/vaccines9090957
    [23]
    Jiang RD, Liu MQ, Chen Y, et al. 2020. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell, 182(1): 50−58.e8. doi: 10.1016/j.cell.2020.05.027
    [24]
    Kashyap T, Murray J, Walker CJ, et al. 2021. Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo. Antiviral Research, 192: 105115.
    [25]
    Kim EH, Kim YI, Jang SG, et al. 2021a. Antiviral effects of human placenta hydrolysate (Laennec®) against SARS-CoV-2 in vitro and in the ferret model. Journal of Microbiology, 59(11): 1056−1062. doi: 10.1007/s12275-021-1367-2
    [26]
    Kim SM, Kim EH, Casel MAB, et al. 2022a. SARS-CoV-2 variants show temperature-dependent enhanced polymerase activity in the upper respiratory tract and high transmissibility. bioRxiv,doi: 10.1101/2022.09.27.509689.
    [27]
    Kim YI, Kim D, Yu KM, et al. 2021b. Development of spike receptor-binding domain nanoparticles as a vaccine candidate against SARS-CoV-2 infection in ferrets. mBio, 12(2): e00230−21.
    [28]
    Kim YI, Kim SG, Kim SM, et al. 2020. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host & Microbe, 27(5): 704−709.e2.
    [29]
    Kim YI, Kim SM, Park SJ, et al. 2021c. Critical role of neutralizing antibody for SARS-CoV-2 reinfection and transmission. Emerging Microbes & Infections, 10(1): 152−160.
    [30]
    Kim YI, Yu KM, Koh JY, et al. 2022b. Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets. Nature Communications, 13(1): 21. doi: 10.1038/s41467-021-27717-3
    [31]
    Kutter JS, De Meulder D, Bestebroer TM, et al. 2021. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nature Communications, 12(1): 1653. doi: 10.1038/s41467-021-21918-6
    [32]
    Lambe T, Spencer AJ, Thomas KM, et al. 2021. ChAdOx1 nCoV-19 protection against SARS-CoV-2 in rhesus macaque and ferret challenge models. Communications Biology, 4(1): 915. doi: 10.1038/s42003-021-02443-0
    [33]
    Lehtinen MJ, Kumar R, Zabel B, et al. 2022. The effect of the probiotic consortia on SARS-CoV-2 infection in ferrets and on human immune cell response in vitro. iScience, 25(6): 104445.
    [34]
    Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1): 237−261. doi: 10.1146/annurev-virology-110615-042301
    [35]
    Li L, Honda-Okubo Y, Huang Y, et al. 2021. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine, 39(40): 5940−5953. doi: 10.1016/j.vaccine.2021.07.087
    [36]
    Lieber CM, Cox RM, Sourimant JD, et al. 2022. SARS-CoV-2 VOC type and biological sex affect molnupiravir efficacy in severe COVID-19 dwarf hamster model. Nature Communications, 13(1): 4416. doi: 10.1038/s41467-022-32045-1
    [37]
    Lin QS, Lu CN, Hong YQ, et al. 2022. Animal models for studying coronavirus infections and developing antiviral agents and vaccines. Antiviral Research, 203: 105345. doi: 10.1016/j.antiviral.2022.105345
    [38]
    Liu HN, Gai SJ, Wang XY, et al. 2020. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Cardiovascular Research, 116(10): 1733−1741. doi: 10.1093/cvr/cvaa191
    [39]
    Ma Q, Ma WJ, Song TZ, et al. 2022. Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zoological Research, 43(6): 1041−1062. doi: 10.24272/j.issn.2095-8137.2022.443
    [40]
    Marsh GA, Mcauley AJ, Au GG, et al. 2021. ChAdOx1 nCoV-19 (AZD1222) vaccine candidate significantly reduces SARS-CoV-2 shedding in ferrets. npj Vaccines, 6(1): 67. doi: 10.1038/s41541-021-00315-6
    [41]
    Martina BEE, Haagmans BL, Kuiken T, et al. 2003. Virology: SARS virus infection of cats and ferrets. Nature, 425(6961): 915. doi: 10.1038/425915a
    [42]
    Martins M, Fernandes MHV, Joshi LR, et al. 2022. Age-related susceptibility of ferrets to SARS-CoV-2 infection. Journal of Virology, 96(3): e0145521. doi: 10.1128/jvi.01455-21
    [43]
    Pandey K, Acharya A, Mohan M, et al. 2021. Animal models for SARS-CoV-2 research: a comprehensive literature review. Transboundary and Emerging Diseases, 68(4): 1868−1885. doi: 10.1111/tbed.13907
    [44]
    Park SJ, Yu KM, Kim YI, et al. 2020. Antiviral efficacies of FDA-approved drugs against SARS-CoV-2 infection in ferrets. mBio, 11(3): e01114−20.
