Volume 44 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Feng Liu, Zhong-Hao Wang, Wanjing Huang, Ying Xu, Xuan Sang, Ruifeng Liu, Zhou-Yue Li, Ya-Lan Bi, Lei Tang, Jing-Yi Peng, Jia-Ru Wei, Zhi-Chao Miao, Jian-Hua Yan, Sheng Liu. Defects and asymmetries in the visual pathway of non-human primates with natural strabismus and amblyopia. Zoological Research, 2023, 44(1): 153-168. doi: 10.24272/j.issn.2095-8137.2022.254
Citation: Feng Liu, Zhong-Hao Wang, Wanjing Huang, Ying Xu, Xuan Sang, Ruifeng Liu, Zhou-Yue Li, Ya-Lan Bi, Lei Tang, Jing-Yi Peng, Jia-Ru Wei, Zhi-Chao Miao, Jian-Hua Yan, Sheng Liu. Defects and asymmetries in the visual pathway of non-human primates with natural strabismus and amblyopia. Zoological Research, 2023, 44(1): 153-168. doi: 10.24272/j.issn.2095-8137.2022.254

Defects and asymmetries in the visual pathway of non-human primates with natural strabismus and amblyopia

doi: 10.24272/j.issn.2095-8137.2022.254
Supplementary data to this article can be found online.
The authors declare that they have no competing interests.
S.L. and J.H.Y. designed the project. F.L., Z.H.W., W.H., R.L., Z.Y.L., L.T., J.Y.P., and X.S. performed the experiments. F.L., W.H., Z.Y.L., X.S., and J.R.W. analyzed the data. S.L., J.H.Y., F.L., Z.H.W., and W.H. wrote the paper. Y.X., Y.L.B., and Z.C.M. reviewed and edited the manuscript. All authors read and approved the final version of the manuscript.
#Authors contributed equally to this work
Funds:  This study was supported by the National Natural Science Foundation of China (81870682, 81961128021, 81670885), National Key R&D Program of China (2022YEF0203200, 2021ZD0200103, 2018YFA0108300), Guangdong Provincial Key R&D Programs (2018B030335001, 2018B030337001), Local Innovative and Research Teams Project of Guangdong (2017BT01S138), and Science and Technology Program of Guangzhou (202007030011, 202007030010)
More Information
  • Strabismus and amblyopia are common ophthalmologic developmental diseases caused by abnormal visual experiences. However, the underlying pathogenesis and visual defects are still not fully understood. Most studies have used experimental interference to establish disease-associated animal models, while ignoring the natural pathophysiological mechanisms. This study was designed to investigate whether natural strabismus and amblyopia are associated with abnormal neurological defects. We screened one natural strabismic monkey (Macaca fascicularis) and one natural amblyopic monkey from hundreds of monkeys, and retrospectively analyzed one human strabismus case. Neuroimaging, behavioral, neurophysiological, neurostructural, and genovariation features were systematically evaluated using magnetic resonance imaging (MRI), behavioral tasks, flash visual evoked potentials (FVEP), electroretinogram (ERG), optical coherence tomography (OCT), and whole-genome sequencing (WGS), respectively. Results showed that the strabismic patient and natural strabismic and amblyopic monkeys exhibited similar abnormal asymmetries in brain structure, i.e., ipsilateral impaired right hemisphere. Visual behavior, visual function, retinal structure, and fundus of the monkeys were impaired. Aberrant asymmetry in binocular visual function and structure between the strabismic and amblyopic monkeys was closely related, with greater impairment of the left visual pathway. Several similar known mutant genes for strabismus and amblyopia were also identified. In conclusion, natural strabismus and amblyopia are accompanied by abnormal asymmetries of the visual system, especially visual neurophysiological and neurostructural defects. Our results suggest that future therapeutic and mechanistic studies should consider defects and asymmetries throughout the entire visual system.
  • Supplementary data to this article can be found online.
    The authors declare that they have no competing interests.
    S.L. and J.H.Y. designed the project. F.L., Z.H.W., W.H., R.L., Z.Y.L., L.T., J.Y.P., and X.S. performed the experiments. F.L., W.H., Z.Y.L., X.S., and J.R.W. analyzed the data. S.L., J.H.Y., F.L., Z.H.W., and W.H. wrote the paper. Y.X., Y.L.B., and Z.C.M. reviewed and edited the manuscript. All authors read and approved the final version of the manuscript.
    #Authors contributed equally to this work
  • loading
  • [1]
    Al-Haddad C, Ghannam AB, El Moussawi Z, Rachid E, Ismail K, Atallah M, et al. 2020. Multifocal electroretinography in amblyopia. Graefe's Archive for Clinical and Experimental Ophthalmology, 258(3): 683−691. doi: 10.1007/s00417-019-04558-x
    [2]
    Barrett BT, Bradley A, Candy TR. 2013. The relationship between anisometropia and amblyopia. Progress in Retinal and Eye Research, 36: 120−158. doi: 10.1016/j.preteyeres.2013.05.001
    [3]
    Birch EE. 2013. Amblyopia and binocular vision. Progress in Retinal and Eye Research, 33: 67−84. doi: 10.1016/j.preteyeres.2012.11.001
    [4]
    Bringmann A, Syrbe S, Görner K, Kacza J, Francke M, Wiedemann P, et al. 2018. The primate fovea: structure, function and development. Progress in Retinal and Eye Research, 66: 49−84. doi: 10.1016/j.preteyeres.2018.03.006
    [5]
    Brodsky MC. 2011. Dissociated vertical divergence: cortical or subcortical in origin?. Strabismus, 19(2): 67−68. doi: 10.3109/09273972.2011.575434
    [6]
    Burgoyne CF. 2015. The non-human primate experimental glaucoma model. Experimental Eye Research, 141: 57−73. doi: 10.1016/j.exer.2015.06.005
    [7]
    Chan ST, Tang KW, Lam KC, Chan LK, Mendola JD, Kwong KK. 2004. Neuroanatomy of adult strabismus: a voxel-based morphometric analysis of magnetic resonance structural scans. NeuroImage, 22(2): 986−994. doi: 10.1016/j.neuroimage.2004.02.021
    [8]
    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2): 80−92. doi: 10.4161/fly.19695
    [9]
    Das VE. 2016. Strabismus and the oculomotor system: insights from macaque models. Annual Review of Vision Science, 2: 37−59. doi: 10.1146/annurev-vision-111815-114335
    [10]
    Ettaiche M, Deval E, Cougnon M, Lazdunski M, Voilley N. 2006. Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. Journal of Neuroscience, 26(21): 5800−5809. doi: 10.1523/JNEUROSCI.0344-06.2006
    [11]
    Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, et al. 2004. Selective ganglion cell functional loss in rats with experimental glaucoma. Investigative Ophthalmology & Visual Science, 45(6): 1854−1862.
    [12]
    Ghasia F, Tychsen L. 2014. Horizontal and vertical optokinetic eye movements in macaque monkeys with infantile strabismus: directional bias and crosstalk. Investigative Ophthalmology & Visual Science, 55(1): 265−274.
    [13]
    Gopal SKS, Kelkar J, Kelkar A, Pandit A. 2019. Simplified updates on the pathophysiology and recent developments in the treatment of amblyopia: a review. Indian Journal of Ophthalmology, 67(9): 1392−1399. doi: 10.4103/ijo.IJO_11_19
    [14]
    Graeber CP, Hunter DG, Engle EC. 2013. The genetic basis of incomitant strabismus: consolidation of the current knowledge of the genetic foundations of disease. Seminars in Ophthalmology, 28(5–6): 427–437.
    [15]
    Greenberg AE, Mohney BG, Diehl NN, Burke JP. 2007. Incidence and types of childhood esotropia: a population-based study. Ophthalmology, 114(1): 170−174. doi: 10.1016/j.ophtha.2006.05.072
    [16]
    Hallum LE, Shooner C, Kumbhani RD, Kelly JG, García-Marín V, Majaj NJ, et al. 2017. Altered balance of receptive field excitation and suppression in visual cortex of amblyopic macaque monkeys. Journal of Neuroscience, 37(34): 8216−8226. doi: 10.1523/JNEUROSCI.0449-17.2017
    [17]
    Hoshino A, Ratnapriya R, Brooks MJ, Chaitankar V, Wilken MS, Zhang C, et al. 2017. Molecular anatomy of the developing human retina. Developmental Cell, 43(6): 763−779.e4. doi: 10.1016/j.devcel.2017.10.029
    [18]
    Ikeda Y, Nishiguchi KM, Miya F, Shimozawa N, Funatsu J, Nakatake S, et al. 2018. Discovery of a cynomolgus monkey family with retinitis pigmentosa. Investigative Ophthalmology & Visual Science, 59(2): 826−830.
    [19]
    Joly O, Frankó E. 2014. Neuroimaging of amblyopia and binocular vision: a review. Frontiers in Integrative Neuroscience, 8: 62.
    [20]
    Khan AO, Shaheen R, Alkuraya FS. 2014. The ECEL1-related strabismus phenotype is consistent with congenital cranial dysinnervation disorder. Journal of American Association for Pediatric Ophthalmology and Strabismus, 18(4): 362−367. doi: 10.1016/j.jaapos.2014.03.005
    [21]
    Lambert WS, Carlson BJ, Ghose P, Vest VD, Yao V, Calkins DJ. 2019. Towards a microbead occlusion model of glaucoma for a non-human primate. Scientific Reports, 9(1): 11572. doi: 10.1038/s41598-019-48054-y
    [22]
    Lebherz C, Maguire AM, Auricchio A, Tang WX, Aleman TS, Wei ZY, et al. 2005. Nonhuman primate models for diabetic ocular neovascularization using AAV2-mediated overexpression of vascular endothelial growth factor. Diabetes, 54(4): 1141−1149. doi: 10.2337/diabetes.54.4.1141
    [23]
    Levi DM. 2012. Prentice award lecture 2011: removing the brakes on plasticity in the amblyopic brain. Optometry and Vision Science, 89(6): 827−838. doi: 10.1097/OPX.0b013e318257a187
    [24]
    Li JR, Thompson B, Deng DM, Chan LYL, Yu MB, Hess RF. 2013. Dichoptic training enables the adult amblyopic brain to learn. Current Biology, 23(8): R308−R309. doi: 10.1016/j.cub.2013.01.059
    [25]
    Liao N, Jiang HL, Mao GY, Li YY, Xue AQ, Lan Y, et al. 2019. Changes in macular ultrastructural morphology in unilateral anisometropic amblyopia. American Journal of Translational Research, 11(8): 5086−5095.
    [26]
    Liu F, Liu XB, Zhou YM, Yu YK, Wang K, Zhou ZQ, et al. 2021. Wolfberry-derived zeaxanthin dipalmitate delays retinal degeneration in a mouse model of retinitis pigmentosa through modulating STAT3, CCL2 and MAPK pathways. Journal of Neurochemistry, 158(5): 1131−1150. doi: 10.1111/jnc.15472
    [27]
    Liu F, Zhang J, Xiang ZQ, Xu D, So KF, Vardi N, et al. 2018. Lycium barbarum polysaccharides protect retina in rd1 mice during photoreceptor degeneration. Investigative Ophthalmology & Visual Science, 59(1): 597−611.
    [28]
    Machida S. 2012. Clinical applications of the photopic negative response to optic nerve and retinal diseases. Journal of Ophthalmology, 2012: 397178.
    [29]
    MacLachlan TK, Lukason M, Collins M, Munger R, Isenberger E, Rogers C, et al. 2011. Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration. Molecular Therapy, 19(2): 326−334. doi: 10.1038/mt.2010.258
    [30]
    Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M. 2009. ISCEV standard for full-field clinical electroretinography (2008 update). Documenta Ophthalmologica, 118(1): 69−77. doi: 10.1007/s10633-008-9155-4
    [31]
    Meier K, Giaschi D. 2017. Unilateral amblyopia affects two eyes: fellow eye deficits in amblyopia. Investigative Ophthalmology & Visual Science, 58(3): 1779−1800.
    [32]
    Mendola JD, Lam J, Rosenstein M, Lewis LB, Shmuel A. 2018. Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia. NeuroImage:Clinical, 18: 192−201. doi: 10.1016/j.nicl.2018.01.022
    [33]
    Moshiri A, Chen R, Kim S, Harris RA, Li YM, Raveendran M, et al. 2019. A nonhuman primate model of inherited retinal disease. The Journal of Clinical Investigation, 129(2): 863−874. doi: 10.1172/JCI123980
    [34]
    Mvoulana A, Kachouri R, Akil M. 2019. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Computerized Medical Imaging and Graphics, 77: 101643. doi: 10.1016/j.compmedimag.2019.101643
    [35]
    Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, et al. 2016. ISCEV standard for clinical visual evoked potentials: (2016 update). Documenta Ophthalmologica, 133(1): 1−9. doi: 10.1007/s10633-016-9553-y
    [36]
    Picaud S, Dalkara D, Marazova K, Goureau O, Roska B, Sahel JA. 2019. The primate model for understanding and restoring vision. Proceedings of the National Academy of Sciences of the United States of America, 116(52): 26280−26287. doi: 10.1073/pnas.1902292116
    [37]
    Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, et al. 2015. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford), 2015: bav028. doi: 10.1093/database/bav028
    [38]
    Quoc EB, Milleret C. 2014. Origins of strabismus and loss of binocular vision. Frontiers in Integrative Neuroscience, 8: 71.
    [39]
    Quoc EB, Ribot J, Quenech'Du N, Doutremer S, Lebas N, Grantyn A, et al. 2011. Asymmetrical interhemispheric connections develop in cat visual cortex after early unilateral convergent strabismus: anatomy, physiology, and mechanisms. Frontiers in Neuroanatomy, 5: 68.
    [40]
    Rangaswamy NV, Shirato S, Kaneko M, Digby BI, Robson JG, Frishman LJ. 2007. Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Investigative Ophthalmology & Visual Science, 48(10): 4818−4828.
    [41]
    Schmidt KF, Löwel S. 2006. The layout of functional maps in area 18 of strabismic cats. Neuroscience, 141(3): 1525−1531. doi: 10.1016/j.neuroscience.2006.04.056
    [42]
    Scholl B, Tan AYY, Priebe NJ. 2013. Strabismus disrupts binocular synaptic integration in primary visual cortex. Journal of Neuroscience, 33(43): 17108−17122. doi: 10.1523/JNEUROSCI.1831-13.2013
    [43]
    Shi HM, Wang YM, Liu XM, Xia L, Chen Y, Lu QL, et al. 2019. Cortical alterations by the abnormal visual experience beyond the critical period: a resting-state fMRI study on constant exotropia. Current Eye Research, 44(12): 1386−1392. doi: 10.1080/02713683.2019.1639767
    [44]
    Shooner C, Hallum LE, Kumbhani RD, Ziemba CM, Garcia-Marin V, Kelly JG, et al. 2015. Population representation of visual information in areas V1 and V2 of amblyopic macaques. Vision Research, 114: 56−67. doi: 10.1016/j.visres.2015.01.012
    [45]
    Sinha R, Hoon M, Baudin J, Okawa H, Wong ROL, Rieke F. 2017. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell, 168(3): 413−426.e12. doi: 10.1016/j.cell.2017.01.005
    [46]
    Smith III EL, Hung LF, Arumugam B, Wensveen JM, Chino YM, Harwerth RS. 2017. Observations on the relationship between anisometropia, amblyopia and strabismus. Vision Research, 134: 26−42. doi: 10.1016/j.visres.2017.03.004
    [47]
    Spiegel DP, Li JR, Hess RF, Byblow WD, Deng DM, Yu MB, et al. 2013. Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia. Neurotherapeutics, 10(4): 831−839. doi: 10.1007/s13311-013-0200-y
    [48]
    Stager D Jr, Mcloon LK, Felius J. 2013. Postulating a role for connective tissue elements in inferior oblique muscle overaction (an american ophthalmological society thesis). Transactions of the American Ophthalmological Society, 111: 119−132.
    [49]
    Tan G, Huang X, Zhang Y, Wu AH, Zhong YL, Wu K, et al. 2016. A functional MRI study of altered spontaneous brain activity pattern in patients with congenital comitant strabismus using amplitude of low-frequency fluctuation. Neuropsychiatric Disease and Treatment, 12: 1243−1250.
    [50]
    Tanimoto N, Sothilingam V, Kondo M, Biel M, Humphries P, Seeliger MW. 2015. Electroretinographic assessment of rod- and cone-mediated bipolar cell pathways using flicker stimuli in mice. Scientific Reports, 5: 10731. doi: 10.1038/srep10731
    [51]
    Tusscher MPMT, Houtman AC, De Mey J, Van Schuerbeek P. 2018. Cortical visual connections via the corpus callosum are asymmetrical in human infantile esotropia. Strabismus, 26(1): 22−27. doi: 10.1080/09273972.2017.1418898
    [52]
    Tychsen L, Richards M, Wong AMF, Demer J, Bradley D, Burkhalter A, et al. 2008. Decorrelation of cerebral visual inputs as the sufficient cause of infantile esotropia. American Orthoptic Journal, 58(1): 60−69. doi: 10.3368/aoj.58.1.60
    [53]
    Wang SF, Kowal TJ, Ning K, Koo EB, Wu AY, Mahajan VB, et al. 2018. Review of ocular manifestations of joubert syndrome. Genes, 9(12): 605. doi: 10.3390/genes9120605
    [54]
    Wang ZH, Zhu BB, Fu LC, Yan JH. 2021. Etiology and clinical features of diplopia in south china: analysis of 303 cases. Frontiers in Neurology, 12: 805253.
    [55]
    Whitman MC, Engle EC. 2017. Ocular congenital cranial dysinnervation disorders (CCDDs): insights into axon growth and guidance. Human Molecular Genetics, 26(R1): R37−R44. doi: 10.1093/hmg/ddx168
    [56]
    Wong AMF. 2012. New concepts concerning the neural mechanisms of amblyopia and their clinical implications. Canadian Journal of Ophthalmology, 47(5): 399−409. doi: 10.1016/j.jcjo.2012.05.002
    [57]
    Wong EH, Levi DM, McGraw PV. 2005. Spatial interactions reveal inhibitory cortical networks in human amblyopia. Vision Research, 45(21): 2810−2819. doi: 10.1016/j.visres.2005.06.008
    [58]
    Wu Q, Guo W, Hu H, Li R, Zhu H, Chen XX, et al. 2022. Altered spontaneous brain activity in patients with comitant exotropia before and after surgery: a resting-state fMRI study. Experimental Eye Research, 222: 109161. doi: 10.1016/j.exer.2022.109161
    [59]
    Xiao JX, Xie S, Ye JT, Liu HH, Gan XL, Gong GL, et al. 2007. Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry. American Journal of Ophthalmology, 143(3): 489−493. doi: 10.1016/j.ajo.2006.11.039
    [60]
    Yan XH, Lin XM, Wang QF, Zhang YC, Chen YM, Song SJ, et al. 2010. Dorsal visual pathway changes in patients with comitant extropia. PLoS One, 5(6): e10931. doi: 10.1371/journal.pone.0010931
    [61]
    Yan XH, Wang Y, Xu LJ, Liu Y, Song SJ, Ding K, et al. 2019. Altered functional connectivity of the primary visual cortex in adult comitant strabismus: a resting-state functional MRI study. Current Eye Research, 44(3): 316−323. doi: 10.1080/02713683.2018.1540642
    [62]
    Ye XC, Pegado V, Patel MS, Wasserman WW. 2014. Strabismus genetics across a spectrum of eye misalignment disorders. Clinical Genetics, 86(2): 103−111. doi: 10.1111/cge.12367
    [63]
    Zhang B, Bi H, Sakai E, Maruko I, Zheng JH, Smith III EL, et al. 2005. Rapid plasticity of binocular connections in developing monkey visual cortex (V1). Proceedings of the National Academy of Sciences of the United States of America, 102(25): 9026−9031. doi: 10.1073/pnas.0500280102
    [64]
    Zhang TY, Xie SY, Liu YC, Xue CH, Zhang W. 2021. Effect of amblyopia treatment on macular microvasculature in children with anisometropic amblyopia using optical coherence tomographic angiography. Scientific Reports, 11(1): 39. doi: 10.1038/s41598-020-79585-4
  • ZR-2022-254 Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (687) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return