Volume 43 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Chi Zhang, Chuan-Lei Li, Ke-Xin Xu, Zhi-Huang Zheng, Guo-Zhe Cheng, Hui-Juan Wu, Jun Liu. The Hippo pathway and its correlation with acute kidney injury. Zoological Research, 2022, 43(5): 897-910. doi: 10.24272/j.issn.2095-8137.2022.110
Citation: Chi Zhang, Chuan-Lei Li, Ke-Xin Xu, Zhi-Huang Zheng, Guo-Zhe Cheng, Hui-Juan Wu, Jun Liu. The Hippo pathway and its correlation with acute kidney injury. Zoological Research, 2022, 43(5): 897-910. doi: 10.24272/j.issn.2095-8137.2022.110

The Hippo pathway and its correlation with acute kidney injury

doi: 10.24272/j.issn.2095-8137.2022.110
Funds:  This work was supported by the National Natural Science Foundation of China (82070718; 81770712) and Shanghai Science and Technology Innovation Natural Foundation (20ZR1444700)
More Information
  • Acute kidney injury (AKI) is a significant clinical complication with a substantial impact on morbidity and mortality, for which therapeutic options remain limited. The Hippo signaling pathway is an evolutionarily conserved pathway implicated in cell proliferation, dedifferentiation, and apoptosis via phosphorylation and inactivation of its downstream effectors Yes-associated protein (YAP)/ transcriptional co-activator with PDZ-binding motif (TAZ). Recent studies have revealed that the Hippo pathway plays a pivotal role in the pathogenesis and repair of AKI. The Hippo pathway can mediate renal dysfunction through modulation of mitochondrial apoptosis under AKI conditions. Transient activation of YAP/TAZ in the acute phase of AKI may benefit renal recovery and regeneration, whereas persistent activation of YAP/TAZ in severe AKI may lead to maladaptive repair and transition to chronic kidney disease. This review aims to summarize recent findings on the associations between the Hippo pathway and AKI and to identify new therapeutic targets and strategies for AKI.
  • loading
  • [1]
    Alexandre CS, Volpini RA, Shimizu MH, Sanches TR, Semedo P, Di Jura VL, et al. 2009. Lineage-negative bone marrow cells protect against chronic renal failure. Stem Cells, 27(3): 682−692. doi: 10.1634/stemcells.2008-0496
    [2]
    Anorga S, Overstreet JM, Falke LL, Tang JQ, Goldschmeding RG, Higgins PJ, et al. 2018. Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype. The FASEB Journal, 32(5): 2644−2657. doi: 10.1096/fj.201700722R
    [3]
    Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et al. 2013. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 154(5): 1047−1059. doi: 10.1016/j.cell.2013.07.042
    [4]
    Baek JH. 2019. The impact of versatile macrophage functions on acute kidney injury and its outcomes. Frontiers in Physiology, 10: 1016. doi: 10.3389/fphys.2019.01016
    [5]
    Bai HB, Zhang NL, Xu Y, Chen Q, Khan M, Potter JJ, et al. 2012. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology, 56(3): 1097−1107. doi: 10.1002/hep.25769
    [6]
    Baligand C, Qin HC, True-Yasaki A, Gordon JW, Von Morze C, Santos JD, et al. 2017. Hyperpolarized 13C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model. NMR in Biomedicine, 30(10): e3765. doi: 10.1002/nbm.3765
    [7]
    Bernascone I, Martin-Belmonte F. 2013. Crossroads of wnt and Hippo in epithelial tissues. Trends in Cell Biology, 23(8): 380−389. doi: 10.1016/j.tcb.2013.03.007
    [8]
    Boggiano JC, Fehon RG. 2012. Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Developmental Cell, 22(4): 695−702. doi: 10.1016/j.devcel.2012.03.013
    [9]
    Bonventre JV. 2014. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis. Kidney International Supplements, 4(1): 39−44. doi: 10.1038/kisup.2014.8
    [10]
    Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. 2009. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology, 20(5): 1053−1067. doi: 10.1681/ASN.2008070798
    [11]
    Callus BA, Verhagen AM, Vaux DL. 2006. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. The FEBS Journal, 273(18): 4264−4276. doi: 10.1111/j.1742-4658.2006.05427.x
    [12]
    Chan EHY, Nousiainen M, Chalamalasetty RB, Schäfer A, Nigg EA, Silljé HHW. 2005. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene, 24(12): 2076−2086. doi: 10.1038/sj.onc.1208445
    [13]
    Chen JC, Wang XY, He Q, Bulus N, Fogo AB, Zhang MZ, et al. 2020. YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes, 69(11): 2446−2457. doi: 10.2337/db20-0579
    [14]
    Chen JC, You HZ, Li Y, Xu Y, He Q, Harris RC. 2018. EGF receptor-dependent YAP activation is important for renal recovery from AKI. Journal of the American Society of Nephrology, 29(9): 2372−2385. doi: 10.1681/ASN.2017121272
    [15]
    Chen KH, He J, Wang DL, Cao JJ, Li MC, Zhao XM, et al. 2014. Methylation-associated inactivation of LATS1 and its effect on demethylation or overexpression on YAP and cell biological function in human renal cell carcinoma. International Journal of Oncology, 45(6): 2511−2521. doi: 10.3892/ijo.2014.2687
    [16]
    Cinar B, Alp E, Al-Mathkour M, Boston A, Dwead A, Khazaw K, et al. 2021. The Hippo pathway: an emerging role in urologic cancers. American Journal of Clinical And Experimental Urology, 9(4): 301−317.
    [17]
    Deng H, Wang W, Yu JZ, Zheng YG, Qing Y, Pan DJ. 2015. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. eLife, 4: e06567. doi: 10.7554/eLife.06567
    [18]
    Ding H, Xu YY, Jiang N. 2020. Upregulation of miR-101a suppresses chronic renal fibrosis by regulating KDM3A via blockade of the YAP-TGF-β-smad signaling pathway. Molecular Therapy-Nucleic Acids, 19: 1276−1289. doi: 10.1016/j.omtn.2020.01.002
    [19]
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5): 1060−1072. doi: 10.1016/j.cell.2012.03.042
    [20]
    Domínguez-Calderón A, Ávila-Flores A, Ponce A, López-Bayghen E, Calderón-Salinas JV, Reyes JL, et al. 2016. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway. Molecular Biology of the Cell, 27(10): 1581−1595. doi: 10.1091/mbc.E15-08-0598
    [21]
    Dong JX, Feldmann G, Huang JB, Wu SA, Zhang NL, Comerford SA, et al. 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell, 130(6): 1120−1133. doi: 10.1016/j.cell.2007.07.019
    [22]
    Duann P, Lianos EA, Ma JJ, Lin PH. 2016. Autophagy, innate immunity and tissue repair in acute kidney injury. International Journal of Molecular Sciences, 17(5): 662. doi: 10.3390/ijms17050662
    [23]
    Duann P, Lin PH. 2017. Mitochondria damage and kidney disease. In: Santulli G. Mitochondrial Dynamics in Cardiovascular Medicine. Cham: Springer, 529–551.
    [24]
    Duffield JS, Humphreys BD. 2011. Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney International, 79(5): 494−501. doi: 10.1038/ki.2010.338
    [25]
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature, 474(7350): 179−183. doi: 10.1038/nature10137
    [26]
    Feng JX, Li HY, Zhang YF, Wang Q, Zhao SL, Meng P, et al. 2018a. Mammalian STE20-like kinase 1 deletion alleviates renal ischaemia-reperfusion injury via modulating mitophagy and the AMPK-YAP signalling pathway. Cellular Physiology and Biochemistry, 51(5): 2359−2376. doi: 10.1159/000495896
    [27]
    Feng Y, Liang Y, Zhu X, Wang M, Gui Y, Lu Q, et al. 2018b. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. Journal of Biological Chemistry, 293(50): 19290−19302. doi: 10.1074/jbc.RA118.005457
    [28]
    Ferenbach DA, Bonventre JV. 2015. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nature Reviews Nephrology, 11(5): 264−276. doi: 10.1038/nrneph.2015.3
    [29]
    Fine LG, Norman J. 1989. Cellular events in renal hypertrophy. Annual Review of Physiology, 51: 19−32. doi: 10.1146/annurev.ph.51.030189.000315
    [30]
    Fletcher GC, Elbediwy A, Khanal I, Ribeiro PS, Tapon N, Thompson BJ. 2015. The Spectrin cytoskeleton regulates the Hippo signalling pathway. The EMBO Journal, 34(7): 940−954. doi: 10.15252/embj.201489642
    [31]
    Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. 2014. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology, 16(12): 1180−1191. doi: 10.1038/ncb3064
    [32]
    Funk JA, Schnellmann RG. 2012. Persistent disruption of mitochondrial homeostasis after acute kidney injury. American Journal of Physiology-Renal Physiology, 302(7): F853−F864. doi: 10.1152/ajprenal.00035.2011
    [33]
    Furuya R, Kumagai H, Hishida A. 1997. Acquired resistance to rechallenge injury with uranyl acetate in LLC-PK1 cells. Journal of Laboratory and Clinical Medicine, 129(3): 347−355. doi: 10.1016/S0022-2143(97)90183-9
    [34]
    Gerhardt LMS, Liu J, Koppitch K, Cippà PE, Mcmahon AP. 2021. Single-nuclear transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to acute kidney injury. Proceedings of the National Academy of Sciences of the United States of America, 118(27): e2026684118. doi: 10.1073/pnas.2026684118
    [35]
    Gewin L, Zent R, Pozzi A. 2017. Progression of chronic kidney disease: too much cellular talk causes. damage. Kidney International, 91(3): 552−560. doi: 10.1016/j.kint.2016.08.025
    [36]
    Gewin LS. 2018. Renal fibrosis: primacy of the proximal tubule. Matrix Biology, 68–69: 248–262.
    [37]
    Godlewski J, Kiezun J, Krazinski BE, Kozielec Z, Wierzbicki PM, Kmiec Z. 2018. The immunoexpression of YAP1 and LATS1 proteins in clear cell renal cell carcinoma: impact on patients' survival. Biomed Research International, 2018: 2653623.
    [38]
    González-González L, Gallego-Gutiérrez H, Martin-Tapia D, Avelino-Cruz JE, Hernández-Guzmán C, Rangel-Guerrero SI, et al. 2021. ZO-2 favors Hippo signaling, and its re-expression in the steatotic liver by AMPK restores junctional sealing. Tissue Barriers, 10(2): 1994351.
    [39]
    Gui Y, Hou Q, Lu QM, Dai CS, Li JZ. 2020. Loss of rictor in tubular cells exaggerates lipopolysaccharide induced renal inflammation and acute kidney injury via Yap/Taz-NF-κB axis. Cell Death Discovery, 6: 40.
    [40]
    Gui Y, Li JZ, Lu QM, Feng Y, Wang MJ, He WC, et al. 2018. Yap/Taz mediates mTORC2-stimulated fibroblast activation and kidney fibrosis. Journal of Biological Chemistry, 293(42): 16364−16375. doi: 10.1074/jbc.RA118.004073
    [41]
    Hall AM, Unwin RJ, Parker N, Duchen MR. 2009. Multiphoton imaging reveals differences in mitochondrial function between nephron segments. Journal of the American Society of Nephrology, 20(6): 1293−1302. doi: 10.1681/ASN.2008070759
    [42]
    Hamilton E, Infante JR. 2016. Targeting CDK4/6 in patients with cancer. Cancer Treatreatment Reviews, 45: 129−138. doi: 10.1016/j.ctrv.2016.03.002
    [43]
    Han YY. 2019. Analysis of the role of the Hippo pathway in cancer. Journal of Translational Medicine, 17(1): 116. doi: 10.1186/s12967-019-1869-4
    [44]
    Hansen CG, Moroishi T, Guan KL. 2015. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends in Cell Biology, 25(9): 499−513. doi: 10.1016/j.tcb.2015.05.002
    [45]
    Hao YW, Chun A, Cheung K, Rashidi B, Yang XL. 2008. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. Journal of Biological Chemistry, 283(9): 5496–5509.
    [46]
    Harvey KF, Zhang XM, Thomas DM. 2013. The Hippo pathway and human cancer. Nature Reviews Cancer, 13(4): 246−257. doi: 10.1038/nrc3458
    [47]
    Hayslett JP, Kashgarian M, Epstein FH. 1968. Functional correlates of compensatory renal hypertrophy. Journal of Clinical Investigation, 47(4): 774−782. doi: 10.1172/JCI105772
    [48]
    Honda N, Hishida A, Ikuma K, Yonemura K. 1987. Acquired resistance to acute renal failure. Kidney International, 31(6): 1233−1238. doi: 10.1038/ki.1987.136
    [49]
    Hostetter TH. 1995. Progression of renal disease and renal hypertrophy. Annual Review of Physiology, 57: 263−278. doi: 10.1146/annurev.ph.57.030195.001403
    [50]
    Hu ZX, Zhang H, Yang SK, Wu XQ, He D, Cao K, et al. 2019. Emerging role of ferroptosis in acute kidney injury. Oxidative Medicine and Cellular Longevity, 2019: 8010614.
    [51]
    Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. 2010. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. The American Journal of Pathology, 176(1): 85−97. doi: 10.2353/ajpath.2010.090517
    [52]
    Iwakura T, Fujigaki Y, Fujikura T, Ohashi N, Kato A, Yasuda H. 2016. Acquired resistance to rechallenge injury after acute kidney injury in rats is associated with cell cycle arrest in proximal tubule cells. American Journal of Physiology-Renal Physiology, 310(9): F872−F884. doi: 10.1152/ajprenal.00380.2015
    [53]
    Iwakura T, Fujigaki Y, Fujikura T, Tsuji T, Ohashi N, Kato A, et al. 2017. Cytoresistance after acute kidney injury is limited to the recovery period of proximal tubule integrity and possibly involves Hippo-YAP signaling. Physiological Reports, 5(11): e13310. doi: 10.14814/phy2.13310
    [54]
    Iwano M, Plieth D, Danoff TM, Xue CS, Okada H, Neilson EG. 2002. Evidence that fibroblasts derive from epithelium during tissue fibrosis. The Journal of Clinical Investigation, 110(3): 341−350. doi: 10.1172/JCI0215518
    [55]
    Jiang MZ, Bai M, Lei J, Xie YF, Xu S, Jia ZJ, et al. 2020. Mitochondrial dysfunction and the AKI-to-CKD transition. American Journal of Physiology-Renal Physiology, 319(6): F1105−F1116. doi: 10.1152/ajprenal.00285.2020
    [56]
    Jiao S, Wang HZ, Shi ZB, Dong AM, Zhang WJ, Song XM, et al. 2014. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell, 25(2): 166−180. doi: 10.1016/j.ccr.2014.01.010
    [57]
    Jin JX, Wang T, Park W, Li WJ, Kim W, Park SK, et al. 2020. Inhibition of yes-associated protein by verteporfin ameliorates unilateral ureteral obstruction-induced renal tubulointerstitial inflammation and fibrosis. International Journal of Molecular Science, 21(21): 8184. doi: 10.3390/ijms21218184
    [58]
    Kalluri R, Weinberg RA. 2009. The basics of epithelial-mesenchymal transition. The Journal Of Clinical Investigation, 119(6): 1420−1428. doi: 10.1172/JCI39104
    [59]
    Kim DH, Choi HI, Park JS, Kim CS, Bae EH, Ma SK, et al. 2019. Src-mediated crosstalk between FXR and YAP protects against renal fibrosis. The FASEB Journal, 33(10): 11109−11122. doi: 10.1096/fj.201900325R
    [60]
    Kim E, Kang JG, Kang MJ, Park JH, Kim YJ, Kweon TH, et al. 2020. O-GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity. Proceedings of the National Academy of Sciences of the United States of America, 117(25): 14259−14269. doi: 10.1073/pnas.1913469117
    [61]
    Kim M, Kim M, Park SJ, Lee C, Lim DS. 2016. Role of angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Reports, 17(1): 64−78. doi: 10.15252/embr.201540809
    [62]
    Koesters R, Kaissling B, Lehir M, Picard N, Theilig F, Gebhardt R, et al. 2010. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. The American Journal of Pathology, 177(2): 632−643. doi: 10.2353/ajpath.2010.091012
    [63]
    Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, et al. 1997. The Heidelberg classification of renal cell tumours. Journal of Pathology, 183(2): 131−133. doi: 10.1002/(SICI)1096-9896(199710)183:2<131::AID-PATH931>3.0.CO;2-G
    [64]
    Kusmartsev S. 2021. Acute Kidney Injury-induced systemic inflammation and risk of kidney cancer formation. Cancer Research, 81(10): 2584−2585. doi: 10.1158/0008-5472.CAN-21-0807
    [65]
    Kusumanchi P, Liang TB, Zhang T, Ross RA, Han S, Chandler K, et al. 2021. Stress-responsive gene FK506-binding protein 51 mediates alcohol-induced liver injury through the Hippo pathway and chemokine (C-X-C Motif) ligand 1 signaling. Hepatology, 74(3): 1234−1250. doi: 10.1002/hep.31800
    [66]
    Lafferty HM, Brenner BM. 1990. Are glomerular hypertension and "hypertrophy" independent risk factors for progression of renal disease. Seminars in Nephrology, 10(3): 294−304.
    [67]
    Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. 2013. Acute kidney injury: an increasing global concern. The Lancet, 382(9887): 170−179. doi: 10.1016/S0140-6736(13)60647-9
    [68]
    Lan RP, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, et al. 2016. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. Journal of the American Society of Nephrology, 27(11): 3356−3367. doi: 10.1681/ASN.2015020177
    [69]
    LeBleu VS, Taduri G, O'Connell J, Teng YQ, Cooke VG, Woda C, et al. 2013. Origin and function of myofibroblasts in kidney fibrosis. Nature Medicine, 19(8): 1047−1053. doi: 10.1038/nm.3218
    [70]
    Lee H, Yoon Y. 2016. Mitochondrial fission and fusion. Biochemical Society Transactions, 44(6): 1725−1735. doi: 10.1042/BST20160129
    [71]
    Lee HY, Back K. 2017. Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. Journal of Pineal Research, 62(2): e12379.
    [72]
    Lee PT, Lin HH, Jiang ST, Lu PJ, Chou KJ, Fang HC, et al. 2010. Mouse kidney progenitor cells accelerate renal regeneration and prolong survival after ischemic injury. Stem Cells, 28(3): 573−584. doi: 10.1002/stem.310
    [73]
    Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, et al. 2008. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Molecular and Cellular Biology, 28(7): 2426−2436. doi: 10.1128/MCB.01874-07
    [74]
    Leung JY, Wilson HL, Voltzke KJ, Williams LA, Lee HJ, Wobker SE, et al. 2017. Sav1 loss induces senescence and Stat3 activation coinciding with tubulointerstitial fibrosis. Molecular and Cellular Biology, 37(12): e00565−16.
    [75]
    Li HY, Feng JX, Zhang YF, Feng JX, Wang Q, Zhao SL, et al. 2019. Mst1 deletion attenuates renal ischaemia-reperfusion injury: the role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biology, 20: 261−274. doi: 10.1016/j.redox.2018.10.012
    [76]
    Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. 2020. Ferroptosis: past, present and future. Cell Death & Disease, 11(2): 88.
    [77]
    Liang M, Yu M, Xia RH, Song K, Wang J, Luo JL, et al. 2017. Yap/Taz deletion in Gli+ cell-derived myofibroblasts attenuates fibrosis. Journal of the American Society of Nephrology, 28(11): 3278−3290. doi: 10.1681/ASN.2015121354
    [78]
    Lin FM. 2006. Stem cells in kidney regeneration following acute renal injury. Pediatric Research, 59(4 Pt 2): 74R–78R.
    [79]
    Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, et al. 2010. The Hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFβ-TrCP E3 ligase. Journal of Biological Chemistry, 285(48): 37159−37169. doi: 10.1074/jbc.M110.152942
    [80]
    Liu YH. 2010. New insights into epithelial-mesenchymal transition in kidney fibrosis. Journal of the American Society of Nephrology, 21(2): 212−222. doi: 10.1681/ASN.2008121226
    [81]
    Ma B, Chen Y, Chen L, Cheng HC, Mu CL, Li J, et al. 2015. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nature Cell Biology, 17(1): 95−103. doi: 10.1038/ncb3073
    [82]
    Ma DQ, Lim T, Xu J, Tang H, Wan YJ, Zhao HL, et al. 2009. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1α activation. Journal of the American Society of Nephrology, 20(4): 713−720. doi: 10.1681/ASN.2008070712
    [83]
    Ma SH, Meng ZP, Chen R, Guan KL. 2019. The Hippo pathway: biology and pathophysiology. Annual Review of Biochemistry, 88: 577−604. doi: 10.1146/annurev-biochem-013118-111829
    [84]
    Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, et al. 2017. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. Journal of the American Society of Nephrology, 28(1): 218−229. doi: 10.1681/ASN.2015121376
    [85]
    Meng ZP, Moroishi T, Guan KL. 2016. Mechanisms of Hippo pathway regulation. Genes & Development, 30(1): 1−17.
    [86]
    Miyaji T, Kato A, Yasuda H, Fujigaki Y, Hishida A. 2001. Role of the increase in p21 in cisplatin-induced acute renal failure in rats. Journal of American Society of Nephrology, 12(5): 900−908. doi: 10.1681/ASN.V125900
    [87]
    Mizuno S, Fujita K, Furuy R, Hishid A, Ito H, Tashim Y, et al. 1997. Association of HSP73 with the acquired resistance to uranyl acetate-induced acute renal failure. Toxicology, 117(2–3): 183–191.
    [88]
    Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y, et al. 2012. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene, 31(49): 5117−5122. doi: 10.1038/onc.2012.5
    [89]
    Mo JS, Meng ZP, Kim YC, Park HW, Hansen CG, Kim S, et al. 2015. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell Biology, 17(4): 500−510. doi: 10.1038/ncb3111
    [90]
    Morigi M, Introna M, Imberti B, Corna D, Abbate M, Rota C, et al. 2008. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells, 26(8): 2075−2082. doi: 10.1634/stemcells.2007-0795
    [91]
    Moroishi T, Park HW, Qin BD, Chen Q, Meng ZP, Plouffe SW, et al. 2015. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes & Development, 29(12): 1271−1284.
    [92]
    Munshi R, Hsu C, Himmelfarb J. 2011. Advances in understanding ischemic acute kidney injury. BMC Medicine, 9: 11. doi: 10.1186/1741-7015-9-11
    [93]
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. 2011. Cyclin D as a therapeutic target in cancer. Nature Reviews Cancer, 11(8): 558−572. doi: 10.1038/nrc3090
    [94]
    Nath KA. 1992. Tubulointerstitial changes as a major determinant in the progression of renal damage. American Journal of Kidney Diseases, 20(1): 1−17. doi: 10.1016/S0272-6386(12)80312-X
    [95]
    Nath KA. 2014. Heme oxygenase-1 and acute kidney injury. Current Opinion in Nephrology and Hypertension, 23(1): 17−24. doi: 10.1097/01.mnh.0000437613.88158.d3
    [96]
    Nishioka S, Nakano D, Kitada K, Sofue T, Ohsaki H, Moriwaki K, et al. 2014. The cyclin-dependent kinase inhibitor p21 is essential for the beneficial effects of renal ischemic preconditioning on renal ischemia/reperfusion injury in mice. Kidney International, 85(4): 871−879. doi: 10.1038/ki.2013.496
    [97]
    Paramasivam M, Sarkeshik A, Yates III JR, Fernandes MJG, McCollum D. 2011. Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Molecular Biology of the Cell, 22(19): 3725−3733. doi: 10.1091/mbc.e11-04-0300
    [98]
    Park GS, Oh H, Kim M, Kim T, Johnson RL, Irvine KD. 2016. An evolutionarily conserved negative feedback mechanism in the Hippo pathway reflects functional difference between LATS1 and LATS2. Oncotarget, 7(17): 24063−24075. doi: 10.18632/oncotarget.8211
    [99]
    Peired AJ, Antonelli G, Angelotti ML, Allinovi M, Guzzi F, Sisti A, et al. 2020. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Science Translational Medicine, 12(536): eaaw6003. doi: 10.1126/scitranslmed.aaw6003
    [100]
    Perry HM, Huang LP, Wilson RJ, Bajwa A, Sesaki H, Yan Z, et al. 2018. Dynamin-related protein 1 deficiency promotes recovery from AKI. Journal of the American Society of Nephrology, 29(1): 194−206. doi: 10.1681/ASN.2017060659
    [101]
    Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J. 2004. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. The Biochemical Journal, 381(2): 453−462. doi: 10.1042/BJ20040025
    [102]
    Price PM, Safirstein RL, Megyesi J. 2004. Protection of renal cells from cisplatin toxicity by cell cycle inhibitors. American Journal of Physiology-Renal Physiology, 286(2): F378−F384. doi: 10.1152/ajprenal.00192.2003
    [103]
    Qi RC, Yang C. 2018. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death & Disease, 9(11): 1126.
    [104]
    Rinschen MM, Grahammer F, Hoppe AK, Kohli P, Hagmann H, Kretz O, et al. 2017. YAP-mediated mechanotransduction determines the podocyte's response to damage. Science Signaling, 10(474): eaaf8165. doi: 10.1126/scisignal.aaf8165
    [105]
    Rybarczyk A, Klacz J, Wronska A, Matuszewski M, Kmiec Z, Wierzbicki PM. 2017. Overexpression of the YAP1 oncogene in clear cell renal cell carcinoma is associated with poor outcome. Oncology Reports, 38(1): 427−439. doi: 10.3892/or.2017.5642
    [106]
    Sano K, Fujigaki Y, Miyaji T, Ikegaya N, Ohishi K, Yonemura K, et al. 2000. Role of apoptosis in uranyl acetate-induced acute renal failure and acquired resistance to uranyl acetate. Kidney International, 57(4): 1560−1570. doi: 10.1046/j.1523-1755.2000.00777.x
    [107]
    Seo E, Kim WY, Hur J, Kim H, Nam SA, Choi A, et al. 2016. The Hippo-salvador signaling pathway regulates renal tubulointerstitial fibrosis. Scientific Reports, 6: 31931. doi: 10.1038/srep31931
    [108]
    Skouta R, Dixon SJ, Wang JL, Dunn DE, Orman M, Shimada K, et al. 2014. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society, 136(12): 4551−4556. doi: 10.1021/ja411006a
    [109]
    Song JG, Wang TZ, Chi XC, Wei XF, Xu SD, Yu M, et al. 2019. Kindlin-2 inhibits the Hippo signaling pathway by promoting degradation of MOB1. Cell Reports, 29(11): 3664−3677.e5. doi: 10.1016/j.celrep.2019.11.035
    [110]
    Sugaya K, Ogawa Y, Hatano T, Koyama Y, Miyazato T, Naito A, et al. 2000. Compensatory renal hypertrophy and changes of renal function following nephrectomy. Hinyokika Kiyo, 46(4): 235−240.
    [111]
    Sun Y, Fujigaki Y, Sakakima M, Fujikura T, Togawa A, Huang YJ, et al. 2011. Acquired resistance to rechallenge injury in rats that recovered from mild renal damage induced by uranyl acetate: accelerated proliferation and hepatocyte growth factor/c-Met axis. Clinical and Experimental Nephrology, 15(5): 666−675. doi: 10.1007/s10157-011-0453-x
    [112]
    Szeto SG, Narimatsu M, Lu ML, He XL, Sidiqi AM, Tolosa MF, et al. 2016. YAP/TAZ are mechanoregulators of TGF-β-smad signaling and renal fibrogenesis. Journal of the American Society of Nephrology, 27(10): 3117−3128. doi: 10.1681/ASN.2015050499
    [113]
    Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, et al. 2016. Severity and frequency of proximal tubule injury determines renal prognosis. Journal of the American Society of Nephrology, 27(8): 2393−2406. doi: 10.1681/ASN.2015060647
    [114]
    Tang XM, Sun YX, Wan GL, Sun JQ, Sun JW, Pan CC. 2019. Knockdown of YAP inhibits growth in Hep-2 laryngeal cancer cells via epithelial-mesenchymal transition and the Wnt/β-catenin pathway. BMC Cancer, 19(1): 654. doi: 10.1186/s12885-019-5832-9
    [115]
    Tapon N, Harvey KF, Bell DW, Wahrer DCR, Schiripo TA, Haber DA, et al. 2002. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell, 110(4): 467−478. doi: 10.1016/S0092-8674(02)00824-3
    [116]
    Totaro A, Castellan M, Di Biagio D, Piccolo S. 2018. Crosstalk between YAP/TAZ and Notch Signaling. Trends in Cell Biology, 28(7): 560−573. doi: 10.1016/j.tcb.2018.03.001
    [117]
    Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. 2015. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. Journal of the American Society of Nephrology, 26(8): 1765−1776. doi: 10.1681/ASN.2015010006
    [118]
    Wada KI, Itoga K, Okano T, Yonemura S, Sasaki H. 2011. Hippo pathway regulation by cell morphology and stress fibers. Development, 138(18): 3907−3914. doi: 10.1242/dev.070987
    [119]
    Wang H, Liu C, Zhao YX, Gao G. 2020a. Mitochondria regulation in ferroptosis. European Journal of Cell Biology, 99(1): 151058. doi: 10.1016/j.ejcb.2019.151058
    [120]
    Wang J, Zhu PJ, Li RB, Ren J, Zhou H. 2020b. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biology, 30: 101415. doi: 10.1016/j.redox.2019.101415
    [121]
    Wang JY, Liu Y, Wang YQ, Sun L. 2021. The cross-link between ferroptosis and kidney diseases. Oxidative Medicine and Cellular Longevity, 2021: 6654887.
    [122]
    Wu CL, Chang CC, Yang TH, Tsai ACD, Wang JL, Chang CH, et al. 2020. Tubular transcriptional co-activator with PDZ-binding motif protects against ischemic acute kidney injury. Clinical Science, 134(13): 1593−1612. doi: 10.1042/CS20200223
    [123]
    Wu SA, Huang JB, Dong JX, Pan DJ. 2003. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell, 114(4): 445–456.
    [124]
    Xiang LS, Gilkes DM, Hu HX, Takano N, Luo WB, Lu HQ, et al. 2014. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget, 5(24): 12509−12527. doi: 10.18632/oncotarget.2997
    [125]
    Xiao L, Xu XX, Zhang F, Wang M, Xu Y, Tang D, et al. 2017. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biology, 11: 297−311. doi: 10.1016/j.redox.2016.12.022
    [126]
    Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. 2016. Ferroptosis: process and function. Cell Death & Differentiation, 23(3): 369−379.
    [127]
    Xing J, He YC, Wang KY, Wan PZ, Zhai XY. 2022. Involvement of YTHDF1 in renal fibrosis progression via up-regulating YAP. The FASEB Journal, 36(2): e22144.
    [128]
    Xu CH, Wang L, Zhang Y, Li WL, Li JH, Wang Y, et al. 2020a. Tubule-specific Mst1/2 deficiency induces CKD via YAP and non-YAP mechanisms. Journal of the American Society of Nephrology, 31(5): 946−961. doi: 10.1681/ASN.2019101052
    [129]
    Xu D, Chen PP, Zheng PQ, Yin F, Cheng Q, Zhou ZL, et al. 2021. KLF4 initiates sustained YAP activation to promote renal fibrosis in mice after ischemia-reperfusion kidney injury. Acta Pharmacologica Sinica, 42(3): 436−450. doi: 10.1038/s41401-020-0463-x
    [130]
    Xu J, Li PX, Wu J, Gao YJ, Yin MX, Lin Y, et al. 2016. Involvement of the Hippo pathway in regeneration and fibrogenesis after ischaemic acute kidney injury: YAP is the key effector. Clinical Science, 130(5): 349−363. doi: 10.1042/CS20150385
    [131]
    Xu Y, Yuan XD, Wu JJ, Chen RY, Xia L, Zhang M, et al. 2020b. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1. Journal of Cellular Biochemistry, 121(1): 524−533. doi: 10.1002/jcb.29258
    [132]
    Yang L, Humphreys BD, Bonventre JV. 2011. Pathophysiology of acute kidney injury to chronic kidney disease: maladaptive repair. Contributions to Nephrology, 174: 149−155.
    [133]
    Yang WH, Ding CKC, Sun TA, Rupprecht G, Lin CC, Hsu D, et al. 2019. The Hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Reports, 28(10): 2501−2508.e4. doi: 10.1016/j.celrep.2019.07.107
    [134]
    Yang WH, Chi JT. 2020. Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis. Molecular & Cellular Oncology, 7(1): 1699375.
    [135]
    Yang WH, Huang ZQ, Wu JL, Ding CKC, Murphy SK, Chi JT. 2020. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Molecular Cancer Research, 18(1): 79−90. doi: 10.1158/1541-7786.MCR-19-0691
    [136]
    Yang WH, Lin CC, Wu JL, Chao PY, Chen K, Chen PH, et al. 2021. The Hippo pathway effector YAP promotes ferroptosis via the E3 ligase SKP2. Molecular Cancer Research, 19(6): 1005−1014. doi: 10.1158/1541-7786.MCR-20-0534
    [137]
    Yin F, Yu JZ, Zheng YG, Chen Q, Zhang NL, Pan DJ. 2013. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell, 154(6): 1342−1355. doi: 10.1016/j.cell.2013.08.025
    [138]
    Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. 2012. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell, 150(4): 780−791. doi: 10.1016/j.cell.2012.06.037
    [139]
    Yu FX, Zhang YF, Park HW, Jewell JL, Chen Q, Deng YT, et al. 2013. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes & Development, 27(11): 1223−1232.
    [140]
    Yu FX, Zhao B, Guan KL. 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 163(4): 811−828. doi: 10.1016/j.cell.2015.10.044
    [141]
    Yu SMW, Bonventre JV. 2020. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis. Current Opinion in Nephrology and Hypertension, 29(3): 310−318. doi: 10.1097/MNH.0000000000000605
    [142]
    Yuan Q, Tan RJ, Liu YH. 2019. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Advances in Experimental Medicine and Biology, 1165: 253−283.
    [143]
    Zager RA. 2013. 'Biologic memory' in response to acute kidney injury: cytoresistance, toll-like receptor hyper-responsiveness and the onset of progressive renal disease. Nephrology Dialysis Transplantation, 28(8): 1985−1993. doi: 10.1093/ndt/gft101
    [144]
    Zhang J, Bi JB, Ren YF, Du ZQ, Li T, Wang T, et al. 2021. Involvement of GPX4 in irisin's protection against ischemia reperfusion-induced acute kidney injury. Journal of Cellular Physiology, 236(2): 931−945. doi: 10.1002/jcp.29903
    [145]
    Zhang NL, Bai HB, David KK, Dong JX, Zheng YG, Cai J, et al. 2010. The merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Developmental Cell, 19(1): 27−38. doi: 10.1016/j.devcel.2010.06.015
    [146]
    Zhang WJ, Gao YJ, Li PX, Shi ZB, Guo T, Li F, et al. 2014. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Research, 24(3): 331−343. doi: 10.1038/cr.2014.10
    [147]
    Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei QY, et al. 2011a. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes & Development, 25(1): 51−63.
    [148]
    Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. 2010. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes & Development, 24(1): 72−85.
    [149]
    Zhao B, Li L, Wang L, Wang CY, Yu JD, Guan KL. 2012. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes & Development, 26(1): 54−68.
    [150]
    Zhao B, Tumaneng K, Guan KL. 2011b. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature Cell Biology, 13(8): 877−883. doi: 10.1038/ncb2303
    [151]
    Zhao B, Wei XM, Li WQ, Udan RS, Yang Q, Kim J, et al. 2007. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & Development, 21(21): 2747−2761.
    [152]
    Zhao B, Ye X, Yu JD, Li L, Li WQ, Li SM, et al. 2008. TEAD mediates YAP-dependent gene induction and growth control. Genes & Development, 22(14): 1962−1971.
    [153]
    Zheng ZH, Li CL, Shao GZ, Li JQ, Xu KX, Zhao ZH, et al. 2021. Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI. Cell Death & Disease, 12(8): 754.
    [154]
    Zhou WR, Zhao S, Xu SJ, Sun ZX, Liang YR, Ding XQ. 2020. RacGAP1 ameliorates acute kidney injury by promoting proliferation and suppressing apoptosis of renal tubular cells. Biochemical and Biophysical Research Communications, 527(3): 624−630. doi: 10.1016/j.bbrc.2020.04.140
    [155]
    Zhou X, Wang Z, Huang W, Lei QY. 2015. G protein-coupled receptors: bridging the gap from the extracellular signals to the Hippo pathway. Acta Biochimica et Biophysica Sinica, 47(1): 10−15. doi: 10.1093/abbs/gmu108
    [156]
    Zhou XN, Xiao F, Sugimoto H, Li BR, Mcandrews KM, Kalluri R. 2021. Acute kidney injury instigates malignant renal cell carcinoma via CXCR2 in mice with inactivated Trp53 and Pten in proximal tubular kidney epithelial cells. Cancer Research, 81(10): 2690−2702. doi: 10.1158/0008-5472.CAN-20-2930
    [157]
    Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, et al. 2017. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Central Science, 3(3): 232−243. doi: 10.1021/acscentsci.7b00028
    [158]
    Zuk A, Bonventre JV. 2019. Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease. Current Opinion in Nephrology and Hypertension, 28(4): 397−405. doi: 10.1097/MNH.0000000000000504
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (426) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return