Volume 43 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Lu-Chao Lv, Yao-Yao Lu, Xun Gao, Wan-Yun He, Ming-Yi Gao, Kai-Bin Mo, Jian-Hua Liu. Characterization of NDM-5-producing Enterobacteriaceae isolates from retail grass carp (Ctenopharyngodon idella) and evidence of blaNDM-5-bearing IncHI2 plasmid transfer between ducks and fish. Zoological Research, 2022, 43(2): 255-264. doi: 10.24272/j.issn.2095-8137.2021.426
Citation: Lu-Chao Lv, Yao-Yao Lu, Xun Gao, Wan-Yun He, Ming-Yi Gao, Kai-Bin Mo, Jian-Hua Liu. Characterization of NDM-5-producing Enterobacteriaceae isolates from retail grass carp (Ctenopharyngodon idella) and evidence of blaNDM-5-bearing IncHI2 plasmid transfer between ducks and fish. Zoological Research, 2022, 43(2): 255-264. doi: 10.24272/j.issn.2095-8137.2021.426

Characterization of NDM-5-producing Enterobacteriaceae isolates from retail grass carp (Ctenopharyngodon idella) and evidence of blaNDM-5-bearing IncHI2 plasmid transfer between ducks and fish

doi: 10.24272/j.issn.2095-8137.2021.426
#Authors contributed equally to this work
Funds:  This study was supported by the National Natural Science Foundation of China (31625026, 32141002) and Innovation Team Project of Guangdong University (2019KCXTD001)
More Information
  • Corresponding author: E-mail: jhliu@scau.edu.cn
  • Received Date: 2022-01-10
  • Accepted Date: 2022-02-17
  • Published Online: 2022-02-22
  • Publish Date: 2022-03-18
  • We aimed to characterize NDM-5-producing Enterobacteriaceae from aquatic products in Guangzhou, China. A total of 196 intestinal samples of grass carp collected in 2019 were screened for carbapenemase genes. Characterization of blaNDM-5 positive isolates and plasmids was determined by antimicrobial susceptibility testing, conjugation experiments, Illumina HiSeq, and Nanopore sequencing. One Citrobacter freundii and six Escherichia coli strains recovered from seven intestinal samples were verified as blaNDM-5 carriers (3.57%, 7/196). The blaNDM-5 genes were located on the IncX3 (n=5), IncHI2 (n=1), or IncHI2-IncF (n=1) plasmids. All blaNDM-5-bearing plasmids were transferred by conjugation at frequencies of ~10−4–10−6. Based on sequence analysis, the IncHI2 plasmid pHNBYF33-1 was similar to other blaNDM-5-carrying IncHI2 plasmids deposited in GenBank from Guangdong ducks. In all IncHI2 plasmids, blaNDM-5 was embedded in a novel transposon, Tn7051 (IS3000-ΔISAba125-IS5-ΔISAba125-blaNDM-5-bleMBL-trpF-tat-∆dct-IS26-∆umuD-∆ISKox3-IS3000), which was identical to the genetic structure surrounding blaNDM-5 found in some IncX3 plasmids. The IncHI2-IncF hybrid plasmid pHNTH9F11-1 was formed by homologous recombination of the blaNDM-5-carrying IncHI2 plasmid and a heavy-metal-resistant IncF plasmid through ∆Tn1721. To the best of our knowledge, this is the first report on the characterization of blaNDM-5-bearing plasmids in fish in China. The IncHI2 plasmid pHNBYF33-1 may be transmitted from ducks, considering the common duck-fish freshwater aquaculture system in Guangdong. Tn7051 is likely responsible for the transfer of blaNDM-5 from IncX3 to IncHI2 plasmids in Enterobacteriaceae, resulting in the expansion of transmission vectors of blaNDM-5.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Acman M, Wang RB, van Dorp L, Shaw LP, Wang Q, Luhmann N, et al. 2021. Role of the mobilome in the global dissemination of the carbapenem resistance gene blaNDM. bioRxiv,doi: 10.1101/2021.01.14.426698.
    Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12: 402. doi: 10.1186/1471-2164-12-402
    Cao YP, Lin QQ, He WY, Wang J, Yi MY, Lv LC, et al. 2020. Co-selection may explain the unexpectedly high prevalence of plasmid-mediated colistin resistance gene mcr-1 in a Chinese broiler farm. Zoological Research, 41(5): 569−575. doi: 10.24272/j.issn.2095-8137.2020.131
    Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58(7): 3895−3903. doi: 10.1128/AAC.02412-14
    Chen L, Chen ZL, Liu JH, Zeng ZL, Ma JY, Jiang HX. 2007. Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. Journal of Antimicrobial Chemotherapy, 59(5): 880−885. doi: 10.1093/jac/dkm065
    Clinical and Laboratory Standards Institute. 2017. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. Wayne: Clinical and Laboratory Standards Institute.
    Das UN, Singh AS, Lekshmi M, Nayak BB, Kumar S. 2019. Characterization of blaNDM-harboring, multidrug-resistant Enterobacteriaceae isolated from seafood. Environmental Science and Pollution Research, 26(3): 2455−2463. doi: 10.1007/s11356-018-3759-3
    Dolejska M, Villa L, Minoia M, Guardabassi L, Carattoli A. 2014. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. Journal of Antimicrobial Chemotherapy, 69(9): 2388−2393. doi: 10.1093/jac/dku172
    Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, et al. 2015. BREX is a novel phage resistance system widespread in microbial genomes. The EMBO Journal, 34(2): 169−183. doi: 10.15252/embj.201489455
    Hamza D, Dorgham S, Ismael E, El-Moez SIA, Elhariri M, Elhelw R, et al. 2020. Emergence of β-lactamase- and carbapenemase- producing Enterobacteriaceae at integrated fish farms. Antimicrobial Resistance & Infection Control, 9(1): 67.
    Harmer CJ, Hall RM. 2016. IS26-mediated formation of transposons carrying antibiotic resistance genes. mSphere, 1(2): e00038−16.
    He DD, Zhu YY, Li RC, Pan YS, Liu JH, Yuan L, et al. 2019. Emergence of a hybrid plasmid derived from IncN1-F33: A-: B- and mcr-1-bearing plasmids mediated by IS26. Journal of Antimicrobial Chemotherapy, 74(11): 3184–3189.
    Hornsey M, Phee L, Wareham DW. 2011. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrobial Agents and Chemotherapy, 55(12): 5952−5954. doi: 10.1128/AAC.05108-11
    Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, et al. 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clinical Microbiology and Infection, 24(12): 1241−1250. doi: 10.1016/j.cmi.2018.04.004
    Li RC, Xie MM, Liu LZ, Huang YL, Wu XY, Wang ZQ, et al. 2020. Characterisation of a cointegrate plasmid harbouring blaNDM-1 in a clinical Salmonella Lomita strain. International Journal of Antimicrobial Agents, 55(1): 105817. doi: 10.1016/j.ijantimicag.2019.09.021
    Liu BT, Song FJ, Zou M, Zhang QD, Shan H. 2017. High incidence of Escherichia coli strains coharboring mcr-1 and blaNDM from chickens. Antimicrobial Agents and Chemotherapy, 61(3): e02347−16.
    Long HY, Feng Y, Ma K, Liu L, McNally A, Zong ZY. 2019. The co-transfer of plasmid-borne colistin-resistant genes mcr-1 and mcr-3.5, the carbapenemase gene blaNDM-5 and the 16S methylase gene rmtB from Escherichia coli. Scientific Reports, 9(1): 696.
    Lü Y, Kang HQ, Fan JM. 2020. A novel blaCTX-M-65-Harboring IncHI2 plasmid pE648CTX-M-65 isolated from a clinical extensively-drug-resistant Escherichia coli ST648. Infection and Drug Resistance, 13: 3383−3391. doi: 10.2147/IDR.S269766
    Ma TF, Fu JN, Xie N, Ma SZ, Lei L, Zhai WS, et al. 2020. Fitness cost of blaNDM-5-carrying p3R-IncX3 plasmids in wild-type NDM-free Enterobacteriaceae. Microorganisms, 8(3): 377.
    Ma ZB, Zeng ZL, Liu J, Liu C, Pan Y, Zhang YA, et al. 2021. Emergence of IncHI2 plasmid-harboring blaNDM-5 from porcine Escherichia coli isolates in Guangdong, China. Pathogens, 10(8): 954. doi: 10.3390/pathogens10080954
    Nakayama T, Hoa TTT, Huyen HM, Yamaguchi T, Jinnai M, Minh DTN, et al. 2022. Isolation of carbapenem-resistant Enterobacteriaceae harbouring NDM-1, 4, 5, OXA48 and KPC from river fish in Vietnam. Food Control, 133: 108594. doi: 10.1016/j.foodcont.2021.108594
    Oueslati S, Emeraud C, Grosperrin V, Levy M, Cotellon G, Creton E, et al. 2021. Polyclonal dissemination of NDM-1- and NDM-9-producing Escherichia coli and Klebsiella pneumoniae in French Polynesia. Antimicrobial Agents and Chemotherapy, 65(4): e02437−20.
    Piégu B, Bire S, Arensburger P, Bigot Y. 2015. A survey of transposable element classification systems-a call for a fundamental update to meet the challenge of their diversity and complexity. Molecular Phylogenetics and Evolution, 86: 90−109. doi: 10.1016/j.ympev.2015.03.009
    Poirel L, Walsh TR, Cuvillier V, Nordmann P. 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease, 70(1): 119−123. doi: 10.1016/j.diagmicrobio.2010.12.002
    Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. 2018. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clinical Microbiology and Infection, 24(4): 350−354. doi: 10.1016/j.cmi.2017.12.016
    Shen YB, Zhang R, Schwarz S, Wu CM, Shen JZ, Walsh TR, et al. 2020. Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes. Environmental Microbiology, 22(7): 2469−2484. doi: 10.1111/1462-2920.14961
    Tian DX, Wang BJ, Zhang H, Pan F, Wang C, Shi YY, et al. 2020. Dissemination of the blaNDM-5 gene via IncX3-type plasmid among Enterobacteriaceae in Children. mSphere, 5(1): e00699−19.
    Wang J, Ma ZB, Zeng ZL, Yang XW, Huang Y, Liu JH. 2017. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zoological Research, 38(2): 55−80. doi: 10.24272/j.issn.2095-8137.2017.003
    Wang J, Xia YB, Huang XY, Wang Y, Lv LC, Lin QQ, et al. 2021a. Emergence of blaNDM-5 in Enterobacteriaceae isolates from companion animals in Guangzhou, China. Microbial Drug Resistance, 27(6): 809−815. doi: 10.1089/mdr.2020.0210
    Wang MG, Yu Y, Wang D, Yang RS, Jia L, Cai DT, et al. 2021b. The emergence and molecular characteristics of New Delhi Metallo β-lactamase-producing Escherichia coli from ducks in Guangdong, China. Frontiers in Microbiology, 12: 677633. doi: 10.3389/fmicb.2021.677633
    Wang ZY, Xu HY, Tang YY, Li QC, Jiao XA. 2020. A multidrug-resistant monophasic Salmonella Typhimurium Co-harboring mcr-1, fosA3, blaCTX-M-14 in a transferable IncHI2 plasmid from a healthy catering worker in China. Infection and Drug Resistance, 13: 3569−3574. doi: 10.2147/IDR.S272272
    Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13(6): e1005595. doi: 10.1371/journal.pcbi.1005595
    Wong MHY, Chan EWC, Chen S. 2017. IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. Journal of Antimicrobial Chemotherapy, 72(10): 2750–2754.
    Wu WJ, Feng Y, Tang GM, Qiao F, McNally A, Zong ZY. 2019. NDM Metallo-β-lactamases and their bacterial producers in health care settings. Clinical Microbiology Reviews, 32(2): e00115-18. Xu CY, Lv ZQ, Shen YB, Liu DJ, Fu YL, Zhou L, et al. 2020. Metagenomic insights into differences in environmental resistome profiles between integrated and monoculture aquaculture farms in China. Environment International, 144: 106005.
    Yao H, Li AJ, Yu RH, Schwarz S, Dong HY, Du XD. 2020. Multiple copies of blaNDM-5 located on conjugative megaplasmids from porcine Escherichia coli sequence type 218 isolates. Antimicrobial Agents and Chemotherapy, 64(5): e02134−19.
    Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. 2009. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial Agents and Chemotherapy, 53(12): 5046−5054. doi: 10.1128/AAC.00774-09
    Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. 2012. Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy, 67(11): 2640−2644. doi: 10.1093/jac/dks261
    Zhang QH, Lv LC, Huang XY, Huang Y, Zhuang ZL, Lu JX, et al. 2019. Rapid increase in carbapenemase-producing Enterobacteriaceae in retail meat driven by the spread of the blaNDM-5-carrying IncX3 plasmid in China from 2016 to 2018. Antimicrobial Agents and Chemotherapy, 63(8): e00573−19.
    Zhao Q, Berglund B, Zou HY, Zhou ZY, Xia HY, Zhao L, et al. 2021a. Dissemination of blaNDM-5 via IncX3 plasmids in carbapenem-resistant Enterobacteriaceae among humans and in the environment in an intensive vegetable cultivation area in eastern China. Environmental Pollution, 273: 116370. doi: 10.1016/j.envpol.2020.116370
    Zhao QY, Zhu JH, Cai RM, Zheng XR, Zhang LJ, Chang MX, et al. 2021b. IS26 is responsible for the evolution and transmission of blaNDM-harboring plasmids in Escherichia coli of poultry origin in China. mSystems, 6(4): e0064621. doi: 10.1128/mSystems.00646-21
    Zhi CP, Lv LC, Yu LF, Doi Y, Liu JH. 2016. Dissemination of the mcr-1 colistin resistance gene. The Lancet Infectious Diseases, 16(3): 292−293. doi: 10.1016/S1473-3099(16)00063-3
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (822) PDF downloads(137) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint