Volume 43 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Ran Tian, Chen Yang, Si-Min Chai, Han Guo, Inge Seim, Guang Yang. Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation. Zoological Research, 2022, 43(2): 241-254. doi: 10.24272/j.issn.2095-8137.2021.420
Citation: Ran Tian, Chen Yang, Si-Min Chai, Han Guo, Inge Seim, Guang Yang. Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation. Zoological Research, 2022, 43(2): 241-254. doi: 10.24272/j.issn.2095-8137.2021.420

Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation

doi: 10.24272/j.issn.2095-8137.2021.420
Funds:  This work was supported by the National Natural Science Foundation of China (NSFC) (31900310 to R.T.), Key Project of the NSFC (32030011 and 31630071 to G.Y.), NSFC (31950410545 to I.S.), Priority Academic Program Development of Jiangsu Higher Education Institutions, the Jiangsu Specially-Appointed Professors Program (to I.S.)
More Information
  • Corresponding author: E-mail: inge@seimlab.orggyang@njnu.edu.cn
  • Received Date: 2022-01-28
  • Accepted Date: 2022-02-17
  • Published Online: 2022-02-21
  • Publish Date: 2022-03-18
  • Many mammals risk damage from oxidative stress stemming from frequent dives (i.e., cycles of ischemia/reperfusion and hypoxia/reoxygenation), high altitude and subterranean environments, or powered flight. Purine metabolism is an essential response to oxidative stress, and an imbalance between purine salvage and de novo biosynthesis pathways can generate damaging reactive oxygen species (ROS). Here, we examined the evolution of 117 purine metabolism-related genes to explore the accompanying molecular mechanisms of enhanced purine metabolism in mammals under high oxidative stress. We found that positively selected genes, convergent changes, and nonparallel amino acid substitutions are possibly associated with adaptation to oxidative stress in mammals. In particular, the evolution of convergent genes with cAMP and cGMP regulation roles may protect mammals from oxidative damage. Additionally, 32 genes were identified as under positive selection in cetaceans, including key purine salvage enzymes (i.e., HPRT1), suggesting improved re-utilization of non-recyclable purines avoid hypoxanthine accumulation and reduce oxidative stress. Most intriguingly, we found that six unique substitutions in cetacean xanthine dehydrogenase (XDH), an enzyme that regulates the generation of the ROS precursor xanthine oxidase (XO) during ischemic/hypoxic conditions, show enhanced enzyme activity and thermal stability and diminished XO conversion activity. These functional adaptations are likely beneficial for cetaceans by reducing radical oxygen species production during diving. In summary, our findings offer insights into the molecular and functional evolution of purine metabolism genes in mammalian oxidative stress adaptations.
  • loading
  • [1]
    Agrahari AK, Priya MK, Kumar MP, Tayubi IA, Siva R, Christopher BP, et al. 2019. Understanding the structure-function relationship of HPRT1 missense mutations in association with Lesch–Nyhan disease and HPRT1-related gout by in silico mutational analysis. Computers in Biology and Medicine, 107: 161−171. doi: 10.1016/j.compbiomed.2019.02.014
    [2]
    Albrecht P, Henke N, Tien MLT, Issberner A, Bouchachia I, Maher P, et al. 2013. Extracellular cyclic GMP and its derivatives GMP and guanosine protect from oxidative glutamate toxicity. Neurochemistry International, 62(5): 610−619. doi: 10.1016/j.neuint.2013.01.019
    [3]
    Álvarez-Lario B, Macarrón-Vicente J. 2010. Uric acid and evolution. Rheumatology, 49(11): 2010−2015. doi: 10.1093/rheumatology/keq204
    [4]
    Baresova V, Skopova V, Sikora J, Patterson D, Sovova J, Zikanova M, et al. 2012. Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Human Molecular Genetics, 21(7): 1534−1543. doi: 10.1093/hmg/ddr591
    [5]
    Battelli MG, Polito L, Bortolotti M, Bolognesi A. 2016. Xanthine oxidoreductase-derived reactive species: physiological and pathological effects. Oxidative Medicine and Cellular Longevity, 2016: 3527579.
    [6]
    Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society:Series B (Methodological), 57(1): 289−300. doi: 10.1111/j.2517-6161.1995.tb02031.x
    [7]
    Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91(2): 179−194. doi: 10.1093/aob/mcf118
    [8]
    Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there?. Journal of Mammalogy, 99(1): 1−14. doi: 10.1093/jmammal/gyx147
    [9]
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10: 421. doi: 10.1186/1471-2105-10-421
    [10]
    Cantú-Medellín N, Byrd B, Hohn A, Vázquez-Medina JP, Zenteno-Savín T. 2011. Differential antioxidant protection in tissues from marine mammals with distinct diving capacities. Shallow/short vs. deep/long divers. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 158(4): 438−443.
    [11]
    Castiglione GM, Schott RK, Hauser FE, Chang BSW. 2018. Convergent selection pressures drive the evolution of rhodopsin kinetics at high altitudes via nonparallel mechanisms. Evolution, 72(1): 170−186. doi: 10.1111/evo.13396
    [12]
    Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. 2003. DAVID: database for annotation, visualization, and integrated discovery. Genome Biology, 4(9): R60. doi: 10.1186/gb-2003-4-9-r60
    [13]
    El-Hattab AW, Craigen WJ, Scaglia F. 2017. Mitochondrial DNA maintenance defects. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(6): 1539−1555. doi: 10.1016/j.bbadis.2017.02.017
    [14]
    El Ridi R, Tallima H. 2017. Physiological functions and pathogenic potential of uric acid: a review. Journal of Advanced Research, 8(5): 487−493. doi: 10.1016/j.jare.2017.03.003
    [15]
    Elsner R, Øyasæter S, Almaas R, Saugstad OD. 1998. Diving seals, ischemia-reperfusion and oxygen radicals. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 119(4): 975−980.
    [16]
    Flinn AM, Gennery AR. 2018. Adenosine deaminase deficiency: a review. Orphanet Journal of Rare Diseases, 13(1): 65. doi: 10.1186/s13023-018-0807-5
    [17]
    Furuhashi M. 2020. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. American Journal of Physiology-Endocrinology and Metabolism, 319(5): E827−E834. doi: 10.1152/ajpendo.00378.2020
    [18]
    Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA. 2005. Uric acid and oxidative stress. Current Pharmaceutical Design, 11(32): 4145−4151. doi: 10.2174/138161205774913255
    [19]
    Hao Y, Qu YH, Song G, Lei FM. 2019. Genomic insights into the adaptive convergent evolution. Current Genomics, 20(2): 81−89. doi: 10.2174/1389202920666190313162702
    [20]
    Hayashi S, Fujiwara S, Noguchi T. 2000. Evolution of urate-degrading enzymes in animal peroxisomes. Cell Biochemistry and Biophysics, 32(1-3): 123−129. doi: 10.1385/CBB:32:1-3:123
    [21]
    Hermes-Lima M, Zenteno-Savı́n T. 2002. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 133(4): 537−556.
    [22]
    Hindle AG. 2020. Diving deep: understanding the genetic components of hypoxia tolerance in marine mammals. Journal of Applied Physiology, 128(5): 1439−1446. doi: 10.1152/japplphysiol.00846.2019
    [23]
    Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. 2007. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(S1): D480−D484.
    [24]
    Keebaugh AC, Thomas JW. 2010. The evolutionary fate of the genes encoding the purine catabolic enzymes in hominoids, birds, and reptiles. Molecular Biology and Evolution, 27(6): 1359−1369. doi: 10.1093/molbev/msq022
    [25]
    Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, et al. 2011. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database, 2011: bar030.
    [26]
    Kokkonen K, Kass DA. 2017. Nanodomain regulation of cardiac cyclic nucleotide signaling by phosphodiesterases. Annual Review of Pharmacology and Toxicology, 57: 455−479. doi: 10.1146/annurev-pharmtox-010716-104756
    [27]
    Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34(7): 1812−1819. doi: 10.1093/molbev/msx116
    [28]
    Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [29]
    Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 2014. UpSet: visualization of intersecting sets. IEEE Transactions on Visualization and Computer Graphics, 20(12): 1983−1992. doi: 10.1109/TVCG.2014.2346248
    [30]
    Liu H, Zhang YJ, Wu HY, D’Alessandro A, Yegutkin GG, Song AR, et al. 2016. Beneficial role of erythrocyte adenosine A2B receptor–Mediated AMP-activated Protein Kinase activation in high-altitude hypoxia. Circulation, 134(5): 405−421. doi: 10.1161/CIRCULATIONAHA.116.021311
    [31]
    López-Cruz RI, Crocker DE, Gaxiola-Robles R, Bernal JA, Real-Valle RA, Lugo-Lugo O, et al. 2016. Plasma hypoxanthine-guanine phosphoribosyl transferase activity in bottlenose dolphins contributes to avoiding accumulation of non-recyclable purines. Frontiers in Physiology, 7: 213.
    [32]
    Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. 2000. Guanylyl cyclases and signaling by cyclic GMP. Pharmacological Reviews, 52(3): 375−414.
    [33]
    Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. 2016. Regulation of uric acid metabolism and excretion. International Journal of Cardiology, 213: 8−14. doi: 10.1016/j.ijcard.2015.08.109
    [34]
    Martins EP, Hansen TF. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 149(4): 646−667. doi: 10.1086/286013
    [35]
    McGowen MR, Tsagkogeorga G, Álvarez-Carretero S, dos Reis M, Struebig M, Deaville R, et al. 2020. Phylogenomic resolution of the cetacean tree of life using target sequence capture. Systematic Biology, 69(3): 479−501. doi: 10.1093/sysbio/syz068
    [36]
    Natarajan C, Hoffmann FG, Weber RE, Fago A, Witt CC, Storz JF. 2016. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science, 354(6310): 336−339. doi: 10.1126/science.aaf9070
    [37]
    Nemkov T, Sun KQ, Reisz JA, Song AR, Yoshida T, Dunham A, et al. 2018. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage. Haematologica, 103(2): 361−372. doi: 10.3324/haematol.2017.178608
    [38]
    Nery MF, Arroyo JI, Opazo JC. 2013. Genomic organization and differential signature of positive selection in the alpha and beta globin gene clusters in two cetacean species. Genome Biology and Evolution, 5(12): 2359−2367. doi: 10.1093/gbe/evt176
    [39]
    Nguyen KV, Nyhan WL. 2016. Mutation in the Human HPRT1 Gene and the Lesch-nyhan syndrome. Nucleosides, Nucleotides & Nucleic Acids, 35(8): 426−434.
    [40]
    Nyhan WL. 2005. Disorders of purine and pyrimidine metabolism. Molecular Genetics and Metabolism, 86(1-2): 25−33. doi: 10.1016/j.ymgme.2005.07.027
    [41]
    Pareek V, Tian H, Winograd N, Benkovic SJ. 2020. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science, 368(6488): 283−290. doi: 10.1126/science.aaz6465
    [42]
    Pedley AM, Benkovic SJ. 2017. A new view into the regulation of purine metabolism: the purinosome. Trends in Biochemical Sciences, 42(2): 141−154. doi: 10.1016/j.tibs.2016.09.009
    [43]
    Perrin WF, Würsig B, Thewissen JGM. 2009. Encyclopedia of Marine Mammals. 2nd ed. San Diego: Academic Press.
    [44]
    Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. 2013. nlme: linear and nonlinear mixed effects models. R Package Version, 3: 111.
    [45]
    Popescu AA, Huber KT, Paradis E. 2012. ape 3.0: new tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics, 28(11): 1536−1537. doi: 10.1093/bioinformatics/bts184
    [46]
    Qiu Q, Zhang GJ, Ma T, Qian WB, Wang JY, Ye ZQ, et al. 2012. The yak genome and adaptation to life at high altitude. Nature Genetics, 44(8): 946−949. doi: 10.1038/ng.2343
    [47]
    Ramirez JM, Folkow LP, Blix AS. 2007. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annual Review of Physiology, 69: 113−143. doi: 10.1146/annurev.physiol.69.031905.163111
    [48]
    Ramond F, Rio M, Héron B, Imbard A, Marie S, Billiemaz K, et al. 2020. AICA-ribosiduria due to ATIC deficiency: delineation of the phenotype with three novel cases, and long-term update on the first case. Journal of Inherited Metabolic Disease, 43(6): 1254−1264. doi: 10.1002/jimd.12274
    [49]
    Rappaport JA, Waldman SA. 2018. The guanylate cyclase C-cGMP signaling axis opposes intestinal epithelial injury and neoplasia. Frontiers in Oncology, 8: 299. doi: 10.3389/fonc.2018.00299
    [50]
    Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2): 217−223. doi: 10.1111/j.2041-210X.2011.00169.x
    [51]
    Righetti BPH, Simões-Lopes PC, Uhart MM, Wilhelm Filho D. 2014. Relating diving behavior and antioxidant status: insights from oxidative stress biomarkers in the blood of two distinct divers, Mirounga leonina and Arctocephalus australis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 173: 1–6.
    [52]
    Robert AM, Robert L. 2014. Xanthine oxido-reductase, free radicals and cardiovascular disease. A critical review. Pathology & Oncology Research, 20(1): 1−10.
    [53]
    Sackton TB, Grayson P, Cloutier A, Hu ZR, Liu JS, Wheeler NE, et al. 2019. Convergent regulatory evolution and loss of flight in paleognathous birds. Science, 364(6435): 74−78. doi: 10.1126/science.aat7244
    [54]
    Saha S, Li Y, Anand-Srivastava MB. 2008. Reduced levels of cyclic AMP contribute to the enhanced oxidative stress in vascular smooth muscle cells from spontaneously hypertensive rats. Canadian Journal of Physiology and Pharmacology, 86(4): 190−198. doi: 10.1139/Y08-012
    [55]
    Saito T, Nishino T. 1989. Differences in redox and kinetic properties between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase. Journal of Biological Chemistry, 264(17): 10015−10022. doi: 10.1016/S0021-9258(18)81761-6
    [56]
    Schretlen DJ, Callon W, Ward RE, Fu R, Ho T, Gordon B, et al. 2016. Do clinical features of Lesch-Nyhan disease correlate more closely with hypoxanthine or guanine recycling?. Journal of Inherited Metabolic Disease, 39(1): 85−91. doi: 10.1007/s10545-015-9869-x
    [57]
    Scornavacca C, Belkhir K, Lopez J, Dernat R, Delsuc F, Douzery EJP, et al. 2019. OrthoMaM v10: scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes. Molecular Biology and Evolution, 36(4): 861−862. doi: 10.1093/molbev/msz015
    [58]
    Sharma V, Hecker N, Roscito JG, Foerster L, Langer BE, Hiller M. 2018. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nature Communications, 9(1): 1215. doi: 10.1038/s41467-018-03667-1
    [59]
    Sharma V, Hiller M. 2020. Losses of human disease-associated genes in placental mammals. NAR Genomics and Bioinformatics, 2(1): lqz012. doi: 10.1093/nargab/lqz012
    [60]
    Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP. 2010. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proceedings of the National Academy of Sciences of the United States of America, 107(19): 8666−8671. doi: 10.1073/pnas.0912613107
    [61]
    Song AR, Zhang YJ, Han L, Yegutkin GG, Liu H, Sun KQ, et al. 2017. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nature Communications, 8: 14108. doi: 10.1038/ncomms14108
    [62]
    Storz JF, Moriyama H. 2008. Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Altitude Medicine & Biology, 9(2): 148−157.
    [63]
    Sun KQ, Liu H, Song AR, Manalo JM, D’Alessandro A, Hansen KC, et al. 2017. Erythrocyte purinergic signaling components underlie hypoxia adaptation. Journal of Applied Physiology, 123(4): 951−956. doi: 10.1152/japplphysiol.00155.2017
    [64]
    Sun YB. 2017. FasParser: a package for manipulating sequence data. Zoological Research, 38(2): 110−112. doi: 10.24272/j.issn.2095-8137.2017.017
    [65]
    Sutherland EW, Robison GA, Butcher RW. 1968. Some aspects of the biological role of adenosine 3', 5'-monophosphate (cyclic AMP). Circulation, 37(2): 279−306. doi: 10.1161/01.CIR.37.2.279
    [66]
    Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4): 564−577. doi: 10.1080/10635150701472164
    [67]
    Tian R, Wang ZF, Niu X, Zhou KY, Xu SX, Yang G. 2016. Evolutionary genetics of hypoxia tolerance in cetaceans during diving. Genome Biology and Evolution, 8(3): 827−839. doi: 10.1093/gbe/evw037
    [68]
    Tian R, Yin DQ, Liu YZ, Seim I, Xu SX, Yang G. 2017. Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. Frontiers in Genetics, 8: 205. doi: 10.3389/fgene.2017.00205
    [69]
    Vigetti D, Monetti C, Prati M, Gornati R, Bernardini G. 2002a. Genomic organization and chromosome localization of the murine and human allantoicase gene. Gene, 289(1-2): 13−17. doi: 10.1016/S0378-1119(02)00541-3
    [70]
    Vigetti D, Pollegioni L, Monetti C, Prati M, Bernardini G, Gornati R. 2002b. Property comparison of recombinant amphibian and mammalian allantoicases. FEBS Letters, 512(1-3): 323−328. doi: 10.1016/S0014-5793(02)02264-0
    [71]
    Wang MH, Zhao YZ, Zhang B. 2015. Efficient test and visualization of multi-set intersections. Scientific Reports, 5: 16923. doi: 10.1038/srep16923
    [72]
    Weadick CJ, Chang BSW. 2012. An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Molecular Biology and Evolution, 29(5): 1297−1300. doi: 10.1093/molbev/msr311
    [73]
    Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. 2018. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Molecular Biology and Evolution, 35(3): 773−777. doi: 10.1093/molbev/msx335
    [74]
    Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K. 2015. RELAX: detecting relaxed selection in a phylogenetic framework. Molecular Biology and Evolution, 32(3): 820−832. doi: 10.1093/molbev/msu400
    [75]
    Wilhelm Filho D, Sell F, Ribeiro L, Ghislandi M, Carrasquedo F, Fraga CG, et al. 2002. Comparison between the antioxidant status of terrestrial and diving mammals. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 133(3): 885−892.
    [76]
    Wu JX, Sun LJ, Chen X, Du FH, Shi HP, Chen C, et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 339(6121): 826−830. doi: 10.1126/science.1229963
    [77]
    Yang ZH. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    [78]
    Yin J, Ren WK, Huang XG, Deng JP, Li TJ, Yin YL. 2018. Potential mechanisms connecting purine metabolism and cancer therapy. Frontiers in Immunology, 9: 1697. doi: 10.3389/fimmu.2018.01697
    [79]
    Yin QY, Ge HX, Liao CC, Liu D, Zhang SY, Pan YH. 2016. Antioxidant defenses in the brains of bats during hibernation. PLoS One, 11(3): e0152135. doi: 10.1371/journal.pone.0152135
    [80]
    Yu H, Rao XC, Zhang KB. 2017. Nucleoside diphosphate kinase (Ndk): a pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiological Research, 205: 125−134. doi: 10.1016/j.micres.2017.09.001
    [81]
    Yu HB, Gao YJ, Zhou R. 2020. Oxidative stress from exposure to the underground space environment. Frontiers in Public Health, 8: 579634. doi: 10.3389/fpubh.2020.579634
    [82]
    Yuan Y, Zhang YL, Zhang PJ, Liu C, Wang JH, Gao HY, et al. 2021. Comparative genomics provides insights into the aquatic adaptations of mammals. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2106080118. doi: 10.1073/pnas.2106080118
    [83]
    Zhang J, Kumar S. 1997. Detection of convergent and parallel evolution at the amino acid sequence level. Molecular Biology and Evolution, 14(5): 527−536. doi: 10.1093/oxfordjournals.molbev.a025789
    [84]
    Zou ZT, Zhang JZ. 2015. Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations?. Molecular Biology and Evolution, 32(8): 2085−2096. doi: 10.1093/molbev/msv091
  • ZR-2021-420 Supplementary Materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (819) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return