Volume 43 Issue 3
May  2022
Turn off MathJax
Article Contents
Tao Zhang, Meng-Long Lei, Hao Zhou, Zhong-Zheng Chen, Peng Shi. Phylogenetic relationships of the zokor genus Eospalax (Mammalia, Rodentia, Spalacidae) inferred from whole-genome analyses, with description of a new species endemic to Hengduan Mountains. Zoological Research, 2022, 43(3): 331-342. doi: 10.24272/j.issn.2095-8137.2022.045
Citation: Tao Zhang, Meng-Long Lei, Hao Zhou, Zhong-Zheng Chen, Peng Shi. Phylogenetic relationships of the zokor genus Eospalax (Mammalia, Rodentia, Spalacidae) inferred from whole-genome analyses, with description of a new species endemic to Hengduan Mountains. Zoological Research, 2022, 43(3): 331-342. doi: 10.24272/j.issn.2095-8137.2022.045

Phylogenetic relationships of the zokor genus Eospalax (Mammalia, Rodentia, Spalacidae) inferred from whole-genome analyses, with description of a new species endemic to Hengduan Mountains

doi: 10.24272/j.issn.2095-8137.2022.045
Funds:  This study was supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK05010218, 2019QZKK05010110), National Natural Science Foundation of China (32100339, 31871277). P.S. was supported by the Yunling Scholar Project, Ten-Thousand Talents Plan of Yunnan Province. T.Z. was supported by the Youth Innovation Promotion Association, Chinese Academy of Sciences
More Information
  • Zokors in the genus Eospalax, which are endemic to northern and western China, are subterranean rodents that inhabit various niches, including grasslands, high-altitude meadows, forests, and farmlands. Six species in Eospalax were described a century ago but their taxonomy and phylogeny remain controversial. In this study, we performed high-depth whole-genome sequencing of 47 zokor samples, comprising all six previously described species. Genomic analyses revealed a reliable and robust phylogeny of Eospalax and supported the validity of the six named species. According to the inferred phylogenetic relationships, Eospalax first divergent into two clades in the early Pliocene (ca. 4.68 million years ago (Ma)), one inhabiting the high-altitude Qinghai-Xizang (Tibet) Plateau (QTP) and adjacent regions, and the another inhabiting the low-altitude Loess Plateau and Qinling-Daba Mountains. The most recent divergences occurred between E. baileyi and E. smithii and between E. rufescens and E. rothschildi in the late Pliocene (ca. 2.09 and 2.19 Ma, respectively). We also collected specimens of zokors in the southern Hengduan Mountains (Muli County, Sichuan Province), far from the known distributions of all other zokors. Morphological and molecular analyses strongly suggested that the specimens represent a new species, formally described here as Eospalax muliensis sp. nov . The new species belongs to the high-altitude clade and diverged from closely related species (ca. 4.22 Ma) shortly after the first divergence in Eospalax. Interestingly, Eospalax muliensis sp. nov . possesses more supposedly plesiomorphic characters, suggesting a possible origin of the genus in the Hengduan Mountains.
  • loading
  • [1]
    Allen GM. 1940. The Mammals of China and Mongolia, Part 2. New York: The American Museum of Natural History.
