Volume 43 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Jing-Song Zhang, Hai-Quan Wang, Jie Xia, Kun Sha, Shu-Tao He, Hao Dai, Xiao-Hu Hao, Yi-Wei Zhou, Qiu Wang, Ke-Ke Ding, Zhang-Lei Ju, Wen Wang, Luo-Nan Chen. Coevolutionary insights between promoters and transcription factors in the plant and animal kingdoms. Zoological Research, 2022, 43(5): 805-812. doi: 10.24272/j.issn.2095-8137.2022.111
Citation: Jing-Song Zhang, Hai-Quan Wang, Jie Xia, Kun Sha, Shu-Tao He, Hao Dai, Xiao-Hu Hao, Yi-Wei Zhou, Qiu Wang, Ke-Ke Ding, Zhang-Lei Ju, Wen Wang, Luo-Nan Chen. Coevolutionary insights between promoters and transcription factors in the plant and animal kingdoms. Zoological Research, 2022, 43(5): 805-812. doi: 10.24272/j.issn.2095-8137.2022.111

Coevolutionary insights between promoters and transcription factors in the plant and animal kingdoms

doi: 10.24272/j.issn.2095-8137.2022.111
#Authors contributed equally to this work
Funds:  This work was supported by the National Key Research and Development Program of China (2017YFA0505500 to L.N.C., 2017YFC0909502 to J.S.Z.); Strategic Priority Research Program of the Chinese Academy of Sciences (XDB38040400 to L.N.C., XDB13000000 to W.W.); National Science Foundation of China (12131020 and 31930022 to L.N.C, 61602460 to J.S.Z.); Major Key Project of PCL (PCL2021A12 to L.N.C.); Special Fund for Science and Technology Innovation Strategy of Guangdong Province (2021B0909050004 and 2021B0909060002 to L.N.C.); and Fundamental Research Funds for the Central Universities (3102019JC007 to W.W.)
More Information
  • The divergence and continuous evolution of plants and animals contribute to ecological diversity. Promoters and transcription factors (TFs) are key determinants of gene regulation and transcription throughout life. However, the evolutionary trajectories and relationships of promoters and TFs are still poorly understood. Here, we conducted extensive analysis of large-scale multi-omics sequences in 420 animal species and 223 plant species spanning nearly a billion years of evolutionary history. Results showed that promoter GC-content and TF isoelectric points, as features/signatures that accompany long biological evolution, exhibited increasing growth in animal cells but a decreasing trend in plant cells. Furthermore, the evolutionary trajectories of promoter and TF signatures in the animal kingdom provided further evidence that Mammalia as well as Aves evolved directly from the ancestor Reptilia. The strong correlation between promoter and TF signatures indicates that promoters and TFs formed antagonistic coevolution in the animal kingdom, but mutualistic coevolution in the plant kingdom. The distinct coevolutionary patterns potentially drive the plant-animal divergence, divergent evolution and ecological diversity.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Bengtson S, Sallstedt T, Belivanova V, Whitehouse M. 2017. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biology, 15(3): e2000735. doi: 10.1371/journal.pbio.2000735
    [2]
    Birdsell JA. 2002. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Molecular Biology and Evolution, 19(7): 1181−1197. doi: 10.1093/oxfordjournals.molbev.a004176
    [3]
    Blanc-Mathieu R, Krasovec M, Hebrard M, Yau S, Desgranges E, Martin J, et al. 2017. Population genomics of picophytoplankton unveils novel chromosome hypervariability. Science Advances, 3(7): e1700239. doi: 10.1126/sciadv.1700239
    [4]
    Clément Y, Fustier MA, Nabholz B, Glémin S. 2015. The bimodal distribution of genic GC content is ancestral to monocot species. Genome Biology and Evolution, 7(1): 336−348. doi: 10.1093/gbe/evu278
    [5]
    Cui Y, Liu ZL, Li CC, Wei XM, Lin YJ, You L, et al. 2021. Role of juvenile hormone receptor Methoprene-tolerant 1 in silkworm larval brain development and domestication. Zoological Research, 42(5): 637−649. doi: 10.24272/j.issn.2095-8137.2021.126
    [6]
    Dai H, Jin QQ, Li L, Chen LN. 2020. Reconstructing gene regulatory networks in single-cell transcriptomic data analysis. Zoological Research, 41(6): 599−604. doi: 10.24272/j.issn.2095-8137.2020.215
    [7]
    Dika C, Duval JFL, Francius G, Perrin A, Gantzer C. 2015. Isoelectric point is an inadequate descriptor of MS2, Phi X 174 and PRD1 phages adhesion on abiotic surfaces. Journal of Colloid and Interface Science, 446: 327−334. doi: 10.1016/j.jcis.2014.08.055
    [8]
    Frankel AD, Kim PS. 1991. Modular structure of transcription factors: implications for gene regulation. Cell, 65(5): 717−719. doi: 10.1016/0092-8674(91)90378-C
    [9]
    Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR. 2002. Electronic detection of DNA by its intrinsic molecular charge. Proceedings of the National Academy of Sciences of the United States of America, 99(22): 14142−14146. doi: 10.1073/pnas.232276699
    [10]
    Furey TS, Haussler D. 2003. Integration of the cytogenetic map with the draft human genome sequence. Human Molecular Genetics, 12(9): 1037−1044. doi: 10.1093/hmg/ddg113
    [11]
    Garcia MF, Moore CD, Schulz KN, Alberto O, Donague G, Harrison MM, et al. 2019. Structural features of transcription factors associating with nucleosome binding. Molecular Cell, 75(5): 921−932.e6. doi: 10.1016/j.molcel.2019.06.009
    [12]
    Gonzalez DH. 2016. Chapter 1 - Introduction to transcription factor structure and function. In: Gonzalez DH. Plant Transcription Factors. Boston: Academic Press, 3–11.
    [13]
    Guo YT, Zhang J, Xu DM, Tang LZ, Liu Z. 2021. Phylogenomic relationships and molecular convergences to subterranean life in rodent family Spalacidae. Zoological Research, 42(5): 671−674. doi: 10.24272/j.issn.2095-8137.2021.240
    [14]
    Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. 2019. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Research, 47(D1): D33−D38. doi: 10.1093/nar/gky822
    [15]
    Hunt SE, McLaren W, Gil L, Thormann A, Schuilenburg H, Sheppard D, et al. 2018. Ensembl variation resources. Database, 2018: bay119.
    [16]
    Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. 2010. Genome evolution in reptilia, the sister group of mammals. Annual Review of Genomics and Human Genetics, 11: 239−264. doi: 10.1146/annurev-genom-082509-141646
    [17]
    Jin JP, Tian F, Yang DC, Meng YQ, Kong L, Luo JC, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research, 45(D1): D1040−D1045. doi: 10.1093/nar/gkw982
    [18]
    Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, et al. 2018. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research, 46(D1): D802−D808. doi: 10.1093/nar/gkx1011
    [19]
    Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M. 2006. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biology, 4(6): e180. doi: 10.1371/journal.pbio.0040180
    [20]
    Liu MH, Wu DH, Yu SC, Gao CJ. 2009. Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes. Journal of Membrane Science, 326(1): 205−214. doi: 10.1016/j.memsci.2008.10.004
    [21]
    Liu Q, Zhang GY, Chen SY. 2001. Structure and regulatory function of plant transcription factors. Chinese Science Bulletin, 46(4): 271−278. doi: 10.1007/BF03187184
    [22]
    Malde K. 2008. The effect of sequence quality on sequence alignment. Bioinformatics, 24(7): 897−900. doi: 10.1093/bioinformatics/btn052
    [23]
    Mirny LA. 2010. Nucleosome-mediated cooperativity between transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 107(52): 22534−22539. doi: 10.1073/pnas.0913805107
    [24]
    Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. 2011. How many species are there on earth and in the ocean?. PLoS Biology, 9(8): e1001127. doi: 10.1371/journal.pbio.1001127
    [25]
    Peng ZL, Yin BX, Ren RM, Liao YL, Cai H, Wang H. 2021. Altered metabolic state impedes limb regeneration in salamanders. Zoological Research, 42(6): 772−782. doi: 10.24272/j.issn.2095-8137.2021.186
    [26]
    Reiter F, Wienerroither S, Stark A. 2017. Combinatorial function of transcription factors and cofactors. Current Opinion in Genetics & Development, 43: 73−81.
    [27]
    Shen XX, Steenwyk JL, Labella AL, Opulente DA, Zhou XF, Kominek J, et al. 2020. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. Science Advances, 6(45): eabd0079. doi: 10.1126/sciadv.abd0079
    [28]
    Shi JF, Aihara K, Chen LN. 2021. Dynamics-based data science in biology. National Science Review, 8(5): nwab029. doi: 10.1093/nsr/nwab029
    [29]
    Shi JF, Aihara K, Li TJ, Chen LN. 2022. Energy landscape decomposition for cell differentiation with proliferation effect. National Science Review: nwac116
    [30]
    Šmarda P, Bureš P, Horová L, Leitch IJ, Mucina L, Pacini E, et al. 2014. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proceedings of the National Academy of Sciences of the United States of America, 111(39): E4096−E4102.
    [31]
    Smith DR. 2009. Unparalleled GC content in the plastid DNA of Selaginella. Plant Molecular Biology, 71(6): 627–639.
    [32]
    Strain D. 2011. 8.7 million: a new estimate for all the complex species on earth. Science, 333(6046): 1083. doi: 10.1126/science.333.6046.1083
    [33]
    Su ZX, Huang W, Gu X. 2011. Comment on “positive selection of tyrosine loss in metazoan evolution”. Science, 332(6032): 917.
    [34]
    Tan CSH, Schoof EM, Creixell P, Pasculescu A, Lim WA, Pawson T, et al. 2011. Response to comment on “positive selection of tyrosine loss in metazoan evolution”. Science, 332(6032): 917.
    [35]
    The UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1): D506−D515. doi: 10.1093/nar/gky1049
    [36]
    Thomas MC, Chiang CM. 2006. The general transcription machinery and general cofactors. Critical Reviews in Biochemistry and Molecular Biology, 41(3): 105−178. doi: 10.1080/10409230600648736
    [37]
    Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. 2006. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Research, 34(2): 564−574. doi: 10.1093/nar/gkj454
    [38]
    Yang H, Lyu B, Yin HQ, Li SQ. 2021. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zoological Research, 42(2): 195−206. doi: 10.24272/j.issn.2095-8137.2020.281
    [39]
    Zahn LM. 2015. Probing plant evolution by GC content. Science, 347(6220): 385−386.
    [40]
    Zhang CM, Zhang H, Ge J, Mi TY, Cui X, Tu FJ, et al. 2021a. Landscape dynamic network biomarker analysis reveals the tipping point of transcriptome reprogramming to prevent skin photodamage. Journal of Molecular Cell Biology, 13(11): 822−833.
    [41]
    Zhang JS, Guo JM, Zhang M, Yu XT, Yu XQ, Guo WF, et al. 2020. Efficient mining multi-mers in a variety of biological sequences. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(3): 949−958. doi: 10.1109/TCBB.2018.2828313
    [42]
    Zhang JS, Wang YL, Yang DY. 2015. CCSpan: mining closed contiguous sequential patterns. Knowledge-Based Systems, 89: 1−13. doi: 10.1016/j.knosys.2015.06.014
    [43]
    Zhang JS, Wang YL, Zhang C, Shi YY. 2016. Mining contiguous sequential generators in biological sequences. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(5): 855−867. doi: 10.1109/TCBB.2015.2495132
    [44]
    Zhang JS, Zhang Y, Kang JY, Chen SY, He YQ, Han BH, et al. 2021b. Potential transmission chains of variant B. 1.1. 7 and co-mutations of SARS-CoV-2. Cell Discovery, 7(1): 44. doi: 10.1038/s41421-021-00282-1
    [45]
    Zhu SX, Zhu MY, Knoll AH, Yin ZJ, Zhao FC, Sun SF, et al. 2016. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nature Communications, 7(1): 11500. doi: 10.1038/ncomms11500
  • ZR-2022-111-Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (4165) PDF downloads(266) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return