    [45]
    Patel DP, Field CJ, Septer KM, et al. 2021. Transmission and protection against reinfection in the ferret model with the SARS-CoV-2 USA-WA1/2020 reference isolate. Journal of Virology, 95(13): e0223220. doi: 10.1128/JVI.02232-20
    [46]
    Peacock TP, Goldhill DH, Zhou J, et al. 2021. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature Microbiology, 6(7): 899−909. doi: 10.1038/s41564-021-00908-w
    [47]
    Prince GA, Porter DD. 1976. The pathogenesis of respiratory syncytial virus infection in infant ferrets. The American Journal of Pathology, 82(2): 339−352.
    [48]
    Pulit-Penaloza JA, Belser JA, Sun XJ, et al. 2022. Comparative assessment of severe acute respiratory syndrome coronavirus 2 variants in the ferret model. mBio, 13(5): e0242122. doi: 10.1128/mbio.02421-22
    [49]
    Rathnasinghe R, Strohmeier S, Amanat F, et al. 2020. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerging Microbes & Infections, 9(1): 2433−2445.
    [50]
    Richard M, Kok A, De Meulder D, et al. 2020. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nature Communications, 11(1): 3496. doi: 10.1038/s41467-020-17367-2
    [51]
    Rockx B, Kuiken T, Herfst S, et al. 2020. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 368(6494): 1012−1015. doi: 10.1126/science.abb7314
    [52]
    Ryan KA, Bewley KR, Fotheringham SA, et al. 2021. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nature Communications, 12(1): 81. doi: 10.1038/s41467-020-20439-y
    [53]
    Ryu DK, Song RN, Kim M, et al. 2021. Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant. Biochemical and Biophysical Research Communications, 566: 135−140. doi: 10.1016/j.bbrc.2021.06.016
    [54]
    Sawatzki K, Hill NJ, Puryear WB, et al. 2021. Host barriers to SARS-CoV-2 demonstrated by ferrets in a high-exposure domestic setting. Proceedings of the National Academy of Sciences of the United States of America, 118(18): e2025601118. doi: 10.1073/pnas.2025601118
    [55]
    Schiffman Z, Liu GD, Cao WG, et al. 2022. The ferret as a model for filovirus pathogenesis and countermeasure evaluation. ILAR Journal, 61(1): 62−71. doi: 10.1093/ilar/ilab011
    [56]
    Shan C, Yao YF, Yang XL, et al. 2020. Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Research, 30(8): 670−677. doi: 10.1038/s41422-020-0364-z
    [57]
    Shi JZ, Wen ZY, Zhong GX, et al. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 368(6494): 1016−1020. doi: 10.1126/science.abb7015
    [58]
    Si LL, Shen Q, Li J, et al. 2022. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nature Biotechnology, 40(9): 1370−1377. doi: 10.1038/s41587-022-01381-4
    [59]
    Sia SF, Yan LM, Chin AWH, et al. 2020. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 583(7818): 834−838. doi: 10.1038/s41586-020-2342-5
    [60]
    Song TZ, Zheng HY, Han JB, et al. 2020. Delayed severe cytokine storm and immune cell infiltration in SARS-CoV-2-infected aged Chinese rhesus macaques. Zoological Research, 41(5): 503−516. doi: 10.24272/j.issn.2095-8137.2020.202
    [61]
    Sourimant J, Lieber CM, Aggarwal M, et al. 2022. 4'-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication. Science, 375(6577): 161−167. doi: 10.1126/science.abj5508
    [62]
    Stittelaar KJ, De Waal L, Van Amerongen G, et al. 2016. Ferrets as a novel animal model for studying human respiratory syncytial virus infections in immunocompetent and immunocompromised hosts. Viruses, 8(6): 168. doi: 10.3390/v8060168
    [63]
    Sun C, Xie C, Bu GL, et al. 2022a. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 7(1): 202. doi: 10.1038/s41392-022-01039-2
    [64]
    Sun HL, Wang AL, Wang LX, et al. 2022b. Systematic tracing of susceptible animals to SARS-CoV-2 by a bioinformatics framework. Frontiers in Microbiology, 13: 781770. doi: 10.3389/fmicb.2022.781770
    [65]
    Sun J, Zhuang Z, Zheng J, et al. 2020a. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell, 182(3): 734−743.e5. doi: 10.1016/j.cell.2020.06.010
    [66]
    Sun SH, Chen Q, Gu HJ, et al. 2020b. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host & Microbe, 28(1): 124−133.e4.
    [67]
    Sun XS, Sui H, Fisher JT, et al. 2010. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. The Journal of Clinical Investigation, 120(9): 3149−3160. doi: 10.1172/JCI43052
    [68]
    Toots M, Yoon JJ, Cox RM, et al. 2019. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Science Translational Medicine, 11(515): eaax5866. doi: 10.1126/scitranslmed.aax5866
    [69]
    Ulrich L, Halwe NJ, Taddeo A, et al. 2022. Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature, 602(7896): 307−313. doi: 10.1038/s41586-021-04342-0
    [70]
    Van De Ven K, Van Dijken H, Wijsman L, et al. 2021. Pathology and immunity after SARS-CoV-2 infection in male ferrets is affected by age and inoculation route. Frontiers in Immunology, 12: 750229. doi: 10.3389/fimmu.2021.750229
    [71]
    Van Den Brand JMA, Haagmans BL, Leijten L, et al. 2008. Pathology of experimental SARS coronavirus infection in cats and ferrets. Veterinary Pathology, 45(4): 551−562. doi: 10.1354/vp.45-4-551
    [72]
    Walls AC, Park YJ, Tortorici MA, et al. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2): 281−292.e6. doi: 10.1016/j.cell.2020.02.058
    [73]
    Wang DW, Hu B, Hu C, et al. 2020a. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11): 1061−1069. doi: 10.1001/jama.2020.1585
    [74]
    Wang H, Zhang YT, Huang BY, et al. 2020b. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 182(3): 713−721.e9. doi: 10.1016/j.cell.2020.06.008
    [75]
    Wiersinga WJ, Rhodes A, Cheng AC, et al. 2020. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA, 324(8): 782−793. doi: 10.1001/jama.2020.12839
    [76]
    Wong J, Layton D, Wheatley AK, et al. 2019. Improving immunological insights into the ferret model of human viral infectious disease. Influenza and Other Respiratory Viruses, 13(6): 535−546. doi: 10.1111/irv.12687
    [77]
    Wrapp D, Wang NS, Corbett KS, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483): 1260−1263. doi: 10.1126/science.abb2507
    [78]
    Wu SP, Zhong GX, Zhang J, et al. 2020. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nature Communications, 11(1): 4081. doi: 10.1038/s41467-020-17972-1
    [79]
    Xu L, Yu DD, Ma YH, et al. 2020. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zoological Research, 41(5): 517−526. doi: 10.24272/j.issn.2095-8137.2020.053
    [80]
    Yu P, Qi FF, Xu YF, et al. 2020. Age-related rhesus macaque models of COVID-19. Animal Models and Experimental Medicine, 3(1): 93−97. doi: 10.1002/ame2.12108
    [81]
    Zhao Y, Zhao ZX, Wang YJ, et al. 2020. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine, 202(5): 756−759. doi: 10.1164/rccm.202001-0179LE
    [82]
    Zhou B, Thao TTN, Hoffmann D, et al. 2021. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature, 592(7852): 122−127. doi: 10.1038/s41586-021-03361-1
    [83]
    Zhou P, Yang XL, Wang XG, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270−273. doi: 10.1038/s41586-020-2012-7
    [84]
    Zhu N, Zhang DY, Wang WL, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8): 727−733. doi: 10.1056/NEJMoa2001017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (1488) PDF downloads(247) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return