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4): e1006650. doi: 10.1371/journal.pcbi.1006650
    Bradley RD, Baker RJ. 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy, 82(4): 960−973. doi: 10.1644/1545-1542(2001)082<0960:ATOTGS>2.0.CO;2
    Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, Roychoudhury A. 2012. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution, 29(8): 1917−1932. doi: 10.1093/molbev/mss086
    Cai ZY, Zhang JJ, Qiao PH, Qing W, Zhang TZ. 2020. Next generation sequencing yields the complete mitogenome of Smith’s zokor (Eospalax smithii). Mitochondrial DNA Part B, 5(3): 2109−2110. doi: 10.1080/23802359.2020.1765211
    Chen ZZ, He K, Huang C, Wan T, Lin LK, Liu SY, et al. 2017. Integrative systematic analyses of the genus Chodsigoa (Mammalia: Eulipotyphla: Soricidae), with descriptions of new species. Zoological Journal of the Linnean Society, 180(3): 694−713. doi: 10.1093/zoolinnean/zlw017
    Chen ZZ, He SW, Hu WH, Song WY, Onditi KO, Li XY, et al. 2021. Morphology and phylogeny of scalopine moles (Eulipotyphla: Talpidae: Scalopini) from the eastern Himalayas, with descriptions of a new genus and species. Zoological Journal of the Linnean Society, 193(2): 432−444. doi: 10.1093/zoolinnean/zlaa172
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, et al. 2011. The variant call format and VCFtools. Bioinformatics, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    Fan NC, Shi YZ. 1982. A revision of the zokors of subgenus Eospalax. Acta Theriologica Sinica, 2(2): 183–199. (in Chinese)
    Guo YT, Zhang J, Xu DM, Tang LZ, Liu Z. 2021. Phylogenomic relationships and molecular convergences to subterranean life in rodent family Spalacidae. Zoological Research, 42(5): 671−674. doi: 10.24272/j.issn.2095-8137.2021.240
    He K, Jiang XL. 2014. Sky islands of Southwest China. I: an overview of phylogeographic patterns. Chinese Science Bulletin, 59(7): 585−597. doi: 10.1007/s11434-013-0089-1
    He K, Li YJ, Brandley MC, Lin LK, Wang YX, Zhang YP, et al. 2010. A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Molecular Phylogenetics and Evolution, 56(2): 734−746. doi: 10.1016/j.ympev.2010.03.039
    He Y, Hu SZ, Ge DY, Yang QS, Connor T, Zhou CQ. 2020. Evolutionary history of Spalacidae inferred from fossil occurrences and molecular phylogeny. Mammal Review, 50(1): 11−24. doi: 10.1111/mam.12170
    He Y, Zhou CQ, Liu GK, Chen L, Zhang Y, Pan L. 2012. Research on the validity of Eospalax smithi inferred from molecular and morphological evidences. Acta Zootaxonomica Sinica, 37(1): 36−43. (in Chinese)
    Jiang ZG, Liu SY, Wu Y, Jiang XL, Zhou KY. 2017. China’s mammal diversity (2nd edition). Biodiversity Science, 25(8): 886−895. (in Chinese) doi: 10.17520/biods.2017098
    Jin JJ, Yu WB, Yang JB, Song Y, Depamphilis CW, Yi TS, et al. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21(1): 241. doi: 10.1186/s13059-020-02154-5
    Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3): 772−773.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and clustal X version 2.0. Bioinformatics, 23(21): 2947−2948. doi: 10.1093/bioinformatics/btm404
    Li BG, Chen FG. 1986. Studies on the phylogenetic relationship, the speciation and the place of the origin of the subgenus Eospalax, Genus Myospalax. Journal of Northwest University, 16(3): 59–66. (in Chinese)
    Li BG, Chen FG. 1989. A taxonomic study and new subspecies of the subgenus Eospalax, genus Myospalax. Acta Zoologica Sinica, 35(1): 89–95. (in Chinese)
    Li CK, Wu WY, Qiu ZD. 1984. Chinese neogene: subdivision and correlation. Vertebrata Palasiatica, 22(3): 163−178. (in Chinese)
    Li H. 2012. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics, 28(14): 1838−1844. doi: 10.1093/bioinformatics/bts280
    Li H. 2015a. BFC: correcting Illumina sequencing errors. Bioinformatics, 31(17): 2885−2887. doi: 10.1093/bioinformatics/btv290
    Li H. 2015b. FermiKit: assembly-based variant calling for Illumina resequencing data. Bioinformatics, 31(22): 3694−3696.
    Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18): 3094−3100. doi: 10.1093/bioinformatics/bty191
    Li XC, Wang TZ. 1996. Taxonomy and phylogeny of subgenus Eospalax. Journal of Shaanxi Normal University: Natural Science Edition, 24(3): 75–78. (in Chinese)
    Li YW, Lu JQ, Wang ZL. 2016. Complete mitochondrial genome of Manchurian Zokor (Myospalax psilurus). Mitochondrial DNA Part A, 27(2): 1461−1462.
    Lin GH, Wang K, Deng XG, Nevo E, Zhao F, Su JP, et al. 2014. Transcriptome sequencing and phylogenomic resolution within Spalacidae (Rodentia). BMC Genomics, 15: 32. doi: 10.1186/1471-2164-15-32
    Liu Y, Zhang ZR, He ZJ, He SP. 2007. Dynamic monitoring of rodents damage in damage-free demonstration grassland in Liangshan Yi Autonomous Prefecture. Journal of Grassland and Forage Science, (7): 44−46. (in Chinese)
    Luo ZX, Chen W, Gao W. 2000. Fauna Sinica: Cricetidae. Beijing: Science Press, 148–178. (in Chinese)
    Martin SH, van Belleghem SM. 2017. Exploring evolutionary relationships across the genome using topology weighting. Genetics, 206(1): 429−438. doi: 10.1534/genetics.116.194720
    McKay BD, Zink RM. 2010. The causes of mitochondrial DNA gene tree paraphyly in birds. Molecular Phylogenetics and Evolution, 54(2): 647−650. doi: 10.1016/j.ympev.2009.08.024
    Meng GL, Li YY, Yang CT, Liu SL. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research, 47(11): e63. doi: 10.1093/nar/gkz173
    Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853−858. doi: 10.1038/35002501
    Norris RW, Zhou KY, Zhou CQ, Yang G, William Kilpatrick C, Honeycutt RL. 2004. The phylogenetic position of the zokors (Myospalacinae) and comments on the families of muroids (Rodentia). Molecular Phylogenetics and Evolution, 31(3): 972−978. doi: 10.1016/j.ympev.2003.10.020
    Pan QH, Wang YX, Yan K. 2007. A Field Guide to the Mammals of China. Beijing: China Forestry Publishing House. (in Chinese)
    Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5): 901−904. doi: 10.1093/sysbio/syy032
    Smith AT, Xie Y. 2008. A Guide to the Mammals of China. Princeton: Princeton University Press.
    Song SY. 1986. A revision of the two species of the zokors on subgenus Eospalax. La Animals Mondo, 3(3): 31–39.
    Spicer RA, Su T, Valdes PJ, Farnsworth A, Wu FX, Shi GL, et al. 2021. Why 'the uplift of the Tibetan Plateau' is a myth. National Science Review, 8(1): nwaa091. doi: 10.1093/nsr/nwaa091
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    Su JH, Ji WH, Wang J, Gleeson DM, Zhou JW, Hua LM, et al. 2014. Phylogenetic relationships of extant zokors (Myospalacinae) (Rodentia, Spalacidae) inferred from mitochondrial DNA sequences. Mitochondrial DNA, 25(2): 135−141. doi: 10.3109/19401736.2013.784747
    Su JH, Wang J, Hua LM, Gleeson D, Ji WH. 2013. Complete mitochondrial genome of the Gansu zokor, Eospalax cansus (Rodentia, Spalacidae). Mitochondrial DNA, 24(6): 651−653. doi: 10.3109/19401736.2013.772166
    Toews DPL, Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21(16): 3907−3930. doi: 10.1111/j.1365-294X.2012.05664.x
    Wei DB, Wei L, Zhang JM, Yu HY. 2006. Blood-gas properties of plateau zokor (Myospalax baileyi). Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 145(3): 372−375.
    Wei FW, Yang QS, Wu Y, Jiang XL, Liu SY, Li BG, et al. 2021. Catalogue of mammals in China (2021). Acta Theriologica Sinica, 41(5): 487−501. (in Chinese)
    Wei WH, Wang QY, Zhou WY, Fan NC. 1997. The population dynamics and dispersal of plateau zokor after removing. Acta Theriologica Sinica, 17(1): 53−61. (in Chinese)
    Wilson DE, Reeder DM. 2005. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: Johns Hopkins University Press.
    Xu DM, Yang CP, Shen QS, Pan SK, Liu Z, Zhang TZ, et al. 2021. A single mutation underlying phenotypic convergence for hypoxia adaptation on the Qinghai-Tibetan Plateau. Cell Research, 31(9): 1032−1035. doi: 10.1038/s41422-021-00517-6
    Zhang T, Chen J, Zhang J, Guo YT, Zhou X, Li MW, et al. 2021. Phenotypic and genomic adaptations to the extremely high elevation in plateau zokor (Myospalax baileyi). Molecular Ecology, 30(22): 5765−5779. doi: 10.1111/mec.16174
    Zheng SH. 1994. Classification and evolution of the Siphneidae. In: Tomida Y, Li CK, Setoguchi T. Rodent and Lagomorph Families of Asian Origins and Diversification. Tokyo: National Science Museum Monographs, 57–76.
    Zhou CQ, Zhou KY. 2008. The validity of different zokor species and the genus Eospalax inferred from mitochondrial gene sequences. Integrative Zoology, 3(4): 290−298. doi: 10.1111/j.1749-4877.2008.00108.x
    Zou Y, Xu M, Ren SE, Liang NN, Han CX, Nan XN, et al. 2020. Taxonomy and phylogenetic relationship of zokors. Journal of Genetics, 99(1): 38. doi: 10.1007/s12041-020-01200-2
  • ZR-2022-045 Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1312) PDF downloads(261) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint