Volume 44 Issue 3
May  2023
Turn off MathJax
Article Contents
Nicolas James Ho, Xiao Chen, Yong Lei, Shen Gu. Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling. Zoological Research, 2023, 44(3): 650-662. doi: 10.24272/j.issn.2095-8137.2022.281
Citation: Nicolas James Ho, Xiao Chen, Yong Lei, Shen Gu. Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling. Zoological Research, 2023, 44(3): 650-662. doi: 10.24272/j.issn.2095-8137.2022.281

Decoding hereditary spastic paraplegia pathogenicity through transcriptomic profiling

doi: 10.24272/j.issn.2095-8137.2022.281
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
N.J.H. acquired, analyzed, and interpreted the data. N.J.H. and S.G. designed the study and wrote the manuscript. X.C. and Y.L. conceived, critically revised, and supervised the work. All authors read and approved the final version of the manuscript.
Funds:  This study was supported by the General Research Fund from the Research Grants Council of Hong Kong (24101921), Direct Grant from the Chinese University of Hong Kong (2020.096), National Natural Science Foundation of China (32170583, 82202045), Hong Kong RGC-CRF Equipment Fund C5033-19E, Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation (HZQB-KCZYB-2020056), and Ganghong Young Scholar Development Fund (to Y.L.). Additional support was provided by the Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, Chinese University of Hong Kong (8601010)
More Information
  • Hereditary spastic paraplegia (HSP) is a group of genetic motor neuron diseases resulting from length-dependent axonal degeneration of the corticospinal upper motor neurons. Due to the advancement of next-generation sequencing, more than 70 novel HSP disease-causing genes have been identified in the past decade. Despite this, our understanding of HSP physiopathology and the development of efficient management and treatment strategies remain poor. One major challenge in studying HSP pathogenicity is selective neuronal vulnerability, characterized by the manifestation of clinical symptoms that are restricted to specific neuronal populations, despite the presence of germline disease-causing variants in every cell of the patient. Furthermore, disease genes may exhibit ubiquitous expression patterns and involve a myriad of different pathways to cause motor neuron degeneration. In the current review, we explore the correlation between transcriptomic data and clinical manifestations, as well as the importance of interspecies models by comparing tissue-specific transcriptomic profiles of humans and mice, expression patterns of different genes in the brain during development, and single-cell transcriptomic data from related tissues. Furthermore, we discuss the potential of emerging single-cell RNA sequencing technologies to resolve unanswered questions related to HSP pathogenicity.
  • Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    N.J.H. acquired, analyzed, and interpreted the data. N.J.H. and S.G. designed the study and wrote the manuscript. X.C. and Y.L. conceived, critically revised, and supervised the work. All authors read and approved the final version of the manuscript.
  • loading
  • [1]
    Abdollahpour H, Alawi M, Kortum F, et al. 2015. An AP4B1 frameshift mutation in siblings with intellectual disability and spastic tetraplegia further delineates the AP-4 deficiency syndrome. European Journal of Human Genetics, 23(2): 256−259. doi: 10.1038/ejhg.2014.73
    Al-Saif A, Bohlega S, Al-Mohanna F. 2012. Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Annals of Neurology, 72(4): 510−516. doi: 10.1002/ana.23641
    Allen Institute. 2021. Cell types database: RNA-Seq data.https://portal.brain-map.org/atlases-and-data/rnaseq.
    Bakken TE, Jorstad NL, Hu QW, et al. 2021. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 598(7879): 111−119. doi: 10.1038/s41586-021-03465-8
    Beetz C, Koch N, Khundadze M, et al. 2013. A spastic paraplegia mouse model reveals REEP1-dependent ER shaping. The Journal of Clinical Investigation, 123(10): 4273−4282. doi: 10.1172/JCI65665
    Bellofatto M, De Michele G, Iovino A, et al. 2019. Management of hereditary spastic paraplegia: a systematic review of the literature. Frontiers in Neurology, 10: 3. doi: 10.3389/fneur.2019.00003
    Bross P, Fernandez-Guerra P. 2016. Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex. Frontiers in Molecular Biosciences, 3: 49.
    Cardoso-Moreira M, Halbert J, Valloton D, et al. 2019. Gene expression across mammalian organ development. Nature, 571(7766): 505−509. doi: 10.1038/s41586-019-1338-5
    Charvin D, Cifuentes-Diaz C, Fonknechten N, et al. 2003. Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus. Human Molecular Genetics, 12(1): 71−78. doi: 10.1093/hmg/ddg004
    Cheon CK, Lim SH, Kim YM, et al. 2017. Autosomal dominant transmission of complicated hereditary spastic paraplegia due to a dominant negative mutation of KIF1A, SPG30 gene. Scientific Reports, 7(1): 12527. doi: 10.1038/s41598-017-12999-9
    Clemen CS, Schmidt A, Winter L, et al. 2022. N471D WASH complex subunit strumpellin knock-in mice display mild motor and cardiac abnormalities and BPTF and KLHL11 dysregulation in brain tissue. Neuropathology and Applied Neurobiology, 48(1): e12750.
    Cohen M, Giladi A, Raposo C, et al. 2021. Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. Life Science Alliance, 4(1): e202000907. doi: 10.26508/lsa.202000907
    Cömert C, Brick L, Ang D, et al. 2020. A recurrent de novo HSPD1 variant is associated with hypomyelinating leukodystrophy. Cold Spring Harbor Molecular Case Studies, 6(3): a004879. doi: 10.1101/mcs.a004879
    Coutelier M, Goizet C, Durr A, et al. 2015. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain, 138(Pt 8): 2191–2205.
    De Souza PVS, De Rezende Pinto WBV, De Rezende Batistella GN, et al. 2017. Hereditary spastic paraplegia: clinical and genetic hallmarks. The Cerebellum, 16(2): 525−551. doi: 10.1007/s12311-016-0803-z
    DeLuca GC, Ebers GC, Esiri MM. 2004. The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathology and Applied Neurobiology, 30(6): 576−584. doi: 10.1111/j.1365-2990.2004.00587.x
    Deng HF, Xiao X, Yang T, et al. 2021. A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell, 184(26): 6344−6360.e18. doi: 10.1016/j.cell.2021.11.019
    Deschauer M, Gaul C, Behrmann C, et al. 2012. C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. Journal of Neurology, 259(11): 2434−2439. doi: 10.1007/s00415-012-6521-7
    Enjyoji K, Sévigny J, Lin Y, et al. 1999. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Medicine, 5(9): 1010−1017. doi: 10.1038/12447
    Errico A, Ballabio A, Rugarli EI. 2002. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Human Molecular Genetics, 11(2): 153−163. doi: 10.1093/hmg/11.2.153
    Fard MAF, Rebelo AP, Buglo E, et al. 2019. Truncating mutations in UBAP1 cause hereditary spastic paraplegia. The American Journal of Human Genetics, 104(6): 1251. doi: 10.1016/j.ajhg.2019.05.009
    Friedman DJ, Rennke HG, Csizmadia E, et al. 2007. The vascular ectonucleotidase ENTPD1 is a novel renoprotective factor in diabetic nephropathy. Diabetes, 56(9): 2371−2379. doi: 10.2337/db06-1593
    Füger P, Sreekumar V, Schule R, et al. 2012. Spastic paraplegia mutation N256S in the neuronal microtubule motor KIF5A disrupts axonal transport in a Drosophila HSP model. PLoS Genetics, 8(11): e1003066. doi: 10.1371/journal.pgen.1003066
    Gan-Or Z, Bouslam N, Birouk N, et al. 2016. Mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia. The American Journal of Human Genetics, 98(5): 1038−1046. doi: 10.1016/j.ajhg.2016.04.002
    Gareis FJ, Mason JD, Opitz JM. 1984. X-linked mental retardation associated with bilateral clasp thumb anomaly. American Journal of Medical Genetics, 17(1): 333−338. doi: 10.1002/ajmg.1320170126
    Genc B, Gozutok O, Ozdinler PH. 2019. Complexity of generating mouse models to study the upper motor neurons: let us shift focus from mice to neurons. International Journal of Molecular Sciences, 20(16): 3848. doi: 10.3390/ijms20163848
    Goytain A, Hines RM, El-Husseini A, et al. 2007. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. The Journal of Biological Chemistry, 282(11): 8060−8068. doi: 10.1074/jbc.M610314200
    Gregory JM, McDade K, Livesey MR, et al. 2020. Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology, 46(5): 441−457. doi: 10.1111/nan.12597
    Gu S, Chen CA, Rosenfeld JA, et al. 2020. Truncating variants in UBAP1 associated with childhood-onset nonsyndromic hereditary spastic paraplegia. Human Mutation, 41(3): 632−640. doi: 10.1002/humu.23950
    Gumeni S, Vantaggiato C, Montopoli M, et al. 2021. Hereditary spastic paraplegia and future therapeutic directions: beneficial effects of small compounds acting on cellular stress. Frontiers in Neuroscience, 15: 660714. doi: 10.3389/fnins.2021.660714
    Hedera P. 1993. Hereditary spastic paraplegia overview. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al. GeneReviews®. Seattle: University of Washington.
    Heimer G, Oz-Levi D, Eyal E, et al. 2016. TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability. European Journal of Paediatric Neurology, 20(1): 69−79. doi: 10.1016/j.ejpn.2015.10.003
    Ho R, Workman MJ, Mathkar P, et al. 2021. Cross-comparison of human iPSC motor neuron models of familial and sporadic ALS reveals early and convergent transcriptomic disease signatures. Cell Systems, 12(2): 159−175.e9. doi: 10.1016/j.cels.2020.10.010
    Hwang B, Lee JH, Bang D. 2018. Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine, 50(8): 1−14.
    Ito D, Suzuki N. 2007. Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Annals of Neurology, 61(3): 237−250. doi: 10.1002/ana.21070
    Jahic A, Khundadze M, Jaenisch N, et al. 2015. The spectrum of KIAA0196 variants, and characterization of a murine knockout: implications for the mutational mechanism in hereditary spastic paraplegia type SPG8. Orphanet Journal of Rare Diseases, 10: 147. doi: 10.1186/s13023-015-0359-x
    Jamra RA, Philippe O, Raas-Rothschild A, et al. 2011. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. The American Journal of Human Genetics, 88(6): 788−795. doi: 10.1016/j.ajhg.2011.04.019
    Kaepernick L, Legius E, Higgins J, et al. 1994. Clinical aspects of the MASA syndrome in a large family, including expressing females. Clinical Genetics, 45(4): 181−185.
    Karczewski KJ, Francioli LC, Tiao G, et al. 2020. The mutational constraint spectrum quantified from variation in 141, 456 humans. Nature, 581(7809): 434−443. doi: 10.1038/s41586-020-2308-7
    Klebe S, Stevanin G, Depienne C. 2015. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Revue Neurologique, 171(6–7): 505–530.
    Komachali SR, Sheikholeslami M, Salehi M. 2022. A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder. Genomics & Informatics, 20(2): e24.
    Kruer MC, Paudel R, Wagoner W, et al. 2012. Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts. Neuroscience Letters, 523(1): 35−38. doi: 10.1016/j.neulet.2012.06.036
    Lemon RN. 2008. Descending pathways in motor control. Annual Review of Neuroscience, 31: 195−218. doi: 10.1146/annurev.neuro.31.060407.125547
    Li ML, Wu SH, Zhang JJ, et al. 2019. 547 transcriptomes from 44 brain areas reveal features of the aging brain in non-human primates. Genome Biology, 20(1): 258. doi: 10.1186/s13059-019-1866-1
    Liu WT, Venugopal S, Majid S, et al. 2020. Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed cell types and pathways of amyotrophic lateral sclerosis. Neurobiology of Disease, 141: 104877. doi: 10.1016/j.nbd.2020.104877
    Loomba S, Straehle J, Gangadharan V, et al. 2022. Connectomic comparison of mouse and human cortex. Science, 377(6602): eabo0924. doi: 10.1126/science.abo0924
    Lossos A, Elazar N, Lerer I, et al. 2015. Myelin-associated glycoprotein gene mutation causes Pelizaeus-Merzbacher disease-like disorder. Brain, 138(Pt 9): 2521–2536.
    MacLean M, López-Díez R, Vasquez C, et al. 2022. Neuronal-glial communication perturbations in murine SOD1G93A spinal cord. Communications Biology, 5(1): 177. doi: 10.1038/s42003-022-03128-y
    Mannan AU, Krawen P, Sauter SM, et al. 2006. ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. The American Journal of Human Genetics, 79(2): 351−357. doi: 10.1086/504927
    Mao F, Li ZH, Zhao BY, et al. 2015. Identification and functional analysis of a SLC33A1: c. 339T>G (p. Ser113Arg) variant in the original SPG42 family. Human Mutation, 36(2): 240−249. doi: 10.1002/humu.22732
    Matsumoto N, Watanabe N, Iibe N, et al. 2019. Hypomyelinating leukodystrophy-associated mutation of RARS leads it to the lysosome, inhibiting oligodendroglial morphological differentiation. Biochemistry and Biophysics Reports, 20: 100705. doi: 10.1016/j.bbrep.2019.100705
    Meijer IA, Dion P, Laurent S, et al. 2007. Characterization of a novel SPG3A deletion in a French-Canadian family. Annals of Neurology, 61(6): 599−603. doi: 10.1002/ana.21114
    Mifflin L, Hu ZR, Dufort C, et al. 2021. A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 118(13): e2025102118. doi: 10.1073/pnas.2025102118
    Montecchiani C, Pedace L, Lo Giudice T, et al. 2016. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain, 139(Pt 1): 73–85.
    Montenegro G, Rebelo AP, Connell J, et al. 2012. Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. The Journal of Clinical Investigation, 122(2): 538−544. doi: 10.1172/JCI60560
    Muglia M, Magariello A, Nicoletti G, et al. 2002. Further evidence that SPG3A gene mutations cause autosomal dominant hereditary spastic paraplegia. Annals of Neurology, 51(6): 794−795.
    Namboori SC, Thomas P, Ames R, et al. 2021. Single-cell transcriptomics identifies master regulators of neurodegeneration in SOD1 ALS iPSC-derived motor neurons. Stem Cell Reports, 16(12): 3020−3035. doi: 10.1016/j.stemcr.2021.10.010
    Neuser S, Brechmann B, Heimer G, et al. 2021. Clinical, neuroimaging, and molecular spectrum of TECPR2-associated hereditary sensory and autonomic neuropathy with intellectual disability. Human Mutation, 42(6): 762−776. doi: 10.1002/humu.24206
    Online Mendelian Inheritance in Man. 2021. OMIM Phenotypic Series - PS303350. in Spastic paraplegia - PS303350. Vol. 2021. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD).
    Orphanet Rare Disease Portal. 2021. Orphanet rare disease portal. Vol. 2021.
    Orso G, Martinuzzi A, Rossetto MG, et al. 2005. Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. Journal of Clinical Investigation, 115(11): 3026−3034. doi: 10.1172/JCI24694
    Orthmann-Murphy JL, Salsano E, Abrams CK, et al. 2009. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain, 132(Pt 2): 426–438.
    Orvis J, Gottfried B, Kancherla J, et al. 2021. gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nature Methods, 18(8): 843−844. doi: 10.1038/s41592-021-01200-9
    Panza E, Escamilla-Honrubia JM, Marco-Marín C, et al. 2016. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain, 139(Pt 1): e3.
    Pujol C, Legrand A, Parodi L, et al. 2021. Implication of folate deficiency in CYP2U1 loss of function. Journal of Experimental Medicine, 218(11): e20210846. doi: 10.1084/jem.20210846
    Robinson MD, Oshlack A. 2010. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11(3): R25. doi: 10.1186/gb-2010-11-3-r25
    Ruano L, Melo C, Silva MC, et al. 2014. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology, 42(3): 174−183. doi: 10.1159/000358801
    Saez-Atienzar S, Bandres-Ciga S, Langston RG, et al. 2021. Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Science Advances, 7(3): eabd9036. doi: 10.1126/sciadv.abd9036
    Scala F, Kobak D, Bernabucci M, et al. 2021. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature, 598(7879): 144−150. doi: 10.1038/s41586-020-2907-3
    Ségalat L. 2007. Loss-of-function genetic diseases and the concept of pharmaceutical targets. Orphanet Journal of Rare Diseases, 2: 30. doi: 10.1186/1750-1172-2-30
    Song L, Rijal R, Karow M, et al. 2018. Expression of N471D strumpellin leads to defects in the endolysosomal system. Disease Models & Mechanisms, 11(9): dmm033449.
    Szebényi K, Wenger LMD, Sun Y, et al. 2021. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nature Neuroscience, 24(11): 1542−1554. doi: 10.1038/s41593-021-00923-4
    Tesson C, Nawara M, Salih MAM, et al. 2012. Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. The American Journal of Human Genetics, 91(6): 1051−1064. doi: 10.1016/j.ajhg.2012.11.001
    Tsai PC, Huang YH, Guo YC, et al. 2014. A novel TFG mutation causes Charcot-Marie-Tooth disease type 2 and impairs TFG function. Neurology, 83(10): 903−912. doi: 10.1212/WNL.0000000000000758
    Tüysüz B, Bilguvar K, Koçer N, et al. 2014. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features. American Journal of Medical Genetics Part A, 164(7): 1677−1685. doi: 10.1002/ajmg.a.36514
    Uhlen M, Fagerberg L, Hallström BM, et al. 2015. Tissue-based map of the human proteome. Science, 347(6220): e1260419. doi: 10.1126/science.1260419
    Van Den Berg RA, Hoefsloot HCJ, Westerhuis JA, et al. 2006. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7: 142. doi: 10.1186/1471-2164-7-142
    Vandamme TF. 2014. Use of rodents as models of human diseases. Journal of Pharmacy & BioAllied Sciences, 6(1): 2−9.
    Vaz FM, McDermott JH, Alders M, et al. 2019. Mutations in PCYT2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain, 142(11): 3382−3397. doi: 10.1093/brain/awz291
    Veitia RA, Caburet S, Birchler JA. 2018. Mechanisms of Mendelian dominance. Clinical Genetics, 93(3): 419−428. doi: 10.1111/cge.13107
    Walusinski O. 2020. A historical approach to hereditary spastic paraplegia. Revue Neurologique, 176(4): 225−234. doi: 10.1016/j.neurol.2019.11.003
    Winter RM, Davies KE, Bell MV, et al. 1989. MASA syndrome: further clinical delineation and chromosomal localisation. Human Genetics, 82(4): 367−370.
    Xu M, Zhang DF, Luo RC, et al. 2018. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer's disease. Alzheimer’s & Dementia, 14(2): 215−229.
    Yao ZZ, Van Velthoven CTJ, Nguyen TN, et al. 2021. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell, 184(12): 3222−3241.e26. doi: 10.1016/j.cell.2021.04.021
    Yıldırım Y, Orhan EK, Iseri SAU, et al. 2011. A frameshift mutation of ERLIN2 in recessive intellectual disability, motor dysfunction and multiple joint contractures. Human Molecular Genetics, 20(10): 1886−1892. doi: 10.1093/hmg/ddr070
    Yim AKY, Wang PL, Bermingham JR et al. 2022. Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nature Neuroscience, 25(2): 238−251. doi: 10.1038/s41593-021-01005-1
  • ZR-2022-281--Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (286) PDF downloads(46) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint