Volume 43 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Lian-Lian Sun, Yi-Na Shao, Mei-Xiang You, Cheng-Hua Li. ROS-mediated BNIP3-dependent mitophagy promotes coelomocyte survival in Apostichopus japonicus in response to Vibrio splendidus infection. Zoological Research, 2022, 43(2): 285-300. doi: 10.24272/j.issn.2095-8137.2021.460
Citation: Lian-Lian Sun, Yi-Na Shao, Mei-Xiang You, Cheng-Hua Li. ROS-mediated BNIP3-dependent mitophagy promotes coelomocyte survival in Apostichopus japonicus in response to Vibrio splendidus infection. Zoological Research, 2022, 43(2): 285-300. doi: 10.24272/j.issn.2095-8137.2021.460

ROS-mediated BNIP3-dependent mitophagy promotes coelomocyte survival in Apostichopus japonicus in response to Vibrio splendidus infection

doi: 10.24272/j.issn.2095-8137.2021.460
Funds:  This work was supported by the National Natural Science Foundation of China (32073003, 32102825), Natural Science Foundation of Zhejiang Province (LZ19C190001), Key Project from Science Technology Department of Zhejiang Province (2019R52016), and K.C. Wong Magna Fund in Ningbo University
More Information
  • Corresponding author: E-mail: lichenghua@nbu.edu.cn
  • Received Date: 2022-01-20
  • Accepted Date: 2022-02-23
  • Published Online: 2022-03-01
  • Publish Date: 2022-03-18
  • Organisms produce high levels of reactive oxygen species (ROS) to kill pathogens or act as signaling molecules to induce immune responses; however, excessive ROS can result in cell death. To maintain ROS balance and cell survival, mitophagy selectively eliminates damaged mitochondria via mitophagy receptors in vertebrates. In marine invertebrates, however, mitophagy and its functions remain largely unknown. In the current study, Vibrio splendidus infection damaged mitochondrial morphology in coelomocytes and reduced mitochondrial membrane potential (ΔΨm) and mitophagosome formation. The colocalization of mitochondria and lysosomes further confirmed that lipopolysaccharide (LPS) treatment increased mitophagy flux. To explore the regulatory mechanism of mitophagy, we cloned Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a common mitophagy receptor, from sea cucumber Apostichopus japonicus (AjBNIP3) and confirmed that AjBNIP3 was significantly induced and accumulated in mitochondria after V. splendidus infection and LPS exposure. At the mitochondrial membrane, AjBNIP3 interacts with microtubule-associated protein 1 light chain 3 (LC3) on phagophore membranes to mediate mitophagy. After AjBNIP3 interference, mitophagy flux decreased significantly. Furthermore, AjBNIP3-mediated mitophagy was activated by ROS following the addition of exogenous hydrogen peroxide (H2O2), ROS scavengers, and ROS inhibitors. Finally, inhibition of BNIP3-mediated mitophagy by AjBNIP3 small interfering RNA (siRNA) or high concentrations of lactate increased apoptosis and decreased coelomocyte survival. These findings highlight the essential role of AjBNIP3 in damaged mitochondrial degradation during mitophagy. This mitophagy activity is required for coelomocyte survival in A. japonicus against V. splendidus infection.
  • loading
  • [1]
    Adam-Vizi V, Chinopoulos C. 2006. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends in Pharmacological Sciences, 27(12): 639−645. doi: 10.1016/j.tips.2006.10.005
    Awan MUF, Hasan M, Iqbal J, Lei RH, Lee WF, Hong M, et al. 2014. Neuroprotective role of BNIP3 under oxidative stress through autophagy in neuroblastoma cells. Molecular Biology Reports, 41(9): 5729−5734. doi: 10.1007/s11033-014-3444-7
    Bjelland S, Seeberg E. 2003. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 531(1-2): 37−80. doi: 10.1016/j.mrfmmm.2003.07.002
    Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R, et al. 2012. The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. The Journal of Physiology, 590(20): 5211−5230. doi: 10.1113/jphysiol.2012.240267
    Chen G, Ray R, Dubik D, Shi LF, Cizeau J, Bleackley RC, et al. 1997. The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. Journal of Experimental Medicine, 186(12): 1975−1983. doi: 10.1084/jem.186.12.1975
    Chourasia AH, Macleod KF. 2015. Tumor suppressor functions of BNIP3 and mitophagy. Autophagy, 11(10): 1937−1938. doi: 10.1080/15548627.2015.1085136
    Chourasia AH, Tracy K, Frankenberger C, Boland ML, Sharifi MN, Drake LE, et al. 2015. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Reports, 16(9): 1145−1163. doi: 10.15252/embr.201540759
    Chung LY, Tang SJ, Wu YC, Yang KC, Huang HJ, Sun GH, et al. 2019. Platinum-based combination chemotherapy triggers cancer cell death through induction of BNIP3 and ROS, but not autophagy. Journal of Cellular and Molecular Medicine, 24(2): 1993−2003.
    Deng H, He CB, Zhou ZC, Liu C, Tan KF, Wang NB, et al. 2009. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture, 287(1–2): 18–27.
    Dhingra A, Jayas R, Afshar P, Guberman M, Maddaford G, Gerstein J, et al. 2017. Ellagic acid antagonizes Bnip3-mediated mitochondrial injury and necrotic cell death of cardiac myocytes. Free Radical Biology and Medicine, 112: 411−422. doi: 10.1016/j.freeradbiomed.2017.08.010
    Elmore SP, Qian T, Grissom SF, Lemasters JJ. 2001. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB Journal, 15(12): 2286−2287.
    Fleury C, Mignotte B, Vayssière JL. 2002. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84(2-3): 131−141. doi: 10.1016/S0300-9084(02)01369-X
    Gao AB, Jiang JY, Xie F, Chen LX. 2020. Bnip3 in mitophagy: novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clinica Chimica Acta, 506: 72−83. doi: 10.1016/j.cca.2020.02.024
    Ghavami S, Eshraghi M, Kadkhoda K, Mutawe MM, Maddika S, Bay GH, et al. 2009. Role of BNIP3 in TNF-induced cell death-TNF upregulates BNIP3 expression. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1793(3): 546−560. doi: 10.1016/j.bbamcr.2009.01.002
    Glick D, Zhang WS, Beaton M, Marsboom G, Gruber M, Simon MC, et al. 2012. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Molecular and Cellular Biology, 32(13): 2570−2584. doi: 10.1128/MCB.00167-12
    Guo WJ, Sun Y, Liu W, Wu XX, Guo LL, Cai PF, et al. 2014. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 10(6): 972−985. doi: 10.4161/auto.28374
    Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson ÅB. 2012. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. Journal of Biological Chemistry, 287(23): 19094−19104. doi: 10.1074/jbc.M111.322933
    Kubli DA, Quinsay MN, Huang CQ, Lee Y, Gustafsson ÅB. 2008. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. American Journal of Physiology:Heart and Circulatory Physiology, 295(5): H2025−H2031. doi: 10.1152/ajpheart.00552.2008
    Lamy L, Ticchioni M, Rouquette-Jazdanian AK, Samson M, Deckert M, Greenberg AH, et al. 2003. CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis. Journal of Biological Chemistry, 278(26): 23915−23921. doi: 10.1074/jbc.M301869200
    Lei QY, Tan J, Yi SQ, Wu N, Wang YL, Wu H. 2018. Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFα-induced apoptosis via increased Bnip3-related mitophagy. Cellular & Molecular Biology Letters, 23: 14.
    Lemasters JJ. 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research, 8(1): 3−5. doi: 10.1089/rej.2005.8.3
    Li Q, Qi F, Meng XC, Zhu CP, Gao YT. 2018. Mst1 regulates colorectal cancer stress response via inhibiting Bnip3-related mitophagy by activation of JNK/p53 pathway. Cell Biology and Toxicology, 34(4): 263−277. doi: 10.1007/s10565-017-9417-6
    Li XM, Wang QL, Ren YF, Wang XM, Cheng HX, Yang H, et al. 2019. Tetramethylpyrazine protects retinal ganglion cells against H2O2-induced damage via the microRNA-182/mitochondrial pathway. International Journal of Molecular Medicine, 44(2): 503−512.
    Liu HW, Huang HT, Li RX, Bi WT, Feng L, E LL, et al. 2019. Mitophagy protects SH-SY5Y neuroblastoma cells against the TNFα-induced inflammatory injury: Involvement of microRNA-145 and Bnip3. Biomedicine & Pharmacotherapy, 109: 957−968.
    Liu HY, Zhu H, Li T, Zhang PF, Wang N, Sun XD. 2016. Prolyl-4-hydroxylases inhibitor stabilizes HIF-1α and increases mitophagy to reduce cell death after experimental retinal detachment. Investigative Ophthalmology & Visual Science, 57(4): 1807−1815.
    Liu HZ, Zheng FR, Sun XQ, Hong XG, Dong SL, Wang B, et al. 2010. Identification of the pathogens associated with skin ulceration and peristome tumescence in cultured sea cucumbers Apostichopus japonicus (Selenka). Journal of Invertebrate Pathology, 105(3): 236−242. doi: 10.1016/j.jip.2010.05.016
    Liu L, Sakakibara K, Chen Q, Okamoto K. 2014. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Research, 24(7): 787−795. doi: 10.1038/cr.2014.75
    Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 $ -\Delta \Delta C_{T} $ method. Methods, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    Lou GF, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF. 2019. Mitophagy and neuroprotection. Trends in Molecular Medicine, 26(1): 8−20.
    Lu HQ, Li GL, Liu LM, Feng LF, Wang X, Jin HC. 2013. Regulation and function of mitophagy in development and cancer. Autophagy, 9(11): 1720−1736. doi: 10.4161/auto.26550
    Ma YX, Xu GR, Chang YQ, Zhang EP, Zhou W, Song LS. 2006. Bacterial pathogens of skin ulceration disease in cultured sea cucumber Apostichopus japonicus (Selenka) juveniles. Journal of Dalian Fisheries University, 21(1): 13−18. (in Chinese)
    Mammucari C, Rizzuto R. 2010. Signaling pathways in mitochondrial dysfunction and aging. Mechanisms of Ageing and Development, 131(7-8): 536−543. doi: 10.1016/j.mad.2010.07.003
    Merjaneh M, Langlois A, Larochelle S, Cloutier CB, Ricard-Blum S, Moulin VJ. 2017. Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts. Angiogenesis, 20(3): 385−398. doi: 10.1007/s10456-017-9554-9
    Métivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I, et al. 1998. Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunology Letters, 61(2-3): 157−163. doi: 10.1016/S0165-2478(98)00013-3
    Mills EL, O'Neill LA. 2016. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. European Journal of Immunology, 46(1): 13−21. doi: 10.1002/eji.201445427
    Ney PA. 2015. Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(10): 2775−2783. doi: 10.1016/j.bbamcr.2015.02.022
    Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. 2012. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology, 55(1): 222−232. doi: 10.1002/hep.24690
    Novikoff AB, Essner E. 1962. Cytolysomes and mitochondrial degeneration. Journal of Cell Biology, 15(1): 140−146. doi: 10.1083/jcb.15.1.140
    Ray R, Chen G, Velde CV, Cizeau J, Park JH, Reed JC, et al. 2000. BNIP3 heterodimerizes with Bcl-2/Bcl-XL and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. Journal of Biological Chemistry, 275(2): 1439−1448. doi: 10.1074/jbc.275.2.1439
    Roperto S, De Falco F, Perillo A, Catoi C, Roperto F. 2019. Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Veterinary Microbiology, 236: 108396. doi: 10.1016/j.vetmic.2019.108396
    Sathiyaseelan P, Rothe K, Yang KC, Xu J, Chow NS, Bortnik S, et al. 2019. Diverse mechanisms of autophagy dysregulation and their therapeutic implications: does the shoe fit. Autophagy, 15(2): 368−371. doi: 10.1080/15548627.2018.1509609
    Scherz-Shouval R, Elazar Z. 2011. Regulation of autophagy by ROS: physiology and pathology. Trends in Biochemical Sciences, 36(1): 30−38. doi: 10.1016/j.tibs.2010.07.007
    Smiles WJ, Parr EB, Coffey VG, Lacham-Kaplan O, Hawley JA, Camera DM. 2016. Protein coingestion with alcohol following strenuous exercise attenuates alcohol-induced intramyocellular apoptosis and inhibition of autophagy. American Journal of Physiology-Endocrinology and Metabolism, 311(5): E836−E849. doi: 10.1152/ajpendo.00303.2016
    Sun LL, Guo M, Lv ZM, Shao YN, Li CH. 2020. Hypoxia-inducible factor-1α shifts metabolism from oxidative phosphorylation to glycolysis in response to pathogen challenge in Apostichopus japonicus. Aquaculture, 526: 735393.
    Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. The EMBO Journal, 20(21): 5971−5981. doi: 10.1093/emboj/20.21.5971
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 496(7444): 238−242. doi: 10.1038/nature11986
    Thangaraj A, Periyasamy P, Guo ML, Chivero ET, Callen S, Buch S. 2019. Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics. Autophagy, 16(2): 289−312.
    Tolkovsky AM. 2009. Mitophagy. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1793(9): 1508−1515. doi: 10.1016/j.bbamcr.2009.03.002
    Velde CV, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, et al. 2000. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Molecular and Cellular Biology, 20(15): 5454−5468. doi: 10.1128/MCB.20.15.5454-5468.2000
    Wei HF, Liu L, Chen Q. 2015. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(10): 2784−2790. doi: 10.1016/j.bbamcr.2015.03.013
    Wende AR, Young ME, Chatham J, Zhang JH, Rajasekaran NS, Darley-Usmar VM. 2016. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radical Biology and Medicine, 100: 94−107. doi: 10.1016/j.freeradbiomed.2016.05.022
    West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 472(7344): 476−480. doi: 10.1038/nature09973
    Wu J, Li XY, Zhu GL, Zhang YX, He M, Zhang J. 2016. The role of Resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Experimental Cell Research, 341(1): 42−53. doi: 10.1016/j.yexcr.2016.01.014
    Xu Y, Shen J, Ran ZH. 2020. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy, 16(1): 3−17. doi: 10.1080/15548627.2019.1603547
    Yang X, Pan WN, Xu GS, Chen LX. 2020. Mitophagy: A crucial modulator in the pathogenesis of chronic diseases. Clinica Chimica Acta, 502: 245−254. doi: 10.1016/j.cca.2019.11.008
    Youle RJ, Bliek AMVD. 2012. Mitochondrial fission, fusion, and stress. Science, 337(6098): 1062−1065. doi: 10.1126/science.1219855
    Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1): 9−14. doi: 10.1038/nrm3028
    Yurkova N, Shaw J, Blackie K, Weidman D, Jayas R, Flynn B, et al. 2008. The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circulation Research, 102(4): 472−479. doi: 10.1161/CIRCRESAHA.107.164731
    Zhang HF, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. 2008. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. Journal of Biological Chemistry, 283(16): 10892−10903. doi: 10.1074/jbc.M800102200
    Zhang PJ, Li CH, Shao YN, Chen XC, Li Y, Su XR, et al. 2014. Identification and characterization of miR-92a and its targets modulating Vibrio splendidus challenged Apostichopus japonicus. Fish & Shellfish Immunology, 38(2): 383–388.
    Zhang TM, Xue L, Li L, Tang CY, Wan ZQ, Wang RX, et al. 2016. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. Journal of Biological Chemistry, 291(41): 21616−21629. doi: 10.1074/jbc.M116.733410
    Zhou H, Du WJ, Li Y, Shi C, Hu N, Ma S, et al. 2018a. Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. Journal of Pineal Research, 64(1): e12450. doi: 10.1111/jpi.12450
    Zhou H, Yue Y, Wang J, Ma Q, Chen YD. 2018b. Melatonin therapy for diabetic cardiomyopathy: a mechanism involving Syk-mitochondrial complex I-SERCA pathway. Cellular Signalling, 47: 88−100. doi: 10.1016/j.cellsig.2018.03.012
    Zhou JL, Yao W, Li CY, Wu WJ, Li QF, Liu HL. 2017. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death & Disease, 8(8): e3001.
    Zhou RB, Yazdi AS, Menu P, Tschopp J. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329): 221−225. doi: 10.1038/nature09663
    Zhu L, Qi BX, Hou DR. 2019a. Roles of HIF1α- and HIF2α-regulated BNIP3 in hypoxia-induced injury of neurons. Pathology-Research and Practice, 215(4): 822−827. doi: 10.1016/j.prp.2019.01.022
    Zhu Y, Ji JJ, Yang R, Han XQ, Sun XJ, Ma WQ, et al. 2019b. Lactate accelerates calcification in VSMCs through suppression of BNIP3-mediated mitophagy. Cellular Signalling, 58: 53−64. doi: 10.1016/j.cellsig.2019.03.006
    Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E. 2010. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. Journal of Biological Chemistry, 285(43): 33154−33164. doi: 10.1074/jbc.M110.143685
    Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. 2000. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. The Journal of Experimental Medicine, 192(7): 1001−1014. doi: 10.1084/jem.192.7.1001
    Zorov DB, Juhaszova M, Sollott SJ. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94(3): 909−950. doi: 10.1152/physrev.00026.2013
  • ZR-2021-460 Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1362) PDF downloads(162) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint