Volume 43 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wan-Jun Bai, Xing-Guang Luo, Bao-Hua Jin, Kang-Sheng Zhu, Wen-Yan Guo, Xiao-Que Zhu, Xia Qin, Zu-Xiao Yang, Jiao-Jiao Zhao, Si-Ruan Chen, Ri Wang, Jie Hao, Fei Wang, Yun Stone Shi, De-Zhi Kong, Wei Zhang. Deficiency of transmembrane AMPA receptor regulatory protein γ-8 leads to attention-deficit hyperactivity disorder-like behavior in mice. Zoological Research, 2022, 43(5): 851-870. doi: 10.24272/j.issn.2095-8137.2022.122
Citation: Wan-Jun Bai, Xing-Guang Luo, Bao-Hua Jin, Kang-Sheng Zhu, Wen-Yan Guo, Xiao-Que Zhu, Xia Qin, Zu-Xiao Yang, Jiao-Jiao Zhao, Si-Ruan Chen, Ri Wang, Jie Hao, Fei Wang, Yun Stone Shi, De-Zhi Kong, Wei Zhang. Deficiency of transmembrane AMPA receptor regulatory protein γ-8 leads to attention-deficit hyperactivity disorder-like behavior in mice. Zoological Research, 2022, 43(5): 851-870. doi: 10.24272/j.issn.2095-8137.2022.122

Deficiency of transmembrane AMPA receptor regulatory protein γ-8 leads to attention-deficit hyperactivity disorder-like behavior in mice

doi: 10.24272/j.issn.2095-8137.2022.122
#Authors contributed equally to this work
Funds:  This research was supported by the National Natural Science Foundation of China (81872848, 81803509), National Major Special Project on New Drug Innovation grant (2018ZX09711001-004-003), CAMS Innovation Fund for Medical Sciences (2019-I2M-5-055), Hebei Natural Science Foundation (H2019206038), National Key R&D Program of China (2019YFA0801603), and Natural Science Foundation of Jiangsu Province (BE2019707)
More Information
  • Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder prevalent in school-age children. At present, however, its etiologies and risk factors are unknown. Transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor regulatory protein γ-8 (TARP γ-8, also known as calcium voltage-gated channel auxiliary subunit gamma 8 (CACNG8)) is an auxiliary AMPA receptor (AMPAR) subunit. Here, we report an association between TARP γ-8 and ADHD, whereby adolescent TARP γ-8 knockout (KO) mice exhibited ADHD-like behaviors, including hyperactivity, impulsivity, anxiety, impaired cognition, and memory deficits. Human single-nucleotide polymorphism (SNP) analysis also revealed strong associations between intronic alleles in CACNG8 genes and ADHD susceptibility. In addition, synaptosomal proteomic analysis revealed dysfunction of the AMPA glutamate receptor complex in the hippocampi of TARP γ-8 KO mice. Proteomic analysis also revealed dysregulation of dopaminergic and glutamatergic transmissions in the prefrontal cortices of TARP γ-8 KO mice. Methylphenidate (MPH), which is commonly used to treat ADHD, significantly rescued the major behavioral deficits and abnormal synaptosomal proteins in TARP γ-8 KO mice. Notably, MPH significantly reversed the up-regulation of Grik2 and Slc6a3 in the prefrontal cortex. MPH also significantly improved synaptic AMPAR complex function by up-regulating other AMPAR auxiliary proteins in hippocampal synaptosomes. Taken together, our results suggest that TARP γ-8 is involved in the development of ADHD in humans. This study provides a useful alternative animal model with ADHD-like phenotypes related to TARP γ-8 deficiency, which has great potential for the development of new therapies.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Abel T, Lattal KM. 2001. Molecular mechanisms of memory acquisition, consolidation and retrieval. Current Opinion in Neurobiology, 11(2): 180−187. doi: 10.1016/S0959-4388(00)00194-X
    Adler LA, Kroon RA, Stein M, Shahid M, Tarazi FI, Szegedi A, et al. 2012. A translational approach to evaluate the efficacy and safety of the novel AMPA receptor positive allosteric modulator org 26576 in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 72(11): 971−977. doi: 10.1016/j.biopsych.2012.05.012
    Aitta-Aho T, Maksimovic M, Dahl K, Sprengel R, Korpi ER. 2019. Attenuation of novelty-induced hyperactivity of gria1-/- mice by Cannabidiol and hippocampal inhibitory Chemogenetics. Frontiers in Pharmacology, 10: 309. doi: 10.3389/fphar.2019.00309
    Al-Amin M, Zinchenko A, Geyer T. 2018. Hippocampal subfield volume changes in subtypes of attention deficit hyperactivity disorder. Brain Research, 1685: 1−8. doi: 10.1016/j.brainres.2018.02.007
    Arnsten AFT. 2009. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs, 23(S1): 33−41.
    Arnsten AFT, Pliszka SR. 2011. Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacology Biochemistry and Behavior, 99(2): 211−216. doi: 10.1016/j.pbb.2011.01.020
    Barker GRI, Bird F, Alexander V, Warburton EC. 2007. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. Journal of Neuroscience, 27(11): 2948−2957. doi: 10.1523/JNEUROSCI.5289-06.2007
    Bauer J, Werner A, Kohl W, Kugel H, Shushakova A, Pedersen A, et al. 2018. Hyperactivity and impulsivity in adult attention-deficit/hyperactivity disorder is related to glutamatergic dysfunction in the anterior cingulate cortex. The World Journal of Biological Psychiatry, 19(7): 538−546. doi: 10.1080/15622975.2016.1262060
    Biederman J. 2005. Attention-deficit/hyperactivity disorder: a selective overview. Biological Psychiatry, 57(11): 1215−1220. doi: 10.1016/j.biopsych.2004.10.020
    Bouchatta O, Manouze H, Bouali-Benazzouz R, Kerekes N, Ba-M'hamed S, Fossat P, et al. 2018. Neonatal 6-OHDA lesion model in mouse induces Attention-Deficit/ Hyperactivity Disorder (ADHD)-like behaviour. Scientific Reports, 8(1): 15349. doi: 10.1038/s41598-018-33778-0
    Brechet A, Buchert R, Schwenk J, Boudkkazi S, Zolles G, Siquier-Pernet K, et al. 2017. AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nature Communications, 8(1): 15910. doi: 10.1038/ncomms15910
    Calzavara MB, Medrano WA, Levin R, Kameda SR, Andersen ML, Tufik S, et al. 2009. Neuroleptic drugs revert the contextual fear conditioning deficit presented by spontaneously hypertensive rats: a potential animal model of emotional context processing in schizophrenia?. Schizophrenia Bulletin, 35(4): 748−759. doi: 10.1093/schbul/sbn006
    Chen XJ, Zhang WG, Li T, Guo Y, Tian YP, Wang F, et al. 2015. Impairment of oligodendroglia maturation leads to aberrantly increased cortical glutamate and anxiety-like behaviors in juvenile mice. Frontiers in Cellular Neuroscience, 9: 467.
    Cheng J, Liu AY, Shi MY, Yan Z. 2017. Disrupted glutamatergic transmission in prefrontal cortex contributes to behavioral abnormality in an animal model of ADHD. Neuropsychopharmacology, 42(10): 2096−2104. doi: 10.1038/npp.2017.30
    Craig AD. 2009. Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philosophical Transactions of the Royal Society B Biological Sciences, 364(1525): 1933−1942. doi: 10.1098/rstb.2009.0008
    De La Peña JB, Dela Peña IJ, Custodio RJ, Botanas CJ, Kim HJ, Cheong JH. 2018. Exploring the validity of proposed transgenic animal models of attention-deficit hyperactivity disorder (ADHD). Molecular Neurobiology, 55(5): 3739−3754.
    Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW. 2011. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biological Psychiatry, 69(12): e145−e157. doi: 10.1016/j.biopsych.2011.02.036
    Erlenhardt N, Yu H, Abiraman K, Yamasaki T, Wadiche JI, Tomita S, et al. 2016. Porcupine controls hippocampal AMPAR levels, composition, and synaptic transmission. Cell Reports, 14(4): 782−794. doi: 10.1016/j.celrep.2015.12.078
    Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, et al. 2015. Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1: 15020. doi: 10.1038/nrdp.2015.20
    Fukaya M, Tsujita M, Yamazaki M, Kushiya E, Abe M, Akashi K, et al. 2006. Abundant distribution of TARP γ-8 in synaptic and extrasynaptic surface of hippocampal neurons and its major role in AMPA receptor expression on spines and dendrites. European Journal of Neuroscience, 24(8): 2177−2190. doi: 10.1111/j.1460-9568.2006.05081.x
    Geurts HM, Ridderinkhof KR, Scholte HS. 2013. The relationship between grey-matter and ASD and ADHD traits in typical adults. Journal of Autism and Developmental Disorders, 43(7): 1630−1641. doi: 10.1007/s10803-012-1708-4
    Gill MB, Kato AS, Roberts MF, Yu H, Wang H, Tomita S, et al. 2011. Cornichon-2 modulates AMPA receptor-transmembrane AMPA receptor regulatory protein assembly to dictate gating and pharmacology. Journal of Neuroscience, 31(18): 6928−6938. doi: 10.1523/JNEUROSCI.6271-10.2011
    Gleason SD, Kato A, Bui HH, Thompson LK, Valli SN, Stutz PV, et al. 2015. Inquiries into the biological significance of transmembrane AMPA receptor regulatory protein (TARP) γ-8 through investigations of TARP γ-8 null mice§. CNS & Neurological Disorders-Drug Targets, 14(5): 612−626.
    Guan FL, Zhang TX, Liu XS, Han W, Lin HL, Li L, et al. 2016. Evaluation of voltage-dependent calcium channel γ gene families identified several novel potential susceptible genes to schizophrenia. Scientific Reports, 6: 24914. doi: 10.1038/srep24914
    Gudmundsson OO, Walters GB, Ingason A, Johansson S, Zayats T, Athanasiu L, et al. 2019. Attention-deficit hyperactivity disorder shares copy number variant risk with schizophrenia and autism spectrum disorder. Translational Psychiatry, 9(1): 258. doi: 10.1038/s41398-019-0599-y
    Hamshere ML, Stergiakouli E, Langley K, Martin J, Holmans P, Kent L, et al. 2013. Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. British Journal of Psychiatry, 203(2): 107−111. doi: 10.1192/bjp.bp.112.117432
    Herring BE, Shi Y, Suh YH, Zheng CY, Blankenship SM, Roche KW, et al. 2013. Cornichon proteins determine the subunit composition of synaptic AMPA receptors. Neuron, 77(6): 1083−1096. doi: 10.1016/j.neuron.2013.01.017
    Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ, et al. 2017. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. The Lancet Psychiatry, 4(4): 310−319. doi: 10.1016/S2215-0366(17)30049-4
    Jenson D, Yang KC, Acevedo-Rodriguez A, Levine A, Broussard JI, Tang JR, et al. 2015. Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity. Neuropharmacology, 90: 23−32. doi: 10.1016/j.neuropharm.2014.10.029
    Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, et al. 2010. Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron, 68(6): 1082−1096. doi: 10.1016/j.neuron.2010.11.026
    Kibby MY, Kroese JM, Krebbs H, Hill CE, Hynd GW. 2009. The pars triangularis in dyslexia and ADHD: A comprehensive approach. Brain and Language, 111(1): 46−54. doi: 10.1016/j.bandl.2009.03.001
    Kong DZ, Tian XL, Li YS, Zhang SH, Cheng YR, Huo LF, et al. 2018. Revealing the Inhibitory Effect of Ginseng on Mitochondrial Respiration through Synaptosomal Proteomics. Proteomics, 18(11): 1700354. doi: 10.1002/pmic.201700354
    Kotecha SA, Oak JN, Jackson MF, Perez Y, Orser BA, Van Tol HHM, et al. 2002. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron, 35(6): 1111−1122. doi: 10.1016/S0896-6273(02)00859-0
    Li Y, Yin AQ, Sun X, Zhang M, Zhang JF, Wang P, et al. 2017. Deficiency of tumor suppressor NDRG2 leads to attention deficit and hyperactive behavior. The Journal of Clinical Investigation, 127(12): 4270−4284. doi: 10.1172/JCI94455
