Volume 44 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Francisco M. Nadal-Nicolás, Caridad Galindo-Romero, Fernando Lucas-Ruiz, Nicholas Marsh-Amstrong, Wei Li, Manuel Vidal-Sanz, Marta Agudo-Barriuso. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zoological Research, 2023, 44(1): 226-248. doi: 10.24272/j.issn.2095-8137.2022.308
Citation: Francisco M. Nadal-Nicolás, Caridad Galindo-Romero, Fernando Lucas-Ruiz, Nicholas Marsh-Amstrong, Wei Li, Manuel Vidal-Sanz, Marta Agudo-Barriuso. Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques. Zoological Research, 2023, 44(1): 226-248. doi: 10.24272/j.issn.2095-8137.2022.308

Pan-retinal ganglion cell markers in mice, rats, and rhesus macaques

doi: 10.24272/j.issn.2095-8137.2022.308
The authors declare that they have no competing interests.
F.M.N.N., C.G.R., and M.A.B. conceived and designed the study, analyzed the data, and prepared the figures. F.L.R. analyzed the data and prepared the figures. N.M.A., L.W., N.S., and M.V.S. participated in manuscript revision. M.A.B. wrote the first manuscript draft. L.W., M.V.S., and M.A.B. funded the study. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This study was supported by the Spanish Ministry of Economy and Competitiveness (PID2019-106498GB-I0), Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional “Una manera de hacer Europa” (PI19/00071), Fundación Séneca, Agencia de Ciencia y Tecnología Región de Murcia (19881/GERM/15), Spanish Ministry of Science and Innovation (PID 2019-106498 GB-I00), and Intramural Research Program of the National Eye Institute, National Institutes of Health (NIH/NEI RO1 EY029087)
More Information
  • Corresponding author: E-mail: manuel.vidal@um.esmartabar@um.es
  • Received Date: 2022-09-23
  • Accepted Date: 2022-12-13
  • Published Online: 2022-12-16
  • Publish Date: 2023-01-18
  • Univocal identification of retinal ganglion cells (RGCs) is an essential prerequisite for studying their degeneration and neuroprotection. Before the advent of phenotypic markers, RGCs were normally identified using retrograde tracing of retinorecipient areas. This is an invasive technique, and its use is precluded in higher mammals such as monkeys. In the past decade, several RGC markers have been described. Here, we reviewed and analyzed the specificity of nine markers used to identify all or most RGCs, i.e., pan-RGC markers, in rats, mice, and macaques. The best markers in the three species in terms of specificity, proportion of RGCs labeled, and indicators of viability were BRN3A, expressed by vision-forming RGCs, and RBPMS, expressed by vision- and non-vision-forming RGCs. NEUN, often used to identify RGCs, was expressed by non-RGCs in the ganglion cell layer, and therefore was not RGC-specific. γ-SYN, TUJ1, and NF-L labeled the RGC axons, which impaired the detection of their somas in the central retina but would be good for studying RGC morphology. In rats, TUJ1 and NF-L were also expressed by non-RGCs. BM88, ERRβ, and PGP9.5 are rarely used as markers, but they identified most RGCs in the rats and macaques and ERRβ in mice. However, PGP9.5 was also expressed by non-RGCs in rats and macaques and BM88 and ERRβ were not suitable markers of viability.
  • The authors declare that they have no competing interests.
    F.M.N.N., C.G.R., and M.A.B. conceived and designed the study, analyzed the data, and prepared the figures. F.L.R. analyzed the data and prepared the figures. N.M.A., L.W., N.S., and M.V.S. participated in manuscript revision. M.A.B. wrote the first manuscript draft. L.W., M.V.S., and M.A.B. funded the study. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Álvarez-Hernán G, Hernández-Núñez I, Rico-Leo EM, Marzal A, De Mera-Rodríguez JA, Rodríguez-León J, et al. 2020. Retinal differentiation in an altricial bird species, Taeniopygia guttata: an immunohistochemical study. Experimental Eye Research, 190: 107869. doi: 10.1016/j.exer.2019.107869
    Ávila-García M, García-Sánchez G, Lira-Romero E, Moreno-Mendoza N. 2012. Characterization of progenitor cells during canine retinal development. Stem Cells International, 2012: 675805.
    Avilés-Trigueros M, Sauvé Y, Lund RD, Vidal-Sanz M. 2000. Selective innervation of retinorecipient brainstem nuclei by retinal ganglion cell axons regenerating through peripheral nerve grafts in adult rats. The Journal of Neuroscience, 20(1): 361−374. doi: 10.1523/JNEUROSCI.20-01-00361.2000
    Badea TC, Nathans J. 2011. Morphologies of mouse retinal ganglion cells expressing transcription factors BRN3A, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Research, 51(2): 269−279. doi: 10.1016/j.visres.2010.08.039
    Baden T, Berens P, Franke K, Rosón MR, Bethge M, Euler T. 2016. The functional diversity of retinal ganglion cells in the mouse. Nature, 529(7586): 345−350. doi: 10.1038/nature16468
    Bae JA, Mu S, Kim JS, Turner NL, Tartavull I, Kemnitz N, et al. 2018. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell, 173(5): 1293−1306.e19. doi: 10.1016/j.cell.2018.04.040
    Barnstable CJ, Dräger UC. 1984. Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience, 11(4): 847−855. doi: 10.1016/0306-4522(84)90195-7
    Berg DJ, Kartheiser K, Leyrer M, Saali A, Berson DM. 2019. Transcriptomic signatures of postnatal and adult intrinsically photosensitive ganglion cells. eNeuro, 6(4): ENEURO.0022−19.2019.
    Black MM, Lasek RJ. 1980. Slow components of axonal transport: two cytoskeletal networks. The Journal of Cell Biology, 86(2): 616−623. doi: 10.1083/jcb.86.2.616
    Bollaerts I, Veys L, Geeraerts E, Andries L, De Groef L, Buyens T, et al. 2018. Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system. Brain Structure and Function, 223(2): 545−567. doi: 10.1007/s00429-017-1571-3
    Bouskila J, Micaelo-Fernandes C, Palmour RM, Bouchard JF, Ptito M. 2020. Transient receptor potential vanilloid type 1 is expressed in the horizontal pathway of the vervet monkey retina. Scientific Reports, 10(1): 12116. doi: 10.1038/s41598-020-68937-9
    Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, et al. 2008. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. The Journal of Neuroscience, 28(11): 2735−2744. doi: 10.1523/JNEUROSCI.4443-07.2008
    Budram-Mahadeo V, Morris PJ, Latchman DS. 2002. The Brn-3a transcription factor inhibits the pro-apoptotic effect of p53 and enhances cell cycle arrest by differentially regulating the activity of the p53 target genes encoding Bax and p21CIP1/Waf1. Oncogene, 21(39): 6123−6131. doi: 10.1038/sj.onc.1205842
    Chen CK, Kiyama T, Weber N, Whitaker CM, Pan P, Badea TC, et al. 2021. Characterization of Tbr2-expressing retinal ganglion cells. The Journal of Comparative Neurology, 529(15): 3513−3532. doi: 10.1002/cne.25208
    Chen SK, Badea TC, Hattar S. 2011. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature, 476(7358): 92−95. doi: 10.1038/nature10206
    Chidlow G, Casson R, Sobrado-Calvo P, Vidal-Sanz M, Osborne NN. 2005. Measurement of retinal injury in the rat after optic nerve transection: an RT-PCR study. Molecular Vision, 11: 387−396.
    Chidlow G, Osborne NN. 2003. Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Research, 963(1–2): 298–306.
    Corral-Domenge C, De La Villa P, Mansilla A, Germain F. 2022. Tools and biomarkers for the study of retinal ganglion cell degeneration. International Journal of Molecular Sciences, 23(8): 4287. doi: 10.3390/ijms23084287
    Cuenca N, De La Villa P. 2021. La Retina de los Vertebrados. Consejo Superior de Investigaciones Científicas.
    Dabin I, Barnstable CJ. 1995. Rat retinal Müller cells express Thy-1 following neuronal cell death. Glia, 14(1): 23−32. doi: 10.1002/glia.440140105
    Darlington PJ, Goldman JS, Cui QL, Antel JP, Kennedy TE. 2008. Widespread immunoreactivity for neuronal nuclei in cultured human and rodent astrocytes. Journal of Neurochemistry, 104(5): 1201−1209. doi: 10.1111/j.1471-4159.2007.05043.x
    Day INM. 1992. Enolases and PGP9.5 as tissue-specific markers. Biochemical Society Transactions, 20(3): 637−642. doi: 10.1042/bst0200637
    De Lara MJP, Santano C, Guzmán-Aránguez A, Valiente-Soriano FJ, Avilés-Trigueros M, Vidal-Sanz M, et al. 2014. Assessment of inner retina dysfunction and progressive ganglion cell loss in a mouse model of glaucoma. Experimental Eye Research, 122: 40−49. doi: 10.1016/j.exer.2014.02.022
    Dibas A, Yang MH, He SQ, Bobich J, Yorio T. 2008. Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Molecular Vision, 14: 1770−1783.
    Dordea AC, Bray MA, Allen K, Logan DJ, Fei F, Malhotra R, et al. 2016. An open-source computational tool to automatically quantify immunolabeled retinal ganglion cells. Experimental Eye Research, 147: 50−56. doi: 10.1016/j.exer.2016.04.012
    Dräger UC, Hofbauer A. 1984. Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in retina. Nature, 309(5969): 624−626. doi: 10.1038/309624a0
    Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, et al. 2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron, 67(1): 49−60. doi: 10.1016/j.neuron.2010.05.023
    Esquiva G, Avivi A, Hannibal J. 2016. Non-image forming light detection by melanopsin, rhodopsin, and long-middlewave (L/W) cone opsin in the subterranean blind mole rat, Spalax ehrenbergi: immunohistochemical characterization, distribution, and connectivity. Frontiers in Neuroanatomy, 10: 61.
    Esteve-Rudd J, Campello L, Herrero MT, Cuenca N, Martín-Nieto J. 2010. Expression in the mammalian retina of parkin and UCH-L1, two components of the ubiquitin-proteasome system. Brain Research, 1352: 70−82. doi: 10.1016/j.brainres.2010.07.019
    Farooqui-Kabir SR, Budhram-Mahadeo V, Lewis H, Latchman DS, Marber MS, Heads RJ. 2004. Regulation of Hsp27 expression and cell survival by the POU transcription factor Brn3a. Cell Death & Differentiation, 11(11): 1242−1244.
    Feng L, Zhao Y, Yoshida M, Chen H, Yang JF, Kim TS, et al. 2013. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Investigative Ophthalmology & Visual Science, 54(2): 1106−1117.
    Gábriel R, Straznicky C. 1992. Immunocytochemical localization of parvalbumin- and neurofilament triplet protein immunoreactivity in the cat retina: colocalization in a subpopulation of AII amacrine cells. Brain Research, 595(1): 133−136. doi: 10.1016/0006-8993(92)91462-N
    Galindo-Romero C, Avilés-Trigueros M, Jiménez-López M, Valiente-Soriano FJ, Salinas-Navarro M, Nadal-Nicolás F, et al. 2011. Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Experimental Eye Research, 92(5): 377−387. doi: 10.1016/j.exer.2011.02.008
    Galindo-Romero C, Harun-Or-Rashid M, Jiménez-López M, Vidal-Sanz M, Agudo-Barriuso M, Hallböök F. 2016. Neuroprotection by α2-adrenergic receptor stimulation after excitotoxic retinal injury: a study of the total population of retinal ganglion cells and their distribution in the chicken retina. PLoS One, 11(9): e0161862. doi: 10.1371/journal.pone.0161862
    Galindo-Romero C, Jiménez-López M, García-Ayuso D, Salinas-Navarro M, Nadal-Nicolás FM, Agudo-Barriuso M, et al. 2013a. Number and spatial distribution of intrinsically photosensitive retinal ganglion cells in the adult albino rat. Experimental Eye Research, 108: 84−93. doi: 10.1016/j.exer.2012.12.010
    Galindo-Romero C, Valiente-Soriano FJ, Jiménez-López M, García-Ayuso D, Villegas-Pérez MP, Vidal-Sanz M, et al. 2013b. Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia. Investigative Ophthalmology & Visual Science, 54(2): 974−985.
    Gallego-Ortega A, Norte-Muñoz M, De Imperial-Ollero JAM, Bernal-Garro JM, Valiente-Soriano FJ, De La Villa Polo P, et al. 2020. Functional and morphological alterations in a glaucoma model of acute ocular hypertension. Progress in Brain Research, 256(1): 1−29.
    García-Ayuso D, Di Pierdomenico J, Valiente-Soriano FJ, Martínez-Vacas A, Agudo-Barriuso M, Vidal-Sanz M, et al. 2019a. β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells. Experimental Eye Research, 188: 107781. doi: 10.1016/j.exer.2019.107781
    García-Ayuso D, Di Pierdomenico J, Vidal-Sanz M, Villegas-Pérez MP. 2019b. Retinal ganglion cell death as a late remodeling effect of photoreceptor degeneration. International Journal of Molecular Sciences, 20(18): 4649. doi: 10.3390/ijms20184649
    Geeraerts E, Dekeyster E, Gaublomme D, Salinas-Navarro M, De Groef L, Moons L. 2016. A freely available semi-automated method for quantifying retinal ganglion cells in entire retinal flatmounts. Experimental Eye Research, 147: 105−113. doi: 10.1016/j.exer.2016.04.010
    Gerber WV, Yatskievych TA, Antin PB, Correia KM, Conlon RA, Krieg PA. 1999. The RNA-binding protein gene, hermes, is expressed at high levels in the developing heart. Mechanisms of Development, 80(1): 77−86. doi: 10.1016/S0925-4773(98)00195-6
    Ghinia MG, Novelli E, Sajgo S, Badea TC, Strettoi E. 2019. BRN3A and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells. The Journal of Comparative Neurology, 527(1): 187−211. doi: 10.1002/cne.24072
    Giolli RA, Towns LC. 1980. A review of axon collateralization in the mammalian visual system. Brain, Behavior and Evolution, 17(5): 364−390. doi: 10.1159/000121809
    Gong B, Leznik E. 2007. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News & Perspectives, 20(6): 365−370.
    Gordon KJ, Blobe GC. 2008. Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1782(4): 197−228. doi: 10.1016/j.bbadis.2008.01.006
    Grillo SL, Stella SL Jr. 2018. Melanopsin retinal ganglion cells are not labeled in Thy-1 YFP-16 transgenic mice. Neuroreport, 29(2): 118−122. doi: 10.1097/WNR.0000000000000918
    Gusel'nikova VV, Korzhevskiy DE. 2015. NEUN as a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae, 7(2): 42−47. doi: 10.32607/20758251-2015-7-2-42-47
    Guymer C, Damp L, Chidlow G, Wood J, Tang YF, Casson R. 2020. Software for quantifying and batch processing images of Brn3a and RBPMS immunolabeled retinal ganglion cells in retinal wholemounts. Translational Vision Science & Technology, 9(6): 28.
    Harada T, Harada C, Wang YL, Osaka H, Amanai K, Tanaka K, et al. 2004. Role of ubiquitin carboxy terminal hydrolase-L1 in neural cell apoptosis induced by ischemic retinal injury in vivo. The American Journal of Pathology, 164(1): 59–64.
    Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, et al. 2006. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. The Journal of Comparative Neurology, 497(3): 326−349. doi: 10.1002/cne.20970
    Hayworth CR, Rojas JC, Gonzalez-Lima F. 2008. Transgenic mice expressing cyan fluorescent protein as a reporter strain to detect the effects of rotenone toxicity on retinal ganglion cells. Journal of Toxicology and Environmental Health, Part A, 71(24): 1582−1592. doi: 10.1080/15287390802414190
    Hirata M, Shearer TR, Azuma M. 2015. Hypoxia activates calpains in the nerve fiber layer of monkey retinal explants. Investigative Ophthalmology & Visual Science, 56(10): 6049−6057.
    Hirsch N, Harris WA. 1997. Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation. Investigative Ophthalmology & Visual Science, 38(5): 960−969.
    Hoffman PN, Lasek RJ. 1975. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. The Journal of Cell Biology, 66(2): 351−366. doi: 10.1083/jcb.66.2.351
    Hörnberg H, Horck FWV, Maurus D, Zwart M, Svoboda H, Harris WA, et al. 2013. RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo. The Journal of Neuroscience, 33(25): 10384–10395.
    Huang EJ, Liu W, Fritzsch B, Bianchi LM, Reichardt LF, Xiang MQ. 2001. BRN3A is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development, 128(13): 2421−2432. doi: 10.1242/dev.128.13.2421
    Huang W, Fileta J, Guo Y, Grosskreutz CL. 2006. Downregulation of Thy1 in retinal ganglion cells in experimental glaucoma. Current Eye Research, 31(3): 265−271. doi: 10.1080/02713680500545671
    Hudson CD, Morris PJ, Latchman DS, Budhram-Mahadeo VS. 2016. Brn-3a transcription factor blocks p53-mediated activation of proapoptotic target genes Noxa and Bax in vitro and in vivo to determine cell fate. The Journal of Biological Chemistry, 291(30): 15909. doi: 10.1074/jbc.A116.408679
    Iaboni DSM, Farrell SR, Chauhan BC. 2020. Morphological multivariate cluster analysis of murine retinal ganglion cells selectively expressing yellow fluorescent protein. Experimental Eye Research, 196: 108044. doi: 10.1016/j.exer.2020.108044
    Ikeda T, Nakamura K, Oku H, Horie T, Kida T, Takai S. 2019. Immunohistological study of monkey foveal retina. Scientific Reports, 9(1): 5258. doi: 10.1038/s41598-019-41793-y
    Jain V, Ravindran E, Dhingra NK. 2012. Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse. The Journal of Comparative Neurology, 520(4): 742−755. doi: 10.1002/cne.22765
    Jara JH, Frank DD, Özdinler PH. 2013. Could dysregulation of UPS be a common underlying mechanism for cancer and neurodegeneration? Lessons from UCHL1. Cell Biochemistry and Biophysics, 67(1): 45−53. doi: 10.1007/s12013-013-9631-7
    Jeon CJ, Strettoi E, Masland RH. 1998. The major cell populations of the mouse retina. The Journal of Neuroscience, 18(21): 8936−8946. doi: 10.1523/JNEUROSCI.18-21-08936.1998
    Johansson UE, Eftekhari S, Warfvinge K. 2010. A battery of cell- and structure-specific markers for the adult porcine retina. The Journal of Histochemistry & Cytochemistry, 58(4): 377−389.
    Jung C, Yabe JT, Shea TB. 2000. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity. Brain Research, 856(1–2): 12–19.
    Kalesnykas G, Oglesby EN, Zack DJ, Cone FE, Steinhart MR, Tian J, et al. 2012. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Investigative Ophthalmology & Visual Science, 53(7): 3847−3857.
    Karnas D, Mordel J, Bonnet D, Pévet P, Hicks D, Meissl H. 2013. Heterogeneity of intrinsically photosensitive retinal ganglion cells in the mouse revealed by molecular phenotyping. The Journal of Comparative Neurology, 521(4): 912−932. doi: 10.1002/cne.23210
    Katsimpardi L, Gaitanou M, Malnou CE, Lledo PM, Charneau P, Matsas R, et al. 2008. BM88/Cend1 expression levels are critical for proliferation and differentiation of subventricular zone-derived neural precursor cells. Stem Cells, 26(7): 1796−1807. doi: 10.1634/stemcells.2007-0921
    Kay JN, De La Huerta I, Kim IJ, Zhang YF, Yamagata M, Chu MW, et al. 2011. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. The Journal of Neuroscience, 31(21): 7753−7762. doi: 10.1523/JNEUROSCI.0907-11.2011
    Kim CY, Kuehn MH, Clark AF, Kwon YH. 2006. Gene expression profile of the adult human retinal ganglion cell layer. Molecular Vision, 12: 1640−1648.
    Kim KK, Adelstein RS, Kawamoto S. 2009. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. The Journal of Biological Chemistry, 284(45): 31052−31061. doi: 10.1074/jbc.M109.052969
    Kim KK, Nam J, Mukouyama YS, Kawamoto S. 2013. Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development. The Journal of Cell Biology, 200(4): 443−458. doi: 10.1083/jcb.201206146
    Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. 2021. Retinal ganglion cells-diversity of cell types and clinical relevance. Frontiers in Neurology, 12: 661938. doi: 10.3389/fneur.2021.661938
    Kong WC, Cho EYP. 1999. Antibodies against neurofilament subunits label retinal ganglion cells but not displaced amacrine cells of hamsters. Life Sciences, 64(19): 1773−1778. doi: 10.1016/S0024-3205(99)00115-0
    Koutmani Y, Hurel C, Patsavoudi E, Hack M, Gotz M, Thomaidou D, et al. 2004. BM88 is an early marker of proliferating precursor cells that will differentiate into the neuronal lineage. The European Journal of Neuroscience, 20(10): 2509−2523. doi: 10.1111/j.1460-9568.2004.03724.x
    Kunst S, Wolloscheck T, Grether M, Trunsch P, Wolfrum U, Spessert R. 2015. Photoreceptor cells display a daily rhythm in the orphan receptor Esrrβ. Molecular Vision, 21: 173−184.
    Kwong JMK, Caprioli J, Piri N. 2010. RNA binding protein with multiple splicing: a new marker for retinal ganglion cells. Investigative Ophthalmology & Visual Science, 51(2): 1052−1058.
    Kwong JMK, Quan A, Kyung H, Piri N, Caprioli J. 2011. Quantitative analysis of retinal ganglion cell survival with RBPMS immunolabeling in animal models of optic neuropathies. Investigative Ophthalmology & Visual Science, 52(13): 9694−9702.
    Lafuente MP, Villegas-Pérez MP, Sellés-Navarro I, Mayor-Torroglosa S, De Imperial JM, Vidal-Sanz M. 2002. Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity and duration depends on the duration of the insult. Neuroscience, 109(1): 157−168. doi: 10.1016/S0306-4522(01)00458-4
    Lansbury PT Jr. 2006. Improving synaptic function in a mouse model of AD. Cell, 126(4): 655−657. doi: 10.1016/j.cell.2006.08.011
    Latchman DS, Dent CL, Lillycrop KA, Wood JN. 1992. POU family transcription factors in sensory neurons. Biochemical Society Transactions, 20(3): 627−631. doi: 10.1042/bst0200627
    Leyva-Díaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, Hobert O. 2020. Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. WIREs Developmental Biology, 9(4): e374.
    Li Y, Schlamp CL, Poulsen KP, Nickells RW. 2000. Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. Experimental Eye Research, 71(2): 209−213. doi: 10.1006/exer.2000.0873
    Lin YS, Kuo KT, Chen SK, Huang HS. 2018. RBFOX3/NEUN is dispensable for visual function. PLoS One, 13(2): e0192355. doi: 10.1371/journal.pone.0192355
    Linden R, Perry VH. 1983. Massive retinotectal projection in rats. Brain Research, 272(1): 145−149. doi: 10.1016/0006-8993(83)90371-2
    Lingam S, Liu ZP, Yang BX, Wong W, Parikh BH, Ong JY, et al. 2021. cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates. Stem Cell Research & Therapy, 12(1): 464.
    Liu W, Khare SL, Liang X, Peters MA, Liu X, Cepko CL, et al. 2000. All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development, 127(15): 3237−3247. doi: 10.1242/dev.127.15.3237
    Liu Y, Tapia ML, Yeh J, He RC, Pomerleu D, Lee RK. 2020. Differential Gamma-synuclein expression in acute and chronic retinal ganglion cell death in the retina and optic nerve. Molecular Neurobiology, 57(2): 698−709. doi: 10.1007/s12035-019-01735-1
    Liu ZP, Ilmarinen T, Tan GSW, Hongisto H, Wong EYM, Tsai ASH, et al. 2021. Submacular integration of hESC-RPE monolayer xenografts in a surgical non-human primate model. Stem Cell Research & Therapy, 12(1): 423.
    Lopez AJ, Kim S, Qian XY, Rogers J, Stout JT, Thomasy SM, et al. 2022. Retinal organoids derived from rhesus macaque iPSCs undergo accelerated differentiation compared to human stem cells. Cell Proliferation, 55(4): e13198.
    López-Herrera MPL, Mayor-Torroglosa S, De Imperial JM, Villegas-Pérez MP, Vidal-Sanz M. 2002. Transient ischemia of the retina results in altered retrograde axoplasmic transport: neuroprotection with brimonidine. Experimental Neurology, 178(2): 243−258. doi: 10.1006/exnr.2002.8043
    Mali RS, Cheng M, Chintala SK. 2005. Intravitreous injection of a membrane depolarization agent causes retinal degeneration via matrix metalloproteinase-9. Investigative Ophthalmology & Visual Science, 46(6): 2125−2132.
    Masin L, Claes M, Bergmans S, Cools L, Andries L, Davis BM, et al. 2021. A novel retinal ganglion cell quantification tool based on deep learning. Scientific Reports, 11(1): 702. doi: 10.1038/s41598-020-80308-y
    Matuszczak E, Tylicka M, Komarowska MD, Debek W, Hermanowicz A. 2020. Ubiquitin carboxy-terminal hydrolase L1 - physiology and pathology. Cell Biochemistry and Function, 38(5): 533−540. doi: 10.1002/cbf.3527
    May CA, Lütjen-Drecoll E, Narfström K. 2005. Morphological changes in the anterior segment of the Abyssinian cat eye with hereditary rod-cone degeneration. Current Eye Research, 30(10): 855−862. doi: 10.1080/02713680591006219
    Miesfeld JB, Ghiasvand NM, Marsh-Armstrong B, Marsh-Armstrong N, Miller EB, Zhang PF, et al. 2020. The Atoh7 remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proceedings of the National Academy of Sciences of the United States of America, 117(35): 21690−21700. doi: 10.1073/pnas.2006888117
    Miller DA, Grannonico M, Liu MN, Kuranov RV, Netland PA, Liu XR, et al. 2020. Visible-light optical coherence tomography fibergraphy for quantitative imaging of retinal ganglion cell axon bundles. Translational Vision Science & Technology, 9(11): 11.
    Mu XQ, Beremand PD, Zhao S, Pershad R, Sun HX, Scarpa A, et al. 2004. Discrete gene sets depend on POU domain transcription factor Brn3b/Brn-3.2/POU4f2 for their expression in the mouse embryonic retina. Development, 131(6): 1197−1210. doi: 10.1242/dev.01010
    Mullen RJ, Buck CR, Smith AM. 1992. NEUN, a neuronal specific nuclear protein in vertebrates. Development, 116(1): 201−211. doi: 10.1242/dev.116.1.201
    Munaut C, Lambert V, Noël A, Frankenne F, Deprez M, Foidart JM, et al. 2001. Presence of oestrogen receptor type β in human retina. The British Journal of Ophthalmology, 85(7): 877−882. doi: 10.1136/bjo.85.7.877
    Muzyka VV, Brooks M, Badea TC. 2018. Postnatal developmental dynamics of cell type specification genes in BRN3A/Pou4f1 Retinal Ganglion Cells. Neural Development, 13(1): 15. doi: 10.1186/s13064-018-0110-0
    Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Sobrado-Calvo P, Alburquerque-Béjar JJ, Vidal-Sanz M, et al. 2012. Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats. PLoS One, 7(11): e49830. doi: 10.1371/journal.pone.0049830
    Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Sobrado-Calvo P, Vidal-Sanz M, Agudo-Barriuso M. 2017. Microglial dynamics after axotomy-induced retinal ganglion cell death. Journal of Neuroinflammation, 14(1): 218. doi: 10.1186/s12974-017-0982-7
    Nadal-Nicolás FM, Jiménez-López M, Sobrado-Calvo P, Nieto-López L, Cánovas-Martínez I, Salinas-Navarro M, et al. 2009. Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Investigative Ophthalmology & Visual Science, 50(8): 3860−3868.
    Nadal-Nicolás FM, Madeira MH, Salinas-Navarro M, Jiménez-López M, Galindo-Romero C, Ortín-Martínez A, et al. 2015a. Transient downregulation of melanopsin expression after retrograde tracing or optic nerve injury in adult rats. Investigative Ophthalmology & Visual Science, 56(8): 4309−4323.
    Nadal-Nicolás FM, Miyagishima KJ, Li W. 2022. In search for the "idyllic" animal model to evaluate ocular pathologies and translate new therapies to improve human health. Neural Regeneration Research, 17(12): 2697−2699. doi: 10.4103/1673-5374.339485
    Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Sobrado-Calvo P, Villegas-Pérez MP, Vidal-Sanz M, et al. 2014. Displaced retinal ganglion cells in albino and pigmented rats. Frontiers in Neuroanatomy, 8: 99.
    Nadal-Nicolás FM, Salinas-Navarro M, Vidal-Sanz M, Agudo-Barriuso M. 2015b. Two methods to trace retinal ganglion cells with fluorogold: from the intact optic nerve or by stereotactic injection into the optic tract. Experimental Eye Research, 131: 12−19. doi: 10.1016/j.exer.2014.12.005
    Nadal-Nicolás FM, Sobrado-Calvo P, Jiménez-López M, Vidal-Sanz M, Agudo-Barriuso M. 2015c. Long-term effect of optic nerve axotomy on the retinal ganglion cell layer. Investigative Ophthalmology & Visual Science, 56(10): 6095−6112.
    Nguyen JV, Soto I, Kim KY, Bushong EA, Oglesby E, Valiente-Soriano FJ, et al. 2011. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proceedings of the National Academy of Sciences of the United States of America, 108(3): 1176−1181. doi: 10.1073/pnas.1013965108
    Nilsson J, Gobom J, Sjödin S, Brinkmalm G, Ashton NJ, Svensson J, et al. 2021. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer's disease. Alzheimer's & Dementia, 13(1): e12179.
    Nixon RA, Lewis SE, Dahl D, Marotta CA, Dräger UC. 1989. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport. Molecular Brain Research, 5(2): 93−108. doi: 10.1016/0169-328X(89)90001-6
    Norte-Muñoz M, Lucas-Ruiz F, Gallego-Ortega A, García-Bernal D, Valiente-Soriano FJ, De La Villa P, Vidal-Sanz M, et al. 2021. Neuroprotection and axonal regeneration induced by bone marrow mesenchymal stromal cells depend on the type of transplant. Frontiers in Cell and Developmental Biology, 9: 772223. doi: 10.3389/fcell.2021.772223
    Onishi A, Peng GH, Poth EM, Lee DA, Chen JC, Alexis U, et al. 2010. The orphan nuclear hormone receptor ERRβ controls rod photoreceptor survival. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11579−11584. doi: 10.1073/pnas.1000102107
    Pan L, Yang ZY, Feng L, Gan L. 2005. Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development, 132(4): 703−712. doi: 10.1242/dev.01646
    Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, et al. 2021. Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. The Journal of Comparative Neurology, 529(8): 1926−1953. doi: 10.1002/cne.25065
    Parrilla-Reverter G, Agudo M, Nadal-Nicolás F, Alarcón-Martínez L, Jiménez-López M, Salinas-Navarro M, et al. 2009. Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: a comparative study. Vision Research, 49(23): 2808−2825. doi: 10.1016/j.visres.2009.08.020
    Pereiro X, Ruzafa N, Urcola JH, Sharma SC, Vecino E. 2020. Differential distribution of RBPMS in pig, rat, and human retina after damage. International Journal of Molecular Sciences, 21(23): 9330. doi: 10.3390/ijms21239330
    Piccinini M, Merighi A, Bruno R, Cascio P, Curto M, Mioletti SC, et al. 1996. Affinity purification and characterization of protein gene product 9.5 (PGP9.5) from retina. The Biochemical Journal, 318(Pt 2): 711–716.
    Plaza S, Hennemann H, Möröy T, Saule S, Dozier C. 1999. Evidence that POU factor Brn-3B regulates expression of Pax-6 in neuroretina cells. Journal of Neurobiology, 41(3): 349−358. doi: 10.1002/(SICI)1097-4695(19991115)41:3<349::AID-NEU4>3.0.CO;2-F
    Provencio I, Rodriguez IR, Jiang GS, Hayes WP, Moreira EF, Rollag MD. 2000. A novel human opsin in the inner retina. The Journal of Neuroscience, 20(2): 600−605. doi: 10.1523/JNEUROSCI.20-02-00600.2000
    Quan MZ, Kosaka J, Watanabe M, Wakabayashi T, Fukuda Y. 1999. Survival of axotomized retinal ganglion cells in peripheral nerve-grafted ferrets. Investigative Ophthalmology & Visual Science, 40(10): 2360−2366.
    Raymond ID, Pool AL, Vila A, Brecha NC. 2009. A Thy1-CFP DBA/2J mouse line with cyan fluorescent protein expression in retinal ganglion cells. Visual Neuroscience, 26(5–6): 453–465.
    Raymond ID, Vila A, Huynh UC, Brecha NC. 2008. Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Molecular Vision, 14: 1559−1574.
    Real MA, Heredia R, Dávila JC, Guirado S. 2008. Efferent retinal projections visualized by immunohistochemical detection of the estrogen-related receptor beta in the postnatal and adult mouse brain. Neuroscience Letters, 438(1): 48−53. doi: 10.1016/j.neulet.2008.04.044
    Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, Renna K, et al. 2018. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nature Communications, 9(1): 2759. doi: 10.1038/s41467-018-05134-3
    Rodieck RW. 1979. Visual pathways. Annual Review of Neuroscience, 2: 193−225. doi: 10.1146/annurev.ne.02.030179.001205
    Rodriguez AR, De Sevilla Müller LP, Brecha NC. 2014. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. The Journal of Comparative Neurology, 522(6): 1411−1443. doi: 10.1002/cne.23521
    Romero-Alemán MM, Monzón-Mayor M, Santos E, Lang DM, Yanes C. 2012. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. The Journal of Comparative Neurology, 520(10): 2163−2184. doi: 10.1002/cne.23034
    Romero-Alemán MM, Monzón-Mayor M, Santos E, Yanes C. 2010. Expression of neuronal markers, synaptic proteins, and glutamine synthetase in the control and regenerating lizard visual system. The Journal of Comparative Neurology, 518(19): 4067−4087. doi: 10.1002/cne.22444
    Ruiz-Ederra J, García M, Hicks D, Vecino E. 2004. Comparative study of the three neurofilament subunits within pig and human retinal ganglion cells. Molecular Vision, 10: 83−92.
    Ruzafa N, Rey-Santano C, Mielgo V, Pereiro X, Vecino E. 2017. Effect of hypoxia on the retina and superior colliculus of neonatal pigs. PLoS One, 12(4): e0175301. doi: 10.1371/journal.pone.0175301
    Sajgo S, Ghinia MG, Brooks M, Kretschmer F, Chuang K, Hiriyanna S, et al. 2017. Molecular codes for cell type specification in Brn3 retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 114(20): E3974−E3983.
    Salinas-Navarro M, Alarcón-Martínez L, Valiente-Soriano FJ, Jiménez-López M, Mayor-Torroglosa S, Avilés-Trigueros M, et al. 2010. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration. Experimental Eye Research, 90(1): 168−183. doi: 10.1016/j.exer.2009.10.003
    Salinas-Navarro M, Jiménez-López M, Valiente-Soriano FJ, Alarcón-Martínez L, Avilés-Trigueros M, Mayor S, et al. 2009a. Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vision Research, 49(6): 637−647. doi: 10.1016/j.visres.2009.01.010
    Salinas-Navarro M, Mayor-Torroglosa S, Jiménez-López M, Avilés-Trigueros M, Holmes TM, Lund RD, et al. 2009b. A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats. Vision Research, 49(1): 115−126. doi: 10.1016/j.visres.2008.09.029
    Sánchez-Migallón MC, Nadal-Nicolás FM, Jiménez-López M, Sobrado-Calvo P, Vidal-Sanz M, Agudo-Barriuso M. 2011. Brain derived neurotrophic factor maintains Brn3a expression in axotomized rat retinal ganglion cells. Experimental Eye Research, 92(4): 260−267. doi: 10.1016/j.exer.2011.02.001
    Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Di Pierdomenico J, Vidal-Sanz M, Agudo-Barriuso M. 2018a. Survival of melanopsin expressing retinal ganglion cells long term after optic nerve trauma in mice. Experimental Eye Research, 174: 93−97. doi: 10.1016/j.exer.2018.05.029
    Sánchez-Migallón MC, Valiente-Soriano FJ, Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. 2016. Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: delayed RGC loss with BDNF or a caspase 3 inhibitor. Investigative Ophthalmology & Visual Science, 57(1): 81−93.
    Sánchez-Migallón MC, Valiente-Soriano FJ, Salinas-Navarro M, Nadal-Nicolás FM, Jiménez-López M, Vidal-Sanz M, et al. 2018b. Nerve fibre layer degeneration and retinal ganglion cell loss long term after optic nerve crush or transection in adult mice. Experimental Eye Research, 170: 40−50. doi: 10.1016/j.exer.2018.02.010
    Sanes JR, Masland RH. 2015. The types of retinal ganglion cells: current status and implications for neuronal classification. Annual Review of Neuroscience, 38: 221−246. doi: 10.1146/annurev-neuro-071714-034120
    Santos E, Romero-Alemán MM, Monzón-Mayor M, Yanes C. 2014. Variable functional recovery and minor cell loss in the ganglion cell layer of the lizard Gallotia galloti after optic nerve axotomy. Experimental Eye Research, 118: 89−99. doi: 10.1016/j.exer.2013.09.020
    Sasaoka M, Taniguchi T, Shimazawa M, Ishida N, Shimazaki A, Hara H. 2006. Intravitreal injection of endothelin-1 caused optic nerve damage following to ocular hypoperfusion in rabbits. Experimental Eye Research, 83(3): 629−637. doi: 10.1016/j.exer.2006.03.007
    Sato T, Hamaoka T, Aizawa H, Hosoya T, Okamoto H. 2007. Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. The Journal of Neuroscience, 27(20): 5271−5279. doi: 10.1523/JNEUROSCI.0883-07.2007
    Schiller PH. 1986. The central visual system. Vision Research, 26(9): 1351−1386. doi: 10.1016/0042-6989(86)90162-8
    Schlamp CL, Johnson EC, Li Y, Morrison JC, Nickells RW. 2001. Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Molecular Vision, 7: 192−201.
    Schmidt TM, Chen SK, Hattar S. 2011. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends in Neurosciences, 34(11): 572−580. doi: 10.1016/j.tins.2011.07.001
    Sefton AJ, Lam K. 1984. Quantitative and morphological studies on developing optic axons in normal and enucleated albino rats. Experimental Brain Research, 57(1): 107−117.
    Sellés-Navarro I, Villegas-Pérez MP, Salvador-Silva M, Ruiz-Gómez JM, Vidal-Sanz M. 1996. Retinal ganglion cell death after different transient periods of pressure-induced ischemia and survival intervals. A quantitative in vivo study. Investigative Ophthalmology & Visual Science, 37(10): 2002−2014.
    Serrano-Saiz E, Leyva-Díaz E, De La Cruz E, Hobert O. 2018. BRN3-type POU homeobox genes maintain the identity of mature postmitotic neurons in nematodes and mice. Current Biology, 28(17): 2813−2823.e2. doi: 10.1016/j.cub.2018.06.045
    Setsuie R, Wada K. 2007. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochemistry International, 51(2–4): 105–111.
    Sheng WL, Weng SJ, Li F, Zhang Y, He QX, Sheng WX, et al. 2021. Immunohistological Localization of Mel1a Melatonin Receptor in Pigeon Retina. Nature and Science of Sleep, 13: 113−121. doi: 10.2147/NSS.S290757
    Siddiqui AM, Sabljic TF, Koeberle PD, Ball AK. 2014. Downregulation of BM88 after optic nerve injury. Investigative Ophthalmology & Visual Science, 55(3): 1919−1929.
    Simmons AB, Bloomsburg SJ, Billingslea SA, Merrill MM, Li S, Thomas MW, et al. 2016. Pou4f2 knock-in Cre mouse: a multifaceted genetic tool for vision researchers. Molecular Vision, 22: 705−717.
    Smith MD, Dawson SJ, Latchman DS, Boxer LM. 1998. The N-terminal domain unique to the long form of the Brn-3a transcription factor is essential to protect neuronal cells from apoptosis and for the activation of Bcl-2 gene expression. Nucleic Acids Research, 26(18): 4100−4107. doi: 10.1093/nar/26.18.4100
    Surgucheva I, Weisman AD, Goldberg JL, Shnyra A, Surguchov A. 2008. γ-synuclein as a marker of retinal ganglion cells. Molecular Vision, 14: 1540−1548.
    Takemura Y, Ojima H, Oshima G, Shinoda M, Hasegawa Y, Kitago M, et al. 2021. Gamma-synuclein is a novel prognostic marker that promotes tumor cell migration in biliary tract carcinoma. Cancer Medicine, 10(16): 5599−5613. doi: 10.1002/cam4.4121
    Tapia ML, Nascimento-Dos-Santos G, Park KK. 2022. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Frontiers in Cell and Developmental Biology, 10: 956279. doi: 10.3389/fcell.2022.956279
    Telegina DV, Kolosova NG, Kozhevnikova OS. 2019. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Medical Genomics, 12(Suppl 2): 48.
    Thanos S, Vidal-Sanz M, Aguayo AJ. 1987. The use of rhodamine-B-isothiocyanate (RITC) as an anterograde and retrograde tracer in the adult rat visual system. Brain Research, 406(1–2): 317–321.
    Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong GS, et al. 2019. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron, 104(6): 1039−1055.e12. doi: 10.1016/j.neuron.2019.11.006
    Triplett JW, Wei W, Gonzalez C, Sweeney NT, Huberman AD, Feller MB, et al. 2014. Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Development, 9(1): 2. doi: 10.1186/1749-8104-9-2
    Trowern AR, Laight R, MacLean N, Mann DA. 1996. Detection of neuron-specific protein gene product (PGP) 9.5 in the rat and zebrafish using anti-human PGP9.5 antibodies. Neuroscience Letters, 210(1): 21−24. doi: 10.1016/0304-3940(96)12640-9
    Ünal-Çevik I, Kılınç M, Gürsoy-Özdemir Y, Gurer G, Dalkara T. 2004. Loss of NEUN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Research, 1015(1–2): 169–174.
    Valiente-Soriano FJ, García-Ayuso D, Ortín-Martínez A, Jiménez-López M, Galindo-Romero C, Villegas-Pérez MP, et al. 2014. Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina. Frontiers in Neuroanatomy, 8: 131.
    Valiente-Soriano FJ, Salinas-Navarro M, Jiménez-López M, Alarcón-Martínez L, Ortín-Martínez A, Bernal-Garro JM, et al. 2015. Effects of ocular hypertension in the visual system of pigmented mice. PLoS One, 10(3): e0121134. doi: 10.1371/journal.pone.0121134
    Van Nassauw L, Wu M, De Jonge F, Adriaensen D, Timmermans JP. 2005. Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract. Histochemistry and Cell Biology, 124(5): 369−377. doi: 10.1007/s00418-005-0019-7
    Vickers JC, Costa M. 1992. The neurofilament triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea-pig. Neuroscience, 49(1): 73−100. doi: 10.1016/0306-4522(92)90077-F
    Vickers JC, Riederer BM, Marugg RA, Buée-Scherrer V, Buée L, Delacourte A, et al. 1994. Alterations in neurofilament protein immunoreactivity in human hippocampal neurons related to normal aging and Alzheimer's disease. Neuroscience, 62(1): 1−13. doi: 10.1016/0306-4522(94)90310-7
    Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, Nadal-Nicolás FM, Ortin-Martinez A, Rovere G, et al. 2017. Shared and differential retinal responses against optic nerve injury and ocular hypertension. Frontiers in Neuroscience, 11: 235. doi: 10.3389/fnins.2017.00235
    Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolás FM, Alarcón-Martínez L, Valiente-Soriano FJ, De Imperial JM, et al. 2012. Understanding glaucomatous damage: anatomical and functional data from ocular hypertensive rodent retinas. Progress in Retinal and Eye Research, 31(1): 1−27. doi: 10.1016/j.preteyeres.2011.08.001
    Vidal-Sanz M, Valiente-Soriano FJ, Ortín-Martínez A, Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, et al. 2015. Retinal neurodegeneration in experimental glaucoma. Progress in Brain Research, 220: 1−35.
    Vidal-Sanz M, Villegas-Pérez MP, Bray GM, Aguayo AJ. 1988. Persistent retrograde labeling of adult rat retinal ganglion cells with the carbocyanine dye diI. Experimental Neurology, 102(1): 92−101. doi: 10.1016/0014-4886(88)90081-7
    Villegas-Pérez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ. 1993. Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. Journal of Neurobiology, 24(1): 23−36. doi: 10.1002/neu.480240103
    Völgyi B, Bloomfield SA. 2002. Axonal neurofilament-H immunolabeling in the rabbit retina. The Journal of Comparative Neurology, 453(3): 269−279. doi: 10.1002/cne.10392
    Wakabayashi T, Fukuda Y, Kosaka J. 1996a. Monoclonal antibody C38 labels surviving retinal ganglion cells after peripheral nerve graft in axotomized rat retina. Brain Research, 725(1): 121−124. doi: 10.1016/0006-8993(96)00302-2
    Wakabayashi T, Fukuda Y, Kosaka J. 1996b. Monoclonal antibody C38 recognizes retinal ganglion cells in cats and rats. Vision Research, 36(8): 1081−1090. doi: 10.1016/0042-6989(95)00210-3
    Wakabayashi T, Kosaka J, Mochii M, Miki Y, Mori T, Takamori Y, et al. 2010. C38, equivalent to BM88, is developmentally expressed in maturing retinal neurons and enhances neuronal maturation. Journal of Neurochemistry, 112(5): 1235−1248. doi: 10.1111/j.1471-4159.2009.06536.x
    Wang HH, Gallagher SK, Byers SR, Madl JE, Gionfriddo JR. 2015. Retinal ganglion cell distribution and visual acuity in alpacas (Vicugna pacos). Veterinary Ophthalmology, 18(1): 35−42. doi: 10.1111/vop.12131
    Wang YL, Wang WY, Liu J, Huang X, Liu RX, Xia HK, et al. 2016. Protective effect of ala in crushed optic nerve cat retinal ganglion cells using a new marker RBPMS. PLoS One, 11(8): e0160309. doi: 10.1371/journal.pone.0160309
    Wilkinson KD, Deshpande S, Larsen CN. 1992. Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. Biochemical Society Transactions, 20(3): 631−637. doi: 10.1042/bst0200631
    Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, et al. 1995. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. The Journal of Neuroscience, 15(7 Pt 1): 4762–4785.
    Xiao X, Zhao TT, Miyagishima KJ, Chen S, Li W, Nadal-Nicolás FM. 2021. Establishing the ground squirrel as a superb model for retinal ganglion cell disorders and optic neuropathies. Laboratory Investigation, 101(9): 1289−1303. doi: 10.1038/s41374-021-00637-y
    Xu MY, Pang QQ, Xu SQ, Ye CY, Lei R, Shen YC, et al. 2018. Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts. Oncotarget, 9(3): 3188−3197. doi: 10.18632/oncotarget.23225
    Zhang J, Huo YB, Yang JL, Wang XZ, Yan BY, Du XH, et al. 2022. Automatic counting of retinal ganglion cells in the entire mouse retina based on improved YOLOv5. Zoological Research, 43(5): 738−749. doi: 10.24272/j.issn.2095-8137.2022.025
    Zhang XM, Liu DTL, Chiang SWY, Choy KW, Pang CP, Lam DSC, et al. 2010. Immunopanning purification and long-term culture of human retinal ganglion cells. Molecular Vision, 16: 2867−2872.
    Zhou JX, Liu YJ, Chen X, Zhang X, Xu J, Yang K, et al. 2018. Low-Intensity pulsed ultrasound protects retinal ganglion cell from optic nerve injury induced apoptosis via YES associated protein. Frontiers in Cellular Neuroscience, 12: 160. doi: 10.3389/fncel.2018.00160
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (984) PDF downloads(206) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint