Turn off MathJax
Article Contents
Paola Salmas, Vincent C. K Cheung. Gradient descent decomposition of force-field motor primitives optogenetically elicited for motor mapping of the murine lumbosacral spinal cord. Zoological Research. doi: 10.24272/j.issn.2095-8137.2022.276
Citation: Paola Salmas, Vincent C. K Cheung. Gradient descent decomposition of force-field motor primitives optogenetically elicited for motor mapping of the murine lumbosacral spinal cord. Zoological Research. doi: 10.24272/j.issn.2095-8137.2022.276

Gradient descent decomposition of force-field motor primitives optogenetically elicited for motor mapping of the murine lumbosacral spinal cord

doi: 10.24272/j.issn.2095-8137.2022.276
Funds:  This work was supported by the CUHK Faculty of Medicine Faculty Innovation Award FIA2016/A/04 (to V.C.K.C.), Group Research Scheme NL/JW/rc/grs1819/0426/19hc (to V.C.K.C.), and The Hong Kong Research Grants Council 24115318, CUHK-R4022-18, 14114721, and 14119022 (to V.C.K.C)
More Information
  • Corresponding author: E-mail: vckc@cuhk.edu.hk
  • Received Date: 2022-11-22
  • Accepted Date: 2023-01-19
  • Published Online: 2023-01-18
  • Generating diverse motor behaviors critical for survival is a challenge that confronts the central nervous system (CNS) of all animals. During movement execution, the CNS performs complex calculations to control a large number of neuromusculoskeletal elements. The theory of modular motor control proposes that spinal interneurons are organized in discrete modules that can be linearly combined to generate a variety of behavioral patterns. These modules have been previously represented as stimulus-evoked force fields (FFs) comprising isometric limb-endpoint forces across workspace locations. Here, we ask whether FFs elicited by different stimulations indeed represent the most elementary units of motor control or are themselves the combination of a limited number of even more fundamental motor modules. To probe for potentially more elementary modules, we optogenetically stimulated the lumbosacral spinal cord of intact and spinalized Thy1-ChR2 transgenic mice (n=21), eliciting FFs from as many single stimulation loci as possible (20–70 loci per mouse) at minimally necessary power. We found that the resulting varieties of FFs defied simple categorization with just a few clusters. We used gradient descent to further decompose the FFs into their underlying basic force fields (BFFs), whose linear combination explained FF variability. Across mice, we identified 4–5 BFFs with partially localizable but overlapping representations along the spinal cord. The BFFs were structured and topographically distributed in such a way that a rostral-to-caudal traveling wave of activity across the lumbosacral spinal cord may generate a swing-to-stance gait cycle. These BFFs may represent more rudimentary submodules that can be flexibly merged to produce a library of motor modules for building different motor behaviors.
  • loading
  • [1]
    Aoyagi Y, Stein RB, Mushahwar VK, et al. 2004. The role of neuromuscular properties in determining the end-point of a movement. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1): 12−23. doi: 10.1109/TNSRE.2003.823265
    Bizzi E, Ajemian R. 2015. A hard scientific quest: understanding voluntary movements. Daedalus, 144(1): 83−95. doi: 10.1162/DAED_a_00324
    Bizzi E, Cheung VCK. 2013. The neural origin of muscle synergies. Frontiers in Computational Neuroscience, 7: 51.
    Bizzi E, Giszter SF, Loeb E, et al. 1995. Modular organization of motor behavior in the frog’s spinal cord. Trends in Neurosciences, 18(10): 442−446. doi: 10.1016/0166-2236(95)94494-P
    Bizzi E, Hogan N, Mussa-Ivaldi FA, et al. 1992. Does the nervous system use equilibrium-point control to guide single and multiple joint movements?. Behavioral and Brain Sciences, 15(4): 603−613. doi: 10.1017/S0140525X00072538
    Bizzi E, Mussa-Ivaldi FA, Giszter S. 1991. Computations underlying the execution of movement: a biological perspective. Science, 253(5017): 287−291. doi: 10.1126/science.1857964
    Caggiano V, Cheung VCK, Bizzi E. 2016. An optogenetic demonstration of motor modularity in the mammalian spinal cord. Scientific Reports, 6: 35185. doi: 10.1038/srep35185
    Cheung VCK, Cheung BMF, Zhang JH, et al. 2020. Plasticity of muscle synergies through fractionation and merging during development and training of human runners. Nature Communications, 11(1): 4356. doi: 10.1038/s41467-020-18210-4
    Cheung VCK, d’Avella A, Tresch MC, et al. 2005. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. Journal of Neuroscience, 25(27): 6419−6434. doi: 10.1523/JNEUROSCI.4904-04.2005
    Cheung VCK, Seki K. 2021. Approaches to revealing the neural basis of muscle synergies: a review and a critique. Journal of Neurophysiology, 125(5): 1580−1597. doi: 10.1152/jn.00625.2019
    Cheung VCK, Turolla A, Agostini M, et al. 2012. Muscle synergy patterns as physiological markers of motor cortical damage. Proceedings of the National Academy of Sciences of the United States of America, 109(36): 14652−14656. doi: 10.1073/pnas.1212056109
    Clark DJ, Ting LH, Zajac FE, et al. 2010. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of Neurophysiology, 103(2): 844−857. doi: 10.1152/jn.00825.2009
    d’Avella A, Bizzi E. 1998. Low dimensionality of supraspinally induced force fields. Proceedings of the National Academy of Sciences of the United States of America, 95(13): 7711−7714. doi: 10.1073/pnas.95.13.7711
    Devarajan K, Cheung VCK. 2014. On nonnegative matrix factorization algorithms for signal-dependent noise with application to electromyography data. Neural Computation, 26(6): 1128−1168. doi: 10.1162/NECO_a_00576
    Ethier C, Brizzi L, Darling WG, et al. 2006. Linear summation of cat motor cortex outputs. Journal of Neuroscience, 26(20): 5574−5581. doi: 10.1523/JNEUROSCI.5332-05.2006
    Feldman AG. 1986. Once more on the equilibrium-point hypothesis (λ model) for motor control. Journal of Motor Behavior, 18(1): 17−54. doi: 10.1080/00222895.1986.10735369
    Giszter S, Kargo W. 2000. Movement organization in the frog spinal cord: prerational intelligence?. In: Cruse H, Dean J, Ritter H. Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Dordrecht: Springer, 323–341.
    Giszter SF, Bizzi E, Mussa-Ivaldi FA. 1992. Motor organization in the frog’s spinal cord. In: Eeckman FH. Analysis and Modeling of Neural Systems. Boston: Springer, 377–392.
    Giszter SF, Mussa-Ivaldi FA, Bizzi E. 1993. Convergent force fields organized in the frog’s spinal cord. Journal of Neuroscience, 13(2): 467−491. doi: 10.1523/JNEUROSCI.13-02-00467.1993
    Harrison M, O'Brien A, Adams L, et al. 2013. Vertebral landmarks for the identification of spinal cord segments in the mouse. NeuroImage, 68: 22−29. doi: 10.1016/j.neuroimage.2012.11.048
    Lee DD, Seung HS. 1999. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755): 788−791. doi: 10.1038/44565
    Lemay MA, Calagan JE, Hogan N, et al. 2001. Modulation and vectorial summation of the spinalized frog’s hindlimb end-point force produced by intraspinal electrical stimulation of the cord. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(1): 12−23. doi: 10.1109/7333.918272
    Lemay MA, McConnell GC, Kao T, et al. 2002. Endpoint forces obtained during intraspinal microstimulation of the cat lumbar spinal cord - experimental and biomechanical model results. In: Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No. 02CH37342). Philadelphia: IEEE, 113–114.
    Lemay MA, Grill WM. 2004. Modularity of motor output evoked by intraspinal microstimulation in cats. Journal of Neurophysiology, 91(1): 502−514. doi: 10.1152/jn.00235.2003
    Levine AJ, Hinckley CA, Hilde KL, et al. 2014. Identification of a cellular node for motor control pathways. Nature Neuroscience, 17(4): 586−593. doi: 10.1038/nn.3675
    Liu K, Lu Y, Lee JK, Samara R, et al. 2010. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nature Neuroscience, 13(9): 1075−1081. doi: 10.1038/nn.2603
    Loeb EP, Giszter SF, Borghesani P, et al. 1993. Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog. Somatosensory & Motor Research, 10(1): 81−95.
    Loeb EP, Giszter SF, Saltiel P, et al. 2000. Output units of motor behavior: an experimental and modeling study. Journal of Cognitive Neuroscience, 12(1): 78−97. doi: 10.1162/08989290051137611
    Mattis J, Tye KM, Ferenczi EA, et al. 2012. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods, 9(2): 159−172. doi: 10.1038/nmeth.1808
    Mondello SE, Sunshine MD, Fischedick AE, et al. 2018. Optogenetic surface stimulation of the rat cervical spinal cord. Journal of Neurophysiology, 120(2): 795−811. doi: 10.1152/jn.00461.2017
    Mussa-Ivaldi FA. 1992. From basis functions to basis fields: vector field approximation from sparse data. Biological Cybernetics, 67(6): 479−489. doi: 10.1007/BF00198755
    Mussa-Ivaldi FA, Giszter SF. 1992. Vector field approximation: a computational paradigm for motor control and learning. Biological Cybernetics, 67(6): 491−500. doi: 10.1007/BF00198756
    Mussa-Ivaldi FA, Giszter SF, Bizzi E. 1994. Linear combinations of primitives in vertebrate motor control. Proceedings of the National Academy of Sciences of the United States of America, 91(16): 7534−7538. doi: 10.1073/pnas.91.16.7534
    Overduin SA, d’Avella A, Carmena JM, et al. 2012. Microstimulation activates a handful of muscle synergies. Neuron, 76(6): 1071−1077. doi: 10.1016/j.neuron.2012.10.018
    Ozden I, Wang J, Lu Y, et al. 2013. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. Journal of Neuroscience Methods, 219(1): 142−154. doi: 10.1016/j.jneumeth.2013.06.011
    Rana M, Yani MS, Asavasopon S, et al. 2015. Brain connectivity associated with muscle synergies in humans. Journal of Neuroscience, 35(44): 14708−14716. doi: 10.1523/JNEUROSCI.1971-15.2015
    Rathelot JA, Strick PL. 2006. Muscle representation in the macaque motor cortex: an anatomical perspective. Proceedings of the National Academy of Sciences of the United States of America, 103(21): 8257−8262. doi: 10.1073/pnas.0602933103
    Saltiel P, D'Avella A, Tresch MC, et al. 2017. Critical points and traveling wave in locomotion: experimental evidence and some theoretical considerations. Frontiers in Neural Circuits, 11: 98. doi: 10.3389/fncir.2017.00098
    Saltiel P, D'Avella A, Wyler-Duda K, et al. 2016. Synergy temporal sequences and topography in the spinal cord: evidence for a traveling wave in frog locomotion. Brain Structure and Function, 221(8): 3869−3890. doi: 10.1007/s00429-015-1133-5
    Saltiel P, Wyler-Duda K, D'Avella A, et al. 2005. Localization and connectivity in spinal interneuronal networks: the adduction–caudal extension–flexion rhythm in the frog. Journal of Neurophysiology, 94(3): 2120−2138. doi: 10.1152/jn.00117.2005
    Saltiel P, Wyler-Duda K, D'Avella A, et al. 2001. Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. Journal of Neurophysiology, 85(2): 605−619. doi: 10.1152/jn.2001.85.2.605
    Savage N. 2019. How AI and neuroscience drive each other forwards. Nature, 571(7766): S15−S17.
    Sylos-Labini F, La Scaleia V, Cappellini G, et al. 2020. Distinct locomotor precursors in newborn babies. Proceedings of the National Academy of Sciences of the United States of America, 117(17): 9604−9612.
    Takei T, Confais J, Tomatsu S, et al. 2017. Neural basis for hand muscle synergies in the primate spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 114(32): 8643−8648.
    Ting LH, Chiel HJ, Trumbower RD, et al. 2015. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron, 86(1): 38−54.
    Tresch MC, Bizzi E. 1999. Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Experimental Brain Research, 129(3): 401−416.
    Tresch MC, Saltiel P, Bizzi E. 1999. The construction of movement by the spinal cord. Nature Neuroscience, 2(2): 162−167.
    Vogt N. 2018. Machine learning in neuroscience. Nature Methods, 15(1): 33.
    Yaron A, Kowalski D, Yaguchi H, et al. 2020. Forelimb force direction and magnitude independently controlled by spinal modules in the macaque. Proceedings of the National Academy of Sciences, 117(44): 27655−27666.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (208) PDF downloads(21) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint