Citation: | Nicolas James Ho, Xiao Chen, Yong Lei, Shen Gu. Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling. Zoological Research, 2023, 44(3): 650-662. doi: 10.24272/j.issn.2095-8137.2022.281 |
[1] |
Abdollahpour H, Alawi M, Kortum F, et al. 2015. An AP4B1 frameshift mutation in siblings with intellectual disability and spastic tetraplegia further delineates the AP-4 deficiency syndrome. European Journal of Human Genetics, 23(2): 256−259. doi: 10.1038/ejhg.2014.73
|
[2] |
Al-Saif A, Bohlega S, Al-Mohanna F. 2012. Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Annals of Neurology, 72(4): 510−516. doi: 10.1002/ana.23641
|
[3] |
Allen Institute. 2021. Cell types database: RNA-Seq data.https://portal.brain-map.org/atlases-and-data/rnaseq.
|
[4] |
Bakken TE, Jorstad NL, Hu QW, et al. 2021. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 598(7879): 111−119. doi: 10.1038/s41586-021-03465-8
|
[5] |
Beetz C, Koch N, Khundadze M, et al. 2013. A spastic paraplegia mouse model reveals REEP1-dependent ER shaping. The Journal of Clinical Investigation, 123(10): 4273−4282. doi: 10.1172/JCI65665
|
[6] |
Bellofatto M, De Michele G, Iovino A, et al. 2019. Management of hereditary spastic paraplegia: a systematic review of the literature. Frontiers in Neurology, 10: 3. doi: 10.3389/fneur.2019.00003
|
[7] |
Bross P, Fernandez-Guerra P. 2016. Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex. Frontiers in Molecular Biosciences, 3: 49.
|
[8] |
Cardoso-Moreira M, Halbert J, Valloton D, et al. 2019. Gene expression across mammalian organ development. Nature, 571(7766): 505−509. doi: 10.1038/s41586-019-1338-5
|
[9] |
Charvin D, Cifuentes-Diaz C, Fonknechten N, et al. 2003. Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. Human Molecular Genetics, 12(1): 71−78. doi: 10.1093/hmg/ddg004
|
[10] |
Cheon CK, Lim SH, Kim YM, et al. 2017. Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene. Scientific Reports, 7(1): 12527. doi: 10.1038/s41598-017-12999-9
|
[11] |
Clemen CS, Schmidt A, Winter L, et al. 2022. N471D WASH complex subunit strumpellin knock-in mice display mild motor and cardiac abnormalities and BPTF and KLHL11 dysregulation in brain tissue. Neuropathology and Applied Neurobiology, 48(1): e12750.
|
[12] |
Cohen M, Giladi A, Raposo C, et al. 2021. Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. Life Science Alliance, 4(1): e202000907. doi: 10.26508/lsa.202000907
|
[13] |
Cömert C, Brick L, Ang D, et al. 2020. A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy. Cold Spring Harbor Molecular Case Studies, 6(3): a004879. doi: 10.1101/mcs.a004879
|
[14] |
Coutelier M, Goizet C, Durr A, et al. 2015. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain, 138(Pt 8): 2191–2205.
|
[15] |
De Souza PVS, De Rezende Pinto WBV, De Rezende Batistella GN, et al. 2017. Hereditary spastic paraplegia: clinical and genetic hallmarks. The Cerebellum, 16(2): 525−551. doi: 10.1007/s12311-016-0803-z
|
[16] |
DeLuca GC, Ebers GC, Esiri MM. 2004. The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathology and Applied Neurobiology, 30(6): 576−584. doi: 10.1111/j.1365-2990.2004.00587.x
|
[17] |
Deng HF, Xiao X, Yang T, et al. 2021. A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell, 184(26): 6344−6360.e18. doi: 10.1016/j.cell.2021.11.019
|
[18] |
Deschauer M, Gaul C, Behrmann C, et al. 2012. C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. Journal of Neurology, 259(11): 2434−2439. doi: 10.1007/s00415-012-6521-7
|
[19] |
Enjyoji K, Sévigny J, Lin Y, et al. 1999. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Medicine, 5(9): 1010−1017. doi: 10.1038/12447
|
[20] |
Errico A, Ballabio A, Rugarli EI. 2002. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Human Molecular Genetics, 11(2): 153−163. doi: 10.1093/hmg/11.2.153
|
[21] |
Fard MAF, Rebelo AP, Buglo E, et al. 2019. Truncating mutations in UBAP1 cause hereditary spastic paraplegia. The American Journal of Human Genetics, 104(6): 1251. doi: 10.1016/j.ajhg.2019.05.009
|
[22] |
Friedman DJ, Rennke HG, Csizmadia E, et al. 2007. The vascular ectonucleotidase ENTPD1 is a novel renoprotective factor in diabetic nephropathy. Diabetes, 56(9): 2371−2379. doi: 10.2337/db06-1593
|
[23] |
Füger P, Sreekumar V, Schule R, et al. 2012. Spastic paraplegia mutation N256S in the neuronal microtubule motor KIF5A disrupts axonal transport in a Drosophila HSP model. PLoS Genetics, 8(11): e1003066. doi: 10.1371/journal.pgen.1003066
|
[24] |
Gan-Or Z, Bouslam N, Birouk N, et al. 2016. Mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia. The American Journal of Human Genetics, 98(5): 1038−1046. doi: 10.1016/j.ajhg.2016.04.002
|
[25] |
Gareis FJ, Mason JD, Opitz JM. 1984. X-linked mental retardation associated with bilateral clasp thumb anomaly. American Journal of Medical Genetics, 17(1): 333−338. doi: 10.1002/ajmg.1320170126
|
[26] |
Genc B, Gozutok O, Ozdinler PH. 2019. Complexity of generating mouse models to study the upper motor neurons: let us shift focus from mice to neurons. International Journal of Molecular Sciences, 20(16): 3848. doi: 10.3390/ijms20163848
|
[27] |
Goytain A, Hines RM, El-Husseini A, et al. 2007. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. The Journal of Biological Chemistry, 282(11): 8060−8068. doi: 10.1074/jbc.M610314200
|
[28] |
Gregory JM, McDade K, Livesey MR, et al. 2020. Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology, 46(5): 441−457. doi: 10.1111/nan.12597
|
[29] |
Gu S, Chen CA, Rosenfeld JA, et al. 2020. Truncating variants in UBAP1 associated with childhood-onset nonsyndromic hereditary spastic paraplegia. Human Mutation, 41(3): 632−640. doi: 10.1002/humu.23950
|
[30] |
Gumeni S, Vantaggiato C, Montopoli M, et al. 2021. Hereditary spastic paraplegia and future therapeutic directions: beneficial effects of small compounds acting on cellular stress. Frontiers in Neuroscience, 15: 660714. doi: 10.3389/fnins.2021.660714
|
[31] |
Hedera P. 1993. Hereditary spastic paraplegia overview. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al. GeneReviews®. Seattle: University of Washington.
|
[32] |
Heimer G, Oz-Levi D, Eyal E, et al. 2016. TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability. European Journal of Paediatric Neurology, 20(1): 69−79. doi: 10.1016/j.ejpn.2015.10.003
|
[33] |
Ho R, Workman MJ, Mathkar P, et al. 2021. Cross-comparison of human iPSC motor neuron models of familial and sporadic ALS reveals early and convergent transcriptomic disease signatures. Cell Systems, 12(2): 159−175.e9. doi: 10.1016/j.cels.2020.10.010
|
[34] |
Hwang B, Lee JH, Bang D. 2018. Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine, 50(8): 1−14.
|
[35] |
Ito D, Suzuki N. 2007. Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Annals of Neurology, 61(3): 237−250. doi: 10.1002/ana.21070
|
[36] |
Jahic A, Khundadze M, Jaenisch N, et al. 2015. The spectrum of KIAA0196 variants, and characterization of a murine knockout: implications for the mutational mechanism in hereditary spastic paraplegia type SPG8. Orphanet Journal of Rare Diseases, 10: 147. doi: 10.1186/s13023-015-0359-x
|
[37] |
Jamra RA, Philippe O, Raas-Rothschild A, et al. 2011. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. The American Journal of Human Genetics, 88(6): 788−795. doi: 10.1016/j.ajhg.2011.04.019
|
[38] |
Kaepernick L, Legius E, Higgins J, et al. 1994. Clinical aspects of the MASA syndrome in a large family, including expressing females. Clinical Genetics, 45(4): 181−185.
|
[39] |
Karczewski KJ, Francioli LC, Tiao G, et al. 2020. The mutational constraint spectrum quantified from variation in 141, 456 humans. Nature, 581(7809): 434−443. doi: 10.1038/s41586-020-2308-7
|
[40] |
Klebe S, Stevanin G, Depienne C. 2015. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Revue Neurologique, 171(6–7): 505–530.
|
[41] |
Komachali SR, Sheikholeslami M, Salehi M. 2022. A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder. Genomics & Informatics, 20(2): e24.
|
[42] |
Kruer MC, Paudel R, Wagoner W, et al. 2012. Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts. Neuroscience Letters, 523(1): 35−38. doi: 10.1016/j.neulet.2012.06.036
|
[43] |
Lemon RN. 2008. Descending pathways in motor control. Annual Review of Neuroscience, 31: 195−218. doi: 10.1146/annurev.neuro.31.060407.125547
|
[44] |
Li ML, Wu SH, Zhang JJ, et al. 2019. 547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. Genome Biology, 20(1): 258. doi: 10.1186/s13059-019-1866-1
|
[45] |
Liu WT, Venugopal S, Majid S, et al. 2020. Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis. Neurobiology of Disease, 141: 104877. doi: 10.1016/j.nbd.2020.104877
|
[46] |
Loomba S, Straehle J, Gangadharan V, et al. 2022. Connectomic comparison of mouse and human cortex. Science, 377(6602): eabo0924. doi: 10.1126/science.abo0924
|
[47] |
Lossos A, Elazar N, Lerer I, et al. 2015. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain, 138(Pt 9): 2521–2536.
|
[48] |
MacLean M, López-Díez R, Vasquez C, et al. 2022. Neuronal-glial communication perturbations in murine SOD1G93A spinal cord. Communications Biology, 5(1): 177. doi: 10.1038/s42003-022-03128-y
|
[49] |
Mannan AU, Krawen P, Sauter SM, et al. 2006. ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. The American Journal of Human Genetics, 79(2): 351−357. doi: 10.1086/504927
|
[50] |
Mao F, Li ZH, Zhao BY, et al. 2015. Identification and functional analysis of a SLC33A1: c. 339T>G (p. Ser113Arg) variant in the original SPG42 family. Human Mutation, 36(2): 240−249. doi: 10.1002/humu.22732
|
[51] |
Matsumoto N, Watanabe N, Iibe N, et al. 2019. Hypomyelinating leukodystrophy-associated mutation of RARS leads it to the lysosome, inhibiting oligodendroglial morphological differentiation. Biochemistry and Biophysics Reports, 20: 100705. doi: 10.1016/j.bbrep.2019.100705
|
[52] |
Meijer IA, Dion P, Laurent S, et al. 2007. Characterization of a novel SPG3A deletion in a French-Canadian family. Annals of Neurology, 61(6): 599−603. doi: 10.1002/ana.21114
|
[53] |
Mifflin L, Hu ZR, Dufort C, et al. 2021. A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 118(13): e2025102118. doi: 10.1073/pnas.2025102118
|
[54] |
Montecchiani C, Pedace L, Lo Giudice T, et al. 2016. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain, 139(Pt 1): 73–85.
|
[55] |
Montenegro G, Rebelo AP, Connell J, et al. 2012. Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. The Journal of Clinical Investigation, 122(2): 538−544. doi: 10.1172/JCI60560
|
[56] |
Muglia M, Magariello A, Nicoletti G, et al. 2002. Further evidence that SPG3A gene mutations cause autosomal dominant hereditary spastic paraplegia. Annals of Neurology, 51(6): 794−795.
|
[57] |
Namboori SC, Thomas P, Ames R, et al. 2021. Single-cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS iPSC-derived motor neurons. Stem Cell Reports, 16(12): 3020−3035. doi: 10.1016/j.stemcr.2021.10.010
|
[58] |
Neuser S, Brechmann B, Heimer G, et al. 2021. Clinical, neuroimaging, and molecular spectrum of TECPR2-associated hereditary sensory and autonomic neuropathy with intellectual disability. Human Mutation, 42(6): 762−776. doi: 10.1002/humu.24206
|
[59] |
Online Mendelian Inheritance in Man. 2021. OMIM Phenotypic Series - PS303350. in Spastic paraplegia - PS303350. Vol. 2021. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD).
|
[60] |
Orphanet Rare Disease Portal. 2021. Orphanet rare disease portal. Vol. 2021.
|
[61] |
Orso G, Martinuzzi A, Rossetto MG, et al. 2005. Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. Journal of Clinical Investigation, 115(11): 3026−3034. doi: 10.1172/JCI24694
|
[62] |
Orthmann-Murphy JL, Salsano E, Abrams CK, et al. 2009. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain, 132(Pt 2): 426–438.
|
[63] |
Orvis J, Gottfried B, Kancherla J, et al. 2021. gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nature Methods, 18(8): 843−844. doi: 10.1038/s41592-021-01200-9
|
[64] |
Panza E, Escamilla-Honrubia JM, Marco-Marín C, et al. 2016. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain, 139(Pt 1): e3.
|
[65] |
Pujol C, Legrand A, Parodi L, et al. 2021. Implication of folate deficiency in CYP2U1 loss of function. Journal of Experimental Medicine, 218(11): e20210846. doi: 10.1084/jem.20210846
|
[66] |
Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3): R25. doi: 10.1186/gb-2010-11-3-r25
|
[67] |
Ruano L, Melo C, Silva MC, et al. 2014. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology, 42(3): 174−183. doi: 10.1159/000358801
|
[68] |
Saez-Atienzar S, Bandres-Ciga S, Langston RG, et al. 2021. Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Science Advances, 7(3): eabd9036. doi: 10.1126/sciadv.abd9036
|
[69] |
Scala F, Kobak D, Bernabucci M, et al. 2021. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature, 598(7879): 144−150. doi: 10.1038/s41586-020-2907-3
|
[70] |
Ségalat L. 2007. Loss-of-function genetic diseases and the concept of pharmaceutical targets. Orphanet Journal of Rare Diseases, 2: 30. doi: 10.1186/1750-1172-2-30
|
[71] |
Song L, Rijal R, Karow M, et al. 2018. Expression of N471D strumpellin leads to defects in the endolysosomal system. Disease Models & Mechanisms, 11(9): dmm033449.
|
[72] |
Szebényi K, Wenger LMD, Sun Y, et al. 2021. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nature Neuroscience, 24(11): 1542−1554. doi: 10.1038/s41593-021-00923-4
|
[73] |
Tesson C, Nawara M, Salih MAM, et al. 2012. Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. The American Journal of Human Genetics, 91(6): 1051−1064. doi: 10.1016/j.ajhg.2012.11.001
|
[74] |
Tsai PC, Huang YH, Guo YC, et al. 2014. A novel TFG mutation causes Charcot-Marie-Tooth disease type 2 and impairs TFG function. Neurology, 83(10): 903−912. doi: 10.1212/WNL.0000000000000758
|
[75] |
Tüysüz B, Bilguvar K, Koçer N, et al. 2014. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features. American Journal of Medical Genetics Part A, 164(7): 1677−1685. doi: 10.1002/ajmg.a.36514
|
[76] |
Uhlen M, Fagerberg L, Hallström BM, et al. 2015. Tissue-based map of the human proteome. Science, 347(6220): e1260419. doi: 10.1126/science.1260419
|
[77] |
Van Den Berg RA, Hoefsloot HCJ, Westerhuis JA, et al. 2006. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7: 142. doi: 10.1186/1471-2164-7-142
|
[78] |
Vandamme TF. 2014. Use of rodents as models of human diseases. Journal of Pharmacy & BioAllied Sciences, 6(1): 2−9.
|
[79] |
Vaz FM, McDermott JH, Alders M, et al. 2019. Mutations in PCYT2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain, 142(11): 3382−3397. doi: 10.1093/brain/awz291
|
[80] |
Veitia RA, Caburet S, Birchler JA. 2018. Mechanisms of Mendelian dominance. Clinical Genetics, 93(3): 419−428. doi: 10.1111/cge.13107
|
[81] |
Walusinski O. 2020. A historical approach to hereditary spastic paraplegia. Revue Neurologique, 176(4): 225−234. doi: 10.1016/j.neurol.2019.11.003
|
[82] |
Winter RM, Davies KE, Bell MV, et al. 1989. MASA syndrome: further clinical delineation and chromosomal localisation. Human Genetics, 82(4): 367−370.
|
[83] |
Xu M, Zhang DF, Luo RC, et al. 2018. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer's disease. Alzheimer’s & Dementia, 14(2): 215−229.
|
[84] |
Yao ZZ, Van Velthoven CTJ, Nguyen TN, et al. 2021. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell, 184(12): 3222−3241.e26. doi: 10.1016/j.cell.2021.04.021
|
[85] |
Yıldırım Y, Orhan EK, Iseri SAU, et al. 2011. A frameshift mutation of ERLIN2 in recessive intellectual disability, motor dysfunction and multiple joint contractures. Human Molecular Genetics, 20(10): 1886−1892. doi: 10.1093/hmg/ddr070
|
[86] |
Yim AKY, Wang PL, Bermingham JR et al. 2022. Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nature Neuroscience, 25(2): 238−251. doi: 10.1038/s41593-021-01005-1
|
![]() |
![]() |