Citation: | Yan Zhao, Chang-Le Wang, Zhi-Yun Gao, Hong-Xiu Qiao, Wei-Jie Wang, Xin-Yan Liu, Xia Chuai. Ferrets: A powerful model of SARS-CoV-2. Zoological Research, 2023, 44(2): 323-330. doi: 10.24272/j.issn.2095-8137.2022.351 |
[1] |
Au GG, Marsh GA, Mcauley AJ, et al. 2022. Characterisation and natural progression of SARS-CoV-2 infection in ferrets. Scientific Reports, 12(1): 5680. doi: 10.1038/s41598-022-08431-6
|
[2] |
Bao LL, Deng W, Huang BY, et al. 2020a. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 583(7818): 830−833. doi: 10.1038/s41586-020-2312-y
|
[3] |
Bao LL, Deng W, Qi FF, et al. 2021. Sequential infection with H1N1 and SARS-CoV-2 aggravated COVID-19 pathogenesis in a mammalian model, and co-vaccination as an effective method of prevention of COVID-19 and influenza. Signal Transduction and Targeted Therapy, 6(1): 200. doi: 10.1038/s41392-021-00618-z
|
[4] |
Bao LL, Gao H, Deng W, et al. 2020b. Transmission of severe acute respiratory syndrome coronavirus 2 via close contact and respiratory droplets among human angiotensin-converting enzyme 2 mice. The Journal of Infectious Diseases, 222(4): 551−555. doi: 10.1093/infdis/jiaa281
|
[5] |
Baughn LB, Sharma N, Elhaik E, et al. 2020. Targeting TMPRSS2 in SARS-CoV-2 infection. Mayo Clinic Proceedings, 95(9): 1989−1999. doi: 10.1016/j.mayocp.2020.06.018
|
[6] |
Beale DJ, Shah R, Karpe AV, et al. 2021. Metabolic profiling from an asymptomatic ferret model of SARS-CoV-2 infection. Metabolites, 11(5): 327. doi: 10.3390/metabo11050327
|
[7] |
Beavis AC, Li Z, Briggs K, et al. 2022. Efficacy of parainfluenza virus 5 (PIV5)-vectored intranasal COVID-19 vaccine as a single dose vaccine and as a booster against SARS-CoV-2 variants. bioRxiv,doi: 10.1101/2022.06.07.495215.
|
[8] |
Bedford J, Enria D, Giesecke J, et al. 2020. COVID-19: towards controlling of a pandemic. The Lancet, 395(10229): 1015−1018. doi: 10.1016/S0140-6736(20)30673-5
|
[9] |
Belser JA, Pulit-Penaloza JA, Maines TR. 2020. Ferreting out influenza virus pathogenicity and transmissibility: past and future risk assessments in the ferret model. Cold Spring Harbor Perspectives in Medicine, 10(7): a038323. doi: 10.1101/cshperspect.a038323
|
[10] |
Chan JFW, Zhang AJ, Yuan SF, et al. 2020. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden syrian hamster model: implications for disease pathogenesis and transmissibility. Clinical Infectious Diseases, 71(9): 2428−2446.
|
[11] |
Compagnone M, Pinto E, Salvatori E, et al. 2022. DNA-vaccine-induced immune response correlates with lower viral SARS-CoV-2 titers in a ferret model. Vaccines, 10(8): 1178. doi: 10.3390/vaccines10081178
|
[12] |
Conforti A, Marra E, Palombo F, et al. 2022. COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Molecular Therapy, 30(1): 311−326. doi: 10.1016/j.ymthe.2021.09.011
|
[13] |
Cox RM, Wolf JD, Lieber CM, et al. 2021a. Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nature Communications, 12(1): 6415. doi: 10.1038/s41467-021-26760-4
|
[14] |
Cox RM, Wolf JD, Plemper RK. 2021b. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nature Microbiology, 6(1): 11−18.
|
[15] |
De Vries RD, Schmitz KS, Bovier FT, et al. 2021. Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science, 371(6536): 1379−1382. doi: 10.1126/science.abf4896
|
[16] |
Everett HE, Lean FZX, Byrne AMP, et al. 2021. Intranasal infection of ferrets with SARS-CoV-2 as a model for asymptomatic human infection. Viruses, 13(1): 113. doi: 10.3390/v13010113
|
[17] |
Francis ME, Richardson B, Goncin U, et al. 2021. Sex and age bias viral burden and interferon responses during SARS-CoV-2 infection in ferrets. Scientific Reports, 11(1): 14536. doi: 10.1038/s41598-021-93855-9
|
[18] |
Hamming I, Timens W, Bulthuis MLC, et al. 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology, 203(2): 631−637. doi: 10.1002/path.1570
|
[19] |
He QY, Mok TN, Yun L, et al. 2020. Single-cell RNA sequencing analysis of human kidney reveals the presence of ACE2 receptor: A potential pathway of COVID-19 infection. Molecular Genetics & Genomic Medicine, 8(10): e1442.
|
[20] |
Imai M, Iwatsuki-Horimoto K, Hatta M, et al. 2020. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences of the United States of America, 117(28): 16587−16595. doi: 10.1073/pnas.2009799117
|
[21] |
Israelow B, Song E, Mao TY, et al. 2020. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. The Journal of Experimental Medicine, 217(12): e20201241. doi: 10.1084/jem.20201241
|
[22] |
Jeong SK, Heo YK, Jeong JH, et al. 2021. COVID-19 subunit vaccine with a combination of TLR1/2 and TLR3 agonists induces robust and protective immunity. Vaccines, 9(9): 957. doi: 10.3390/vaccines9090957
|
[23] |
Jiang RD, Liu MQ, Chen Y, et al. 2020. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell, 182(1): 50−58.e8. doi: 10.1016/j.cell.2020.05.027
|
[24] |
Kashyap T, Murray J, Walker CJ, et al. 2021. Selinexor, a novel selective inhibitor of nuclear export, reduces SARS-CoV-2 infection and protects the respiratory system in vivo. Antiviral Research, 192: 105115.
|
[25] |
Kim EH, Kim YI, Jang SG, et al. 2021a. Antiviral effects of human placenta hydrolysate (Laennec®) against SARS-CoV-2 in vitro and in the ferret model. Journal of Microbiology, 59(11): 1056−1062. doi: 10.1007/s12275-021-1367-2
|
[26] |
Kim SM, Kim EH, Casel MAB, et al. 2022a. SARS-CoV-2 variants show temperature-dependent enhanced polymerase activity in the upper respiratory tract and high transmissibility. bioRxiv,doi: 10.1101/2022.09.27.509689.
|
[27] |
Kim YI, Kim D, Yu KM, et al. 2021b. Development of spike receptor-binding domain nanoparticles as a vaccine candidate against SARS-CoV-2 infection in ferrets. mBio, 12(2): e00230−21.
|
[28] |
Kim YI, Kim SG, Kim SM, et al. 2020. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host & Microbe, 27(5): 704−709.e2.
|
[29] |
Kim YI, Kim SM, Park SJ, et al. 2021c. Critical role of neutralizing antibody for SARS-CoV-2 reinfection and transmission. Emerging Microbes & Infections, 10(1): 152−160.
|
[30] |
Kim YI, Yu KM, Koh JY, et al. 2022b. Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets. Nature Communications, 13(1): 21. doi: 10.1038/s41467-021-27717-3
|
[31] |
Kutter JS, De Meulder D, Bestebroer TM, et al. 2021. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nature Communications, 12(1): 1653. doi: 10.1038/s41467-021-21918-6
|
[32] |
Lambe T, Spencer AJ, Thomas KM, et al. 2021. ChAdOx1 nCoV-19 protection against SARS-CoV-2 in rhesus macaque and ferret challenge models. Communications Biology, 4(1): 915. doi: 10.1038/s42003-021-02443-0
|
[33] |
Lehtinen MJ, Kumar R, Zabel B, et al. 2022. The effect of the probiotic consortia on SARS-CoV-2 infection in ferrets and on human immune cell response in vitro. iScience, 25(6): 104445.
|
[34] |
Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1): 237−261. doi: 10.1146/annurev-virology-110615-042301
|
[35] |
Li L, Honda-Okubo Y, Huang Y, et al. 2021. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine, 39(40): 5940−5953. doi: 10.1016/j.vaccine.2021.07.087
|
[36] |
Lieber CM, Cox RM, Sourimant JD, et al. 2022. SARS-CoV-2 VOC type and biological sex affect molnupiravir efficacy in severe COVID-19 dwarf hamster model. Nature Communications, 13(1): 4416. doi: 10.1038/s41467-022-32045-1
|
[37] |
Lin QS, Lu CN, Hong YQ, et al. 2022. Animal models for studying coronavirus infections and developing antiviral agents and vaccines. Antiviral Research, 203: 105345. doi: 10.1016/j.antiviral.2022.105345
|
[38] |
Liu HN, Gai SJ, Wang XY, et al. 2020. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Cardiovascular Research, 116(10): 1733−1741. doi: 10.1093/cvr/cvaa191
|
[39] |
Ma Q, Ma WJ, Song TZ, et al. 2022. Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zoological Research, 43(6): 1041−1062. doi: 10.24272/j.issn.2095-8137.2022.443
|
[40] |
Marsh GA, Mcauley AJ, Au GG, et al. 2021. ChAdOx1 nCoV-19 (AZD1222) vaccine candidate significantly reduces SARS-CoV-2 shedding in ferrets. npj Vaccines, 6(1): 67. doi: 10.1038/s41541-021-00315-6
|
[41] |
Martina BEE, Haagmans BL, Kuiken T, et al. 2003. Virology: SARS virus infection of cats and ferrets. Nature, 425(6961): 915. doi: 10.1038/425915a
|
[42] |
Martins M, Fernandes MHV, Joshi LR, et al. 2022. Age-related susceptibility of ferrets to SARS-CoV-2 infection. Journal of Virology, 96(3): e0145521. doi: 10.1128/jvi.01455-21
|
[43] |
Pandey K, Acharya A, Mohan M, et al. 2021. Animal models for SARS-CoV-2 research: a comprehensive literature review. Transboundary and Emerging Diseases, 68(4): 1868−1885. doi: 10.1111/tbed.13907
|
[44] |
Park SJ, Yu KM, Kim YI, et al. 2020. Antiviral efficacies of FDA-approved drugs against SARS-CoV-2 infection in ferrets. mBio, 11(3): e01114−20.
|
[45] |
Patel DP, Field CJ, Septer KM, et al. 2021. Transmission and protection against reinfection in the ferret model with the SARS-CoV-2 USA-WA1/2020 reference isolate. Journal of Virology, 95(13): e0223220. doi: 10.1128/JVI.02232-20
|
[46] |
Peacock TP, Goldhill DH, Zhou J, et al. 2021. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature Microbiology, 6(7): 899−909. doi: 10.1038/s41564-021-00908-w
|
[47] |
Prince GA, Porter DD. 1976. The pathogenesis of respiratory syncytial virus infection in infant ferrets. The American Journal of Pathology, 82(2): 339−352.
|
[48] |
Pulit-Penaloza JA, Belser JA, Sun XJ, et al. 2022. Comparative assessment of severe acute respiratory syndrome coronavirus 2 variants in the ferret model. mBio, 13(5): e0242122. doi: 10.1128/mbio.02421-22
|
[49] |
Rathnasinghe R, Strohmeier S, Amanat F, et al. 2020. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerging Microbes & Infections, 9(1): 2433−2445.
|
[50] |
Richard M, Kok A, De Meulder D, et al. 2020. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nature Communications, 11(1): 3496. doi: 10.1038/s41467-020-17367-2
|
[51] |
Rockx B, Kuiken T, Herfst S, et al. 2020. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 368(6494): 1012−1015. doi: 10.1126/science.abb7314
|
[52] |
Ryan KA, Bewley KR, Fotheringham SA, et al. 2021. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nature Communications, 12(1): 81. doi: 10.1038/s41467-020-20439-y
|
[53] |
Ryu DK, Song RN, Kim M, et al. 2021. Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant. Biochemical and Biophysical Research Communications, 566: 135−140. doi: 10.1016/j.bbrc.2021.06.016
|
[54] |
Sawatzki K, Hill NJ, Puryear WB, et al. 2021. Host barriers to SARS-CoV-2 demonstrated by ferrets in a high-exposure domestic setting. Proceedings of the National Academy of Sciences of the United States of America, 118(18): e2025601118. doi: 10.1073/pnas.2025601118
|
[55] |
Schiffman Z, Liu GD, Cao WG, et al. 2020. The ferret as a model for filovirus pathogenesis and countermeasure evaluation. ILAR Journal, 61(1): 62−71. doi: 10.1093/ilar/ilab011
|
[56] |
Shan C, Yao YF, Yang XL, et al. 2020. Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Research, 30(8): 670−677. doi: 10.1038/s41422-020-0364-z
|
[57] |
Shi JZ, Wen ZY, Zhong GX, et al. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 368(6494): 1016−1020. doi: 10.1126/science.abb7015
|
[58] |
Si LL, Shen Q, Li J, et al. 2022. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nature Biotechnology, 40(9): 1370−1377. doi: 10.1038/s41587-022-01381-4
|
[59] |
Sia SF, Yan LM, Chin AWH, et al. 2020. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 583(7818): 834−838. doi: 10.1038/s41586-020-2342-5
|
[60] |
Song TZ, Zheng HY, Han JB, et al. 2020. Delayed severe cytokine storm and immune cell infiltration in SARS-CoV-2-infected aged Chinese rhesus macaques. Zoological Research, 41(5): 503−516. doi: 10.24272/j.issn.2095-8137.2020.202
|
[61] |
Sourimant J, Lieber CM, Aggarwal M, et al. 2022. 4'-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication. Science, 375(6577): 161−167. doi: 10.1126/science.abj5508
|
[62] |
Stittelaar KJ, De Waal L, Van Amerongen G, et al. 2016. Ferrets as a novel animal model for studying human respiratory syncytial virus infections in immunocompetent and immunocompromised hosts. Viruses, 8(6): 168. doi: 10.3390/v8060168
|
[63] |
Sun C, Xie C, Bu GL, et al. 2022a. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 7(1): 202. doi: 10.1038/s41392-022-01039-2
|
[64] |
Sun HL, Wang AL, Wang LX, et al. 2022b. Systematic tracing of susceptible animals to SARS-CoV-2 by a bioinformatics framework. Frontiers in Microbiology, 13: 781770. doi: 10.3389/fmicb.2022.781770
|
[65] |
Sun J, Zhuang Z, Zheng J, et al. 2020a. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell, 182(3): 734−743.e5. doi: 10.1016/j.cell.2020.06.010
|
[66] |
Sun SH, Chen Q, Gu HJ, et al. 2020b. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host & Microbe, 28(1): 124−133.e4.
|
[67] |
Sun XS, Sui H, Fisher JT, et al. 2010. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. The Journal of Clinical Investigation, 120(9): 3149−3160. doi: 10.1172/JCI43052
|
[68] |
Toots M, Yoon JJ, Cox RM, et al. 2019. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Science Translational Medicine, 11(515): eaax5866. doi: 10.1126/scitranslmed.aax5866
|
[69] |
Ulrich L, Halwe NJ, Taddeo A, et al. 2022. Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature, 602(7896): 307−313. doi: 10.1038/s41586-021-04342-0
|
[70] |
Van De Ven K, Van Dijken H, Wijsman L, et al. 2021. Pathology and immunity after SARS-CoV-2 infection in male ferrets is affected by age and inoculation route. Frontiers in Immunology, 12: 750229. doi: 10.3389/fimmu.2021.750229
|
[71] |
Van Den Brand JMA, Haagmans BL, Leijten L, et al. 2008. Pathology of experimental SARS coronavirus infection in cats and ferrets. Veterinary Pathology, 45(4): 551−562. doi: 10.1354/vp.45-4-551
|
[72] |
Walls AC, Park YJ, Tortorici MA, et al. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2): 281−292.e6. doi: 10.1016/j.cell.2020.02.058
|
[73] |
Wang DW, Hu B, Hu C, et al. 2020a. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11): 1061−1069. doi: 10.1001/jama.2020.1585
|
[74] |
Wang H, Zhang YT, Huang BY, et al. 2020b. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 182(3): 713−721.e9. doi: 10.1016/j.cell.2020.06.008
|
[75] |
Wiersinga WJ, Rhodes A, Cheng AC, et al. 2020. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA, 324(8): 782−793. doi: 10.1001/jama.2020.12839
|
[76] |
Wong J, Layton D, Wheatley AK, et al. 2019. Improving immunological insights into the ferret model of human viral infectious disease. Influenza and Other Respiratory Viruses, 13(6): 535−546. doi: 10.1111/irv.12687
|
[77] |
Wrapp D, Wang NS, Corbett KS, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483): 1260−1263. doi: 10.1126/science.abb2507
|
[78] |
Wu SP, Zhong GX, Zhang J, et al. 2020. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nature Communications, 11(1): 4081. doi: 10.1038/s41467-020-17972-1
|
[79] |
Xu L, Yu DD, Ma YH, et al. 2020. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zoological Research, 41(5): 517−526. doi: 10.24272/j.issn.2095-8137.2020.053
|
[80] |
Yu P, Qi FF, Xu YF, et al. 2020. Age-related rhesus macaque models of COVID-19. Animal Models and Experimental Medicine, 3(1): 93−97. doi: 10.1002/ame2.12108
|
[81] |
Zhao Y, Zhao ZX, Wang YJ, et al. 2020. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine, 202(5): 756−759. doi: 10.1164/rccm.202001-0179LE
|
[82] |
Zhou B, Thao TTN, Hoffmann D, et al. 2021. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature, 592(7852): 122−127. doi: 10.1038/s41586-021-03361-1
|
[83] |
Zhou P, Yang XL, Wang XG, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270−273. doi: 10.1038/s41586-020-2012-7
|
[84] |
Zhu N, Zhang DY, Wang WL, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8): 727−733. doi: 10.1056/NEJMoa2001017
|