    Liang P, Li F, Liu J, Liao D, Huang H, Zhou C. 2017. Sevoflurane activates hippocampal CA3 kainate receptors (Gluk2) to induce hyperactivity during induction and recovery in a mouse model. British Journal of Anaesthesia, 119(5): 1047−1054. doi: 10.1093/bja/aex043
    Lopez-Larson MP, King JB, Terry J, McGlade EC, Yurgelun-Todd D. 2012. Reduced insular volume in attention deficit hyperactivity disorder. Psychiatry Research:Neuroimaging, 204(1): 32−39. doi: 10.1016/j.pscychresns.2012.09.009
    Madras BK, Miller GM, Fischman AJ. 2005. The dopamine transporter and attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11): 1397−1409. doi: 10.1016/j.biopsych.2004.10.011
    Matsuoka Y, Furuyashiki T, Yamada K, Nagai T, Bito H, Tanaka Y, et al. 2005. Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proceedings of the National Academy of Sciences of the United States of America, 102(44): 16066−16071. doi: 10.1073/pnas.0504908102
    Medin T, Jensen V, Skare Ø, Storm-Mathisen J, Hvalby Ø, Bergersen LH. 2019. Altered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function and expression in hippocampus in a rat model of attention-deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 360: 209−215. doi: 10.1016/j.bbr.2018.12.028
    Micheau J, Vimeney A, Normand E, Mulle C, Riedel G. 2014. Impaired hippocampus-dependent spatial flexibility and sociability represent autism-like phenotypes in GluK2 mice. Hippocampus, 24(9): 1059−1069. doi: 10.1002/hipo.22290
    Miller EM, Pomerleau F, Huettl P, Gerhardt GA, Glaser PEA. 2014. Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Psychopharmacology, 231(15): 3019−3029. doi: 10.1007/s00213-014-3479-4
    Naaijen J, Bralten J, Poelmans G, The IMAGE Consortium, Glennon JC, Franke B, et al. 2017. Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism. Translational Psychiatry, 7(1): e999. doi: 10.1038/tp.2016.273
    NC3Rs Reporting Guidelines Working Group. 2010. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Experimental Physiology, 95(8): 842−844. doi: 10.1113/expphysiol.2010.053793
    Nourredine M, Gering A, Fourneret P, Rolland B, Falissard B, Cucherat M, et al. 2021. Association of attention-deficit/hyperactivity disorder in childhood and adolescence with the risk of subsequent psychotic disorder: a systematic review and meta-analysis. JAMA Psychiatry, 78(5): 519−529. doi: 10.1001/jamapsychiatry.2020.4799
    Park J, Chávez AE, Mineur YS, Morimoto-Tomita M, Lutzu S, Kim KS, et al. 2016. CaMKII phosphorylation of TARPγ-8 is a mediator of LTP and learning and memory. Neuron, 92(1): 75−83. doi: 10.1016/j.neuron.2016.09.002
    Peng SX, Wang YY, Zhang M, Zang YY, Wu D, Pei JW, et al. 2021. SNP rs10420324 in the AMPA receptor auxiliary subunit TARP γ-8 regulates the susceptibility to antisocial personality disorder. Scientific Reports, 11(1): 11997. doi: 10.1038/s41598-021-91415-9
    Polanczyk G, De Lima MS, Horta BL, Biederman J, Rohde LA. 2007. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. The American Journal of Psychiatry, 164(6): 942−948. doi: 10.1176/ajp.2007.164.6.942
    Posner J, Polanczyk GV, Sonuga-Barke E. 2020. Attention-deficit hyperactivity disorder. The Lancet, 395(10222): 450−462. doi: 10.1016/S0140-6736(19)33004-1
    Posner J, Siciliano F, Wang ZS, Liu J, Sonuga-Barke E, Greenhill L. 2014. A multimodal MRI study of the hippocampus in medication-naive children with ADHD: what connects ADHD and depression?. Psychiatry Research:Neuroimaging, 224(2): 112−118. doi: 10.1016/j.pscychresns.2014.08.006
    Pozzi M, Carnovale C, Mazhar F, Peeters GGAM, Gentili M, Nobile M, et al. 2019. Adverse drug reactions related to mood and emotion in pediatric patients treated for attention deficit/hyperactivity disorder: A comparative analysis of the US food and drug administration adverse event reporting system database. Journal of Clinical Psychopharmacology, 39(4): 386−392. doi: 10.1097/JCP.0000000000001058
    Prince J. 2008. Catecholamine dysfunction in attention-deficit/hyperactivity disorder: an update. Journal of Clinical Psychopharmacology, 28(3 Suppl 2): S39–S45.
    Reisel D, Bannerman DM, Schmitt WB, Deacon RMJ, Flint J, Borchardt T, et al. 2002. Spatial memory dissociations in mice lacking GluR1. Nature Neuroscience, 5(9): 868−873. doi: 10.1038/nn910
    Reith MEA, Kortagere S, Wiers CE, Sun H, Kurian MA, Galli A, et al. 2022. The dopamine transporter gene SLC6A3: multidisease risks. Molecular Psychiatry, 27(2): 1031−1046. doi: 10.1038/s41380-021-01341-5
    Rouach N, Byrd K, Petralia RS, Elias GM, Adesnik H, Tomita S, et al. 2005. TARP γ-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nature Neuroscience, 8(11): 1525−1533. doi: 10.1038/nn1551
    Rozas C, Carvallo C, Contreras D, Carreño M, Ugarte G, Delgado R, et al. 2015. Methylphenidate amplifies long-term potentiation in rat hippocampus CA1 area involving the insertion of AMPA receptors by activation of β-adrenergic and D1/D5 receptors. Neuropharmacology, 99: 15−27. doi: 10.1016/j.neuropharm.2015.07.003
    Sagvolden T, Johansen EB, Aase H, Russell VA. 2005. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28(3): 397−419.
    Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, et al. 2009. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science, 323(5919): 1313−1319. doi: 10.1126/science.1167852
    Seibenhener ML, Wooten MC. 2015. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments, (96): 52434.
    Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, et al. 2008. Evidence for the involvement of the Kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Molecular Psychiatry, 13(9): 858−872. doi: 10.1038/mp.2008.20
    Sharma A, Couture J. 2013. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Annals of Pharmacotherapy, 48(2): 209−225.
    Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, et al. 2007. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America, 104(49): 19649−19654. doi: 10.1073/pnas.0707741104
    Solleveld MM, Schrantee A, Puts NAJ, Reneman L, Lucassen PJ. 2017. Age-dependent, lasting effects of methylphenidate on the GABAergic system of ADHD patients. NeuroImage:Clinical, 15: 812−818. doi: 10.1016/j.nicl.2017.06.003
    Storebø OJ, Simonsen E. 2016. The association between ADHD and antisocial personality disorder (ASPD): A review. Journal of Attention Disorders, 20(10): 815−824. doi: 10.1177/1087054713512150
    Sumioka A, Brown TE, Kato AS, Bredt DS, Kauer JA, Tomita S. 2011. PDZ binding of TARPγ-8 controls synaptic transmission but not synaptic plasticity. Nature Neuroscience, 14(11): 1410−1412. doi: 10.1038/nn.2952
    Thapar A, Cooper M. 2016. Attention deficit hyperactivity disorder. The Lancet, 387(10024): 1240−1250. doi: 10.1016/S0140-6736(15)00238-X
    Tomita S, Chen L, Kawasaki Y, Petralia RS, Wenthold RJ, Nicoll RA, et al. 2003. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. Journal of Cell Biology, 161(4): 805−816. doi: 10.1083/jcb.200212116
    Wei MP, Wang M, Wang J, Su F, Wang YZ, Sun M, et al. 2020. PORCN negatively regulates AMPAR function independently of subunit composition and the amino-terminal and Carboxy-terminal domains of AMPARs. Frontiers in Cell and Developmental Biology, 8: 829. doi: 10.3389/fcell.2020.00829
    Witkin JM, Li J, Gilmour G, Mitchell SN, Carter G, Gleason SD, et al. 2017. Electroencephalographic, cognitive, and neurochemical effects of LY3130481 (CERC-611), a selective antagonist of TARP-γ8-associated AMPA receptors. Neuropharmacology, 126: 257−270. doi: 10.1016/j.neuropharm.2017.07.028
    Won H, Mah W, Kim E, Kim JW, Hahm EK, Kim MH, et al. 2011. GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nature Medicine, 17(5): 566−572. doi: 10.1038/nm.2330
    Xu N, Zhou WJ, Wang Y, Huang SH, Li X, Chen ZY. 2015. Hippocampal Wnt3a is necessary and sufficient for contextual fear memory acquisition and consolidation. Cerebral Cortex, 25(11): 4062−4075. doi: 10.1093/cercor/bhu121
    Yu YZ, Yang ZX, Jin BH, Qin X, Zhu XQ, Sun JH, et al. 2020. Cannabidiol inhibits febrile seizure by modulating AMPA receptor kinetics through its interaction with the N-terminal domain of GluA1/GluA2. Pharmacological Research, 161: 105128. doi: 10.1016/j.phrs.2020.105128
  • ZR-2022-122-Supplementary Materials.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (534) PDF downloads(72) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint