Volume 43 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Peng Zhang, Le Cao, Ying-Ying Ma, Bin Su, Chi-Yu Zhang, Yan-Peng Li. Metagenomic analysis reveals presence of different animal viruses in commercial fetal bovine serum and trypsin. Zoological Research, 2022, 43(5): 756-766. doi: 10.24272/j.issn.2095-8137.2022.093
Citation: Peng Zhang, Le Cao, Ying-Ying Ma, Bin Su, Chi-Yu Zhang, Yan-Peng Li. Metagenomic analysis reveals presence of different animal viruses in commercial fetal bovine serum and trypsin. Zoological Research, 2022, 43(5): 756-766. doi: 10.24272/j.issn.2095-8137.2022.093

Metagenomic analysis reveals presence of different animal viruses in commercial fetal bovine serum and trypsin

doi: 10.24272/j.issn.2095-8137.2022.093
Funds:  This work was supported by the National Natural Science Foundation of China (32170147, 31900158)
More Information
  • Animal-derived biological products, such as fetal bovine serum (FBS) and trypsin, are important supplements for scientific, pharmaceutical, and medical use. Although preventive guidelines and tests are implemented to reduce potential viral contamination in these biologicals, they do not target unusual or emerging viruses, leading to safety concerns. Using unbiased metagenomics, we investigated the presence of viruses in recently collected commercial FBS and trypsin samples from different geographic regions. In total, we detected viral sequences belonging to Parvoviridae, Anelloviridae, Flaviviridae, Herpesviridae, Caliciviridae, Nodaviridae, Rhabdoviridae, and Paramyxoviridae, including several viruses related to bovine diseases, viruses of potential human and insect origin, and viruses of unknown origin. Bovine parvovirus 3 and bosavirus were detected with high frequency and abundance in FBS, necessitating more stringent testing for these parvoviruses during production. Both bovine norovirus and bovine viral diarrhea virus 1 displayed relatively high genetic distance to closest hits, indicating the presence of new genotypes in farm animals. While the origin of novel lyssavirus and Nipah virus is unclear, their presence raises the possibility of the introduction of pathogenic animal-derived viruses into biologicals. Our results showed relatively widespread contamination of different viruses in biologicals, underscoring the need for robust safety protocol alternatives, such as metagenomic sequencing, to monitor emerging viruses.
  • loading
  • [1]
    Barnes MA, Wright RE, Bodine AB, Alberty CF. 1982. Frequency of bluetongue and bovine parvovirus infection in cattle in South Carolina dairy herds. American Journal of Veterinary Research, 43(6): 1078−1080.
    Baylis SA, Miskey C, Blümel J, Kaiser M, Kapusinszky B, Delwart E. 2020. Identification of a novel bovine copiparvovirus in pooled fetal bovine serum. Virus Genes, 56(4): 522−526. doi: 10.1007/s11262-020-01757-1
    Benavides JA, Velasco-Villa A, Godino LC, Satheshkumar PS, Nino R, Rojas-Paniagua E, et al. 2020. Abortive vampire bat rabies infections in Peruvian peridomestic livestock. PLoS Neglected Tropical Diseases, 14(6): e0008194. doi: 10.1371/journal.pntd.0008194
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    Brubaker SW, Bonham KS, Zanoni I, Kagan JC. 2015. Innate immune pattern recognition: a cell biological perspective. Annual Review of Immunology, 33: 257−290. doi: 10.1146/annurev-immunol-032414-112240
    Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1): 59−60. doi: 10.1038/nmeth.3176
    Cai CM, Tang YD, Xu GC, Zheng CF. 2021. The crosstalk between viral RNA- and DNA-sensing mechanisms. Cellular and Molecular Life Sciences, 78(23): 7427−7434. doi: 10.1007/s00018-021-04001-7
    Cantalupo PG, Pipas JM. 2019. Detecting viral sequences in NGS data. Current Opinion in Virology, 39: 41−48. doi: 10.1016/j.coviro.2019.07.010
    Chao J, Peng QJ, Zhao JQ, Zhu XJ, Ruan JC, Lu SY, et al. 2021. Different rabies outbreaks on two beef cattle farms in the same province of China: Diagnosis, virus characterization and epidemiological analysis. Transboundary and Emerging Diseases, 68(3): 1216−1228. doi: 10.1111/tbed.13775
    Chen DY, Nims R, Dusing S, Miller P, Luo W, Quertinmont M, et al. 2008. Root cause investigation of a viral contamination incident occurred during master cell bank (MCB) testing and characterization-a case study. Biologicals, 36(6): 393−402. doi: 10.1016/j.biologicals.2008.07.005
    Cheval J, Sauvage V, Frangeul L, Dacheux L, Guigon G, Dumey N, et al. 2011. Evaluation of high-throughput sequencing for identifying known and unknown viruses in biological samples. Journal of Clinical Microbiology, 49(9): 3268−3275. doi: 10.1128/JCM.00850-11
    Chi H, Wang YQ, Li ET, Wang XW, Wang HL, Jin HL, et al. 2022. Inactivated Rabies Virus Vectored MERS-Coronavirus Vaccine Induces Protective Immunity in Mice, Camels, and Alpacas. Frontiers in Immunology, 13: 823949. doi: 10.3389/fimmu.2022.823949
    Chiu CY, Miller SA. 2019. Clinical metagenomics. Nature Reviews Genetics, 20(6): 341−355. doi: 10.1038/s41576-019-0113-7
    Chowdhury S, Khan SU, Crameri G, Epstein JH, Broder CC, Islam A, et al. 2014. Serological evidence of henipavirus exposure in cattle, goats and pigs in Bangladesh. PLoS Neglected Tropical Diseases, 8(11): e3302. doi: 10.1371/journal.pntd.0003302
    Cotmore SF, Agbandje-Mckenna M, Canuti M, Chiorini JA, Eis-Hubinger AM, Hughes J, et al. 2019. ICTV Virus Taxonomy Profile: Parvoviridae. Journal of General Virology, 100(3): 367−368. doi: 10.1099/jgv.0.001212
    Del Médico Zajac MP, Ladelfa MF, Kotsias F, Muylkens B, Thiry J, Thiry E, et al. 2010. Biology of bovine herpesvirus 5. The Veterinary Journal, 184(2): 138−145. doi: 10.1016/j.tvjl.2009.03.035
    Di Felice E, Mauroy A, Pozzo FD, Thiry D, Ceci C, Di Martino B, et al. 2016. Bovine noroviruses: A missing component of calf diarrhoea diagnosis. The Veterinary Journal, 207: 53−62. doi: 10.1016/j.tvjl.2015.10.026
    Dong XP, Soong L. 2021. Emerging and Re-emerging Zoonoses are Major and Global Challenges for Public Health. Zoonoses, 1(1): 1−2. doi: 10.3390/zoonoses1010001
    Field H, Kung N. 2011. Henipaviruses-unanswered questions of lethal zoonoses. Current Opinion in Virology, 1(6): 658−661. doi: 10.1016/j.coviro.2011.10.025
    Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23): 3150−3152. doi: 10.1093/bioinformatics/bts565
    Gagnieur L, Cheval J, Gratigny M, Hébert C, Muth E, Dumarest M, et al. 2014. Unbiased analysis by high throughput sequencing of the viral diversity in fetal bovine serum and trypsin used in cell culture. Biologicals, 42(3): 145−152. doi: 10.1016/j.biologicals.2014.02.002
    Gomez-Romero N, Ridpath JF, Basurto-Alcantara FJ, Verdugo-Rodriguez A. 2021. Bovine Viral Diarrhea Virus in Cattle From Mexico: Current Status. Frontiers in Veterinary Science, 8: 673577. doi: 10.3389/fvets.2021.673577
    Grange ZL, Goldstein T, Johnson CK, Anthony S, Gilardi K, Daszak P, et al. 2021. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proceedings of the National Academy of Sciences of the United States of America, 118(15): e2002324118. doi: 10.1073/pnas.2002324118
    Harvey E & Holmes EC. 2022. Diversity and evolution of the animal virome. Nature Reviews Microbiology, 20(6): 321−334. doi: 10.1038/s41579-021-00665-x
    Heaton PR, Johnstone P, Mcelhinney LM, Cowley R, O'sullivan E, Whitby JE. 1997. Heminested PCR assay for detection of six genotypes of rabies and rabies-related viruses. Journal of Clinical Microbiology, 35(11): 2762−2766. doi: 10.1128/jcm.35.11.2762-2766.1997
    Johnson KL, Price BD, Ball LA. 2003. Recovery of infectivity from cDNA clones of nodamura virus and identification of small nonstructural proteins. Virology, 305(2): 436−451. doi: 10.1006/viro.2002.1769
    Jung K, Scheuer KA, Zhang ZW, Wang QH, Saif LJ. 2014. Pathogenesis of GIII. 2 bovine norovirus, CV186-OH/00/US strain in gnotobiotic calves. Veterinary Microbiology, 168(1): 202−207. doi: 10.1016/j.vetmic.2013.11.008
    Kaczorowska J, Van Der Hoek L. 2020. Human anelloviruses: diverse, omnipresent and commensal members of the virome. FEMS Microbiology Reviews, 44(3): 305−313. doi: 10.1093/femsre/fuaa007
    Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefigns in Bioinformatics, 20(4): 1160−1166. doi: 10.1093/bib/bbx108
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647−1649. doi: 10.1093/bioinformatics/bts199
    Keshwara R, Shiels T, Postnikova E, Kurup D, Wirblich C, Johnson RF, et al. 2019. Rabies-based vaccine induces potent immune responses against Nipah virus. NPJ Vaccines, 4: 15. doi: 10.1038/s41541-019-0109-5
    Khan MK, Alam MM. 2021. Norovirus Gastroenteritis Outbreaks, Genomic Diversity and Evolution: An Overview. Mymensingh Medicine Journal, 30(3): 863−873.
    Kohl C, Kurth A. 2014. European bats as carriers of viruses with zoonotic potential. Viruses, 6(8): 3110−3128. doi: 10.3390/v6083110
    Kurup D, Wirblich C, Feldmann H, Marzi A, Schnell MJ. 2015. Rhabdovirus-based vaccine platforms against henipaviruses. Journal of Virology, 89(1): 144−154. doi: 10.1128/JVI.02308-14
    Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4): 357−359. doi: 10.1038/nmeth.1923
    Li YP, Altan E, Reyes G, Halstead B, Deng XT, Delwart E. 2021. Virome of Bat Guano from Nine Northern California Roosts. Journal of Virology, 95(3): e01713−20.
    Li YP, Cao L, Ye M, Xu R, Chen X, Ma YY, et al. 2022. Plasma Virome Reveals Blooms and Transmission of Anellovirus in Intravenous Drug Users with HIV-1, HCV, and/or HBV Infections. Microbiology Spectrum, 10: e0144722.
    Li YP, Fu XM, Ma JM, Zhang JH, Hu YH, Dong W, et al. 2019. Altered respiratory virome and serum cytokine profile associated with recurrent respiratory tract infections in children. Nature Communications, 10(1): 2288. doi: 10.1038/s41467-019-10294-x
    Li YP, Gordon E, Idle A, Altan E, Seguin MA, Estrada M, et al. 2020. Virome of a Feline Outbreak of Diarrhea and Vomiting Includes Bocaviruses and a Novel Chapparvovirus. Viruses, 12(5): 506. doi: 10.3390/v12050506
    Li Y, Lu JF, Han YH, Fan XX, Ding SW. 2013. RNA interference functions as an antiviral immunity mechanism in mammals. Science, 342(6155): 231−234. doi: 10.1126/science.1241911
    Marcus-Sekura C, Richardson JC, Harston RK, Sane N, Sheets RL. 2011. Evaluation of the human host range of bovine and porcine viruses that may contaminate bovine serum and porcine trypsin used in the manufacture of biological products. Biologicals, 39(6): 359−369. doi: 10.1016/j.biologicals.2011.08.003
    Mills JN, Alim ANM, Bunning ML, Lee OB, Wagoner KD, Amman BR, et al. 2009. Nipah virus infection in dogs, Malaysia, 1999. Emerging Infectious Diseases, 15(6): 950−952. doi: 10.3201/eid1506.080453
    Mitra N, Cernicchiaro N, Torres S, Li F, Hause BM. 2016. Metagenomic characterization of the virome associated with bovine respiratory disease in feedlot cattle identified novel viruses and suggests an etiologic role for influenza D virus. Journal of General Virology, 97(8): 1771−1784. doi: 10.1099/jgv.0.000492
    Paim WP, Maggioli MF, Falkenberg SM, Ramachandran A, Weber MN, Canal CW, et al. 2021. Virome Characterization in Commercial Bovine Serum Batches-A Potentially Needed Testing Strategy for Biological Products. Viruses, 13(12): 2425. doi: 10.3390/v13122425
    Paim WP, Weber MN, Cibulski SP, Da Silva MS, Puhl DE, Budaszewski RF, et al. 2019. Characterization of the viral genomes present in commercial batches of horse serum obtained by high-throughput sequencing. Biologicals, 61: 1−7. doi: 10.1016/j.biologicals.2019.08.005
    Pecora A, López JP, Jordán MJ, Franco LN, Politzki R, Ruiz V, et al. 2020. Analysis of irradiated Argentinean fetal bovine serum for adventitious agents. Journal of Veterinary Diagnostic Investigation, 32(6): 892−897. doi: 10.1177/1040638720951556
    Pinheiro De Oliveira TF, Fonseca AA, Jr., Camargos MF, De Oliveira AM, Pinto Cottorello AC, Souza Ados R, et al. 2013. Detection of contaminants in cell cultures, sera and trypsin. Biologicals, 41(6): 407−414. doi: 10.1016/j.biologicals.2013.08.005
    Porter AF, Cobbin J, Li CX, Eden JS, Holmes EC. 2021. Metagenomic Identification of Viral Sequences in Laboratory Reagents. Viruses, 13(11): 2122. doi: 10.3390/v13112122
    Sadeghi M, Kapusinszky B, Yugo DM, Phan TG, Deng XT, Kanevsky I, et al. 2017. Virome of US bovine calf serum. Biologicals, 46: 64−67. doi: 10.1016/j.biologicals.2016.12.009
    Schneider CA, Calvo E, Peterson KE. 2021. Arboviruses: How Saliva Impacts the Journey from Vector to Host. International Journal of Molecular Sciences, 22(17): 9173. doi: 10.3390/ijms22179173
    Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, et al. 2019. Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Tropical Medicine and Infectious Disease, 4(1): 31. doi: 10.3390/tropicalmed4010031
    Shulman LM, Davidson I. 2017. Viruses with Circular Single-Stranded DNA Genomes Are Everywhere! Annual Review of Virology, 4(1): 159–180.
    Siepker CL, Dalton MF, Mchale BJ, Sakamoto K, Rissi DR. 2020. Neuropathology and diagnostic features of rabies in a litter of piglets, with a brief review of the literature. Journal of Veterinary Diagnostic Investigation, 32(1): 166−168. doi: 10.1177/1040638719898687
    Thijssen M, Tacke F, Beller L, Deboutte W, Yinda KC, Nevens F, et al. 2020. Clinical relevance of plasma virome dynamics in liver transplant recipients. EBioMedicine, 60: 103009. doi: 10.1016/j.ebiom.2020.103009
    Tong SX, Chern SWW, Li Y, Pallansch MA, Anderson LJ. 2008. Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. Journal of Clinical Microbiology, 46(8): 2652−2658. doi: 10.1128/JCM.00192-08
    Van Brussel K, Holmes EC. 2022. Zoonotic disease and virome diversity in bats. Current Opinion in Virology, 52: 192−202. doi: 10.1016/j.coviro.2021.12.008
    Van Der Valk J, Bieback K, Buta C, Cochrane B, Dirks WG, Fu JN, et al. 2018. Fetal Bovine Serum (FBS): Past - Present - Future. Altex, 35(1): 99−118.
    Vonesch N, Binazzi A, Bonafede M, Melis P, Ruggieri A, Iavicoli S, et al. 2019. Emerging zoonotic viral infections of occupational health importance. Pathogens and Disease, 77(2): ftz018. doi: 10.1093/femspd/ftz018
    Wang H, Li SX, Mahmood A, Yang S, Wang XC, Shen Q, et al. 2018. Plasma virome of cattle from forest region revealed diverse small circular ssDNA viral genomes. Virology Journal, 15(1): 11. doi: 10.1186/s12985-018-0923-9
    Wille M, Geoghegan JL, Holmes EC. 2021. How accurately can we assess zoonotic risk. PLoS Biology, 19(4): e3001135. doi: 10.1371/journal.pbio.3001135
    Xu F, Pan YY, Wang M, Wu X, Tian LL, Baloch AR, et al. 2016. First detection of ungulate tetraparvovirus 1 (bovine hokovirus 1) in domestic yaks in northwestern China. Archives of Virology, 161(1): 177−180. doi: 10.1007/s00705-015-2638-1
    Yadav PD, Shete AM, Kumar GA, Sarkale P, Sahay RR, Radhakrishnan C, et al. 2019. Nipah Virus Sequences from Humans and Bats during Nipah Outbreak, Kerala, India, 2018. Emerging Infectious Diseases, 25(5): 1003−1006. doi: 10.3201/eid2505.181076
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (665) PDF downloads(128) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint