Volume 43 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Lei Bao, Xiao-Chen Bo, Huai-Wen Cao, Chen Qian, Zeng Wang, Bin Li. Engineered T cells and their therapeutic applications in autoimmune diseases. Zoological Research, 2022, 43(2): 150-165. doi: 10.24272/j.issn.2095-8137.2021.363
Citation: Lei Bao, Xiao-Chen Bo, Huai-Wen Cao, Chen Qian, Zeng Wang, Bin Li. Engineered T cells and their therapeutic applications in autoimmune diseases. Zoological Research, 2022, 43(2): 150-165. doi: 10.24272/j.issn.2095-8137.2021.363

Engineered T cells and their therapeutic applications in autoimmune diseases

doi: 10.24272/j.issn.2095-8137.2021.363
Funds:  This study was supported by the National Natural Science Foundation of China (81830051, 31961133011, 32130041); National Key R&D Program of China (2019YFA09006100); Shanghai Academic Research Leader (16XD1403800); Innovative Research Team of High-Level Local Universities in Shanghai; and Shanghai Collaborative Innovation Center of Cellular Homeostasis Regulation and Human Diseases
More Information
  • Chimeric antigen receptor T cells (CAR-T cells) are engineered recombinant T cells, which were initially used to treat hematopoietic malignancies and are now widely used in the treatment of various diseases. Considering their intrinsic targeting efficiency, CAR-T cells show considerable potential in the treatment of autoimmune diseases. Furthermore, regulatory T cells (Treg), a subset of CD4 T cells exhibiting immunosuppressive functions, have attracted increasing attention regarding CAR-Treg cell production. In this review, we report on recent developments in preclinical and clinical studies on CAR-T cells in autoimmune diseases and provide an outlook on opportunities and challenges of CAR-T application in such diseases.
  • loading
  • [1]
    Abramson JS. 2020. Anti-CD19 CAR T-cell therapy for B-cell non-hodgkin lymphoma. Transfusion Medicine Reviews, 34(1): 29−33. doi: 10.1016/j.tmrv.2019.08.003
    [2]
    Acharya UH, Dhawale T, Yun S, Jacobson CA, Chavez JC, Ramos JD, et al. 2019. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Review of Hematology, 12(3): 195−205. doi: 10.1080/17474086.2019.1585238
    [3]
    Adams SM, Bornemann PH. 2013. Ulcerative colitis. American Family Physician, 87(10): 699−705.
    [4]
    Amagai M, Klaus-Kovtun V, Stanley JR. 1991. Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell, 67(5): 869−877. doi: 10.1016/0092-8674(91)90360-B
    [5]
    Amagai M, Tsunoda K, Suzuki H, Nishifuji K, Koyasu S, Nishikawa T. 2000. Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. The Journal of Clinical Investigation, 105(5): 625−631. doi: 10.1172/JCI8748
    [6]
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. 2013. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature, 500(7461): 232−236. doi: 10.1038/nature12331
    [7]
    Bai Y, Kan S, Zhou SX, Wang YT, Xu J, Cooke JP, et al. 2015. Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor t cells through the delivery of modified TERT mRNA. Cell Discovery, 1: 15040.
    [8]
    Beavis PA, Gregory B, Green P, Cribbs AP, Kennedy A, Amjadi P, et al. 2011. Resistance to regulatory T cell-mediated suppression in rheumatoid arthritis can be bypassed by ectopic foxp3 expression in pathogenic synovial T cells. Proceedings of the National Academy of Sciences of the United States of America, 108(40): 16717−16722. doi: 10.1073/pnas.1112722108
    [9]
    Berard JL, Wolak K, Fournier S, David S. 2010. Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia, 58(4): 434−445.
    [10]
    Bernstroem KE, Lieske N, Zhang H, Økern G, Aass H, Troseid A, et al. 2016. 164 - optimized process for regulatory T cell activation and expansion using dynabeads™ Treg CD3/CD28 for clinical applications. Cytotherapy, 18(6S): S96.
    [11]
    Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. 2014. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory t cells. Molecular Therapy, 22(5): 1018−1028. doi: 10.1038/mt.2014.41
    [12]
    Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. 2015. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine, 7(315): 315ra189.
    [13]
    Bluestone JA, Herold K, Eisenbarth G. 2010. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 464(7293): 1293−1300. doi: 10.1038/nature08933
    [14]
    Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. 2016. Toxicity and management in CAR T-cell therapy. Molecular Therapy Oncolytics, 3: 16011. doi: 10.1038/mto.2016.11
    [15]
    Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, et al. 1997. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science, 276(5319): 1719−1724. doi: 10.1126/science.276.5319.1719
    [16]
    Bour-Jordan H, Bluestone JA. 2009. Regulating the regulators: co-stimulatory signals control the homeostasis and function of regulatory T cells. Immunological Reviews, 229(1): 41−66. doi: 10.1111/j.1600-065X.2009.00775.x
    [17]
    Breslin S. 2007. Cytokine-release syndrome: overview and nursing implications. Clinical Journal of Oncology Nursing, 11 (1 Suppl): 37–42.
    [18]
    Brudno JN, Lam N, Vanasse D, Shen YW, Rose JJ, Rossi J, et al. 2020. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Natur Medicine, 26(2): 270−280. doi: 10.1038/s41591-019-0737-3
    [19]
    Carreño LJ, González PA, Kalergis AM. 2006. Modulation of T cell function by TCR/pMHC binding kinetics. Immunobiology, 211(1-2): 47−64. doi: 10.1016/j.imbio.2005.09.003
    [20]
    Chen YH, Sun JH, Liu H, Yin G, Xie QB. 2019. Immunotherapy deriving from CAR-T cell treatment in autoimmune diseases. Journal of Immunology Research, 2019: 5727516.
    [21]
    Chmielewski M, Abken H. 2015. TRUCKs: the fourth generation of CARs. Expert Opinion on Biological Therapy, 15(8): 1145−1154. doi: 10.1517/14712598.2015.1046430
    [22]
    Colliou N, Picard D, Caillot F, Calbo S, Le Corre S, Lim A, et al. 2013. Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response. Science Translational Medicine, 5(175): 175ra30.
    [23]
    Compston A, Coles A. 2008. Multiple sclerosis. Lancet, 372(9648): 1502−1517. doi: 10.1016/S0140-6736(08)61620-7
    [24]
    Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. 2017. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain, 140(3): 527−546.
    [25]
    D'Agostino M, Raje N. 2020. Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better?. Leukemia, 34(1): 21−34. doi: 10.1038/s41375-019-0669-4
    [26]
    Dai HR, Wu ZQ, Jia HJ, Tong C, Guo YL, Ti DD, et al. 2020. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. Journal of Hematology & Oncology, 13(1): 30.
    [27]
    Dall'Era M, Pauli ML, Remedios K, Taravati K, Sandova PM, Putnam AL, et al. 2019. Adoptive Treg cell therapy in a patient with systemic lupus erythematosus. Arthritis & Rheumatology, 71(3): 431−440.
    [28]
    Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, et al. 2009. Intranasal delivery of cells to the brain. European Journal of Cell Biology, 88(6): 315−324. doi: 10.1016/j.ejcb.2009.02.001
    [29]
    Davidson A, Diamond B. 2001. Autoimmune diseases. The New England Journal of Medicine, 345(5): 340−350. doi: 10.1056/NEJM200108023450506
    [30]
    De Paula Pohl A, Schmidt A, Zhang AH, Maldonado T, Königs C, Scott DW. 2020. Engineered regulatory T cells expressing myelin-specific chimeric antigen receptors suppress EAE progression. Cellular Immunology, 358: 104222. doi: 10.1016/j.cellimm.2020.104222
    [31]
    Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. 2020. 'Off-the-shelf' allogeneic CAR T cells: development and challenges. Nature Reviews Drug Discovery, 19(3): 185−199. doi: 10.1038/s41573-019-0051-2
    [32]
    Durcan L, O'Dwyer T, Petri M. 2019. Management strategies and future directions for systemic lupus erythematosus in adults. The Lancet, 393(10188): 2332−2343. doi: 10.1016/S0140-6736(19)30237-5
    [33]
    Elinav E, Adam N, Waks T, Eshhar Z. 2009. Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology, 136(5): 1721−1731. doi: 10.1053/j.gastro.2009.01.049
    [34]
    Elinav E, Waks T, Eshhar Z. 2008. Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology, 134(7): 2014−2024. doi: 10.1053/j.gastro.2008.02.060
    [35]
    Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao XM, Cho MJ, et al. 2016. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science, 353(6295): 179−184. doi: 10.1126/science.aaf6756
    [36]
    Finney OC, Brakke HM, Rawlings-Rhea S, Hicks R, Doolittle D, Lopez M, et al. 2019. CD19 CAR T cell product and disease attributes predict leukemia remission durability. The Journal of Clinical Investigation, 129(5): 2123−2132. doi: 10.1172/JCI125423
    [37]
    Fishman S, Lewis MD, Siew LK, De Leenheer E, Kakabadse D, Davies J, et al. 2017. Adoptive transfer of mRNA-transfected T cells redirected against diabetogenic CD8 T cells can prevent diabetes. Molecular Therapy, 25(2): 456−464. doi: 10.1016/j.ymthe.2016.12.007
    [38]
    Fontenot JD, Gavin MA, Rudensky AY. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology, 4(4): 330−336. doi: 10.1038/ni904
    [39]
    Fransson M, Piras E, Burman J, Nilsson B, Essand M, Lu BF, et al. 2012. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. Journal of Neuroinflammation, 9: 112.
    [40]
    Freen-van Heeren JJ. 2021. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine:X, 3(1): 100049. doi: 10.1016/j.cytox.2020.100049
    [41]
    Fritsche E, Volk HD, Reinke P, Abou-El-Enein M. 2020. Toward an optimized process for clinical manufacturing of CAR-Treg cell therapy. Trends in Biotechnology, 38(10): 1099−1112. doi: 10.1016/j.tibtech.2019.12.009
    [42]
    Gallo F, Korsak B, Müller C, Hechler T, Yanakieva D, Avrutina O, et al. 2021. Enhancing the pharmacokinetics and antitumor activity of an α-amanitin-based small-molecule drug conjugate via conjugation with an Fc domain. Journal of Medicinal Chemistry, 64(7): 4117−4129. doi: 10.1021/acs.jmedchem.1c00003
    [43]
    Galy A. 2016. Like angler fish, CAARs lure their prey. Molecular Therapy, 24(8): 1339−1341. doi: 10.1038/mt.2016.165
    [44]
    Gogol-Döring A, Ammar I, Gupta S, Bunse M, Miskey C, Chen W, et al. 2016. Genome-wide profiling reveals remarkable parallels between insertion site selection properties of the MLV retrovirus and the piggyBac transposon in primary human CD4+ T cells. Molecular Therapy, 24(3): 592−606. doi: 10.1038/mt.2016.11
    [45]
    Göschl L, Scheinecker C, Bonelli M. 2019. Treg cells in autoimmunity: from identification to Treg-based therapies. Seminars in Immunopathology, 41(3): 301−314. doi: 10.1007/s00281-019-00741-8
    [46]
    Guo HF, Xun LR, Zhang RS, Hu FR, Luan J, Lao KJ, et al. 2019. Stability and inhibitory function of Treg cells under inflammatory conditions in vitro. Experimental and Therapeutic Medicine, 18 (4): 2443–2450.
    [47]
    Haddadi MH, Hajizadeh-Saffar E, Khosravi-Maharlooei M, Basiri M, Negahdari B, Baharvand H. 2020. Autoimmunity as a target for chimeric immune receptor therapy: a new vision to therapeutic potential. Blood Reviews, 41: 100645. doi: 10.1016/j.blre.2019.100645
    [48]
    Halle S, Halle O, Förster R. 2017. Mechanisms and dynamics of t cell-mediated cytotoxicity in vivo. Trends in Immunology, 38 (6): 432–443.
    [49]
    Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. 2017. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine, 9(9): 1183−1197. doi: 10.15252/emmm.201607485
    [50]
    He J, Zhang RJ, Shao M, Zhao XZ, Miao M, Chen JL, et al. 2020. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Annals of Rheumatic Diseases, 79(1): 141−149. doi: 10.1136/annrheumdis-2019-215396
    [51]
    He Y, Sawalha AH. 2018. Drug-induced lupus erythematosus: an update on drugs and mechanisms. Current Opinion in Rheumatology, 30(5): 490−497. doi: 10.1097/BOR.0000000000000522
    [52]
    Helyer BJ, Howie JB. 1963. Renal disease associated with positive lupus erythematosus tests in a crossbred strain of mice. Nature, 197: 197.
    [53]
    Jin XX, Xu Q, Pu CF, Zhu KX, Lu C, Jiang Y, et al. 2021. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cellular & Molecular Immunology, 18(8): 1896−1903.
    [54]
    Juan M, ol Rego ME, Llobell A, Marzal B, Castell M, Boronat A. 2017. Future of chimeric antigen receptors (CARs): could it drive solutions beyond cancer? Examples in autoimmune diseases. MOJ Immunology, 5(3): 00158.
    [55]
    June CH, Sadelain M. 2018. Chimeric antigen receptor therapy. The New England Journal of Medicine, 379(1): 64−73. doi: 10.1056/NEJMra1706169
    [56]
    Kagoya Y, Tanaka S, Guo TX, Anczurowski M, Wang CH, Saso K, et al. 2018. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nature Medicine, 24(3): 352−359. doi: 10.1038/nm.4478
    [57]
    Kannan K, Ortmann RA, Kimpel D. 2005. Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology, 12(3): 167−181. doi: 10.1016/j.pathophys.2005.07.011
    [58]
    Kansal R, Richardson N, Neeli I, Khawaja S, Chamberlain D, Ghani M, et al. 2019. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Science Translational Medicine, 11(482): eaav1648. doi: 10.1126/scitranslmed.aav1648
    [59]
    Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. 2017. Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3: 17016. doi: 10.1038/nrdp.2017.16
    [60]
    Kersten MJ, Spanjaart AM, Thieblemont C. 2020. CD19-directed CAR T-cell therapy in B-cell NHL. Current Opinion in Oncology, 32(5): 408−417. doi: 10.1097/CCO.0000000000000668
    [61]
    Kim YC, Zhang AH, Su Y, Rieder SA, Rossi RJ, Ettinger RA, et al. 2015. Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood, 125(7): 1107−1115. doi: 10.1182/blood-2014-04-566786
    [62]
    Koivula MK, Heliövaara M, Ramberg J, Knekt P, Rissanen H, Palosuo T, et al. 2007. Autoantibodies binding to citrullinated telopeptide of type II collagen and to cyclic citrullinated peptides predict synergistically the development of seropositive rheumatoid arthritis. Annals of the Rheumatic Diseases, 66(11): 1450−1455. doi: 10.1136/ard.2006.062919
    [63]
    Koristka S, Kegler A, Bergmann R, Arndt C, Feldmann A, Albert S, et al. 2018. Engrafting human regulatory t cells with a flexible modular chimeric antigen receptor technology. Journal of Autoimmunity, 90: 116−131. doi: 10.1016/j.jaut.2018.02.006
    [64]
    Kueberuwa G, Kalaitsidou M, Cheadle E, Hawkins RE, Gilham DE. 2018. CD19 CAR T cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Molecular Therapy Oncolytics, 8: 41−51. doi: 10.1016/j.omto.2017.12.003
    [65]
    Langner C, Aust D, Ensari A, Villanacci V, Becheanu G, Miehlke S, et al. 2015. Histology of microscopic colitis-review with a practical approach for pathologists. Histopathology, 66(5): 613−626. doi: 10.1111/his.12592
    [66]
    Lee J, Lundgren DK, Mao XM, Manfredo-Vieira S, Nunez-Cruz S, Williams EF, et al. 2020. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. The Journal of Clinical Investigation, 130(12): 6317−6324. doi: 10.1172/JCI138416
    [67]
    Li D, Li N, Zhang YF, Fu HY, Feng MQ, Schneider D, et al. 2020. Persistent polyfunctional chimeric antigen receptor T cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice. Gastroenterology, 158(8): 2250−2265.e20. doi: 10.1053/j.gastro.2020.02.011
    [68]
    Li LQ, Godfrey WR, Porter SB, Ge Y, June CH, Blazar BR, et al. 2005. CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood, 106(9): 3068−3073. doi: 10.1182/blood-2005-04-1531
    [69]
    Liang CL, Lu WH, Qiu FF, Li D, Liu HZ, Zheng F, et al. 2021. Paeoniflorin ameliorates murine lupus nephritis by increasing CD4+FOXP3+ Treg cells via enhancing MTNFα-TNFR2 pathway. Biochemical Pharmacology, 185: 114434. doi: 10.1016/j.bcp.2021.114434
    [70]
    Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 2015. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Medicine, 21(6): 581−590. doi: 10.1038/nm.3838
    [71]
    Lyman GH, Nguyen A, Snyder S, Gitlin M, Chung KC. 2020. Economic evaluation of chimeric antigen receptor T-cell therapy by site of care among patients with relapsed or refractory large B-cell lymphoma. JAMA Network Open, 3(4): e202072. doi: 10.1001/jamanetworkopen.2020.2072
    [72]
    MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, et al. 2016. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. The Journal of Clinical Investigation, 126(4): 1413−1424. doi: 10.1172/JCI82771
    [73]
    MacDonald KN, Piret JM, Levings MK. 2019. Methods to manufacture regulatory T cells for cell therapy. Clinical and Experimental Immunology, 197(1): 52−63. doi: 10.1111/cei.13297
    [74]
    MacLeod DT, Antony J, Martin AJ, Moser RJ, Hekele A, Wetzel KJ, et al. 2017. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Molecular Therapy, 25(4): 949−961. doi: 10.1016/j.ymthe.2017.02.005
    [75]
    Magnuson AM, Thurber GM, Kohler RH, Weissleder R, Mathis D, Benoist C. 2015. Population dynamics of islet-infiltrating cells in autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 112(5): 1511−1516. doi: 10.1073/pnas.1423769112
    [76]
    Majzner RG, Mackall CL. 2019. Clinical lessons learned from the first leg of the CAR T cell journey. Nature Medicine, 25(9): 1341−1355. doi: 10.1038/s41591-019-0564-6
    [77]
    Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. 1980. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu, 29(1): 1−13.
    [78]
    Makita S, Yoshimura K, Tobinai K. 2017. Clinical development of anti-CD19 chimeric antigen receptor T-cell therapy for B-cell non-hodgkin lymphoma. Cancer Science, 108(6): 1109−1118. doi: 10.1111/cas.13239
    [79]
    Maldini CR, Ellis GI, Riley JL. 2018. CAR T cells for infection, autoimmunity and allotransplantation. Nature Reviews Immunology, 18(10): 605−616. doi: 10.1038/s41577-018-0042-2
    [80]
    Martinez M, Moon EK. 2019. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Frontiers in Immunology, 10: 128. doi: 10.3389/fimmu.2019.00128
    [81]
    Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, et al. 2005. Peripheral and intestinal regulatory CD4+CD25high T cells in inflammatory bowel disease. Gastroenterology, 128(7): 1868−1878. doi: 10.1053/j.gastro.2005.03.043
    [82]
    Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao YB, June CH. 2014. Adoptive immunotherapy for cancer or viruses. Annual Review of Immunology, 32: 189−225. doi: 10.1146/annurev-immunol-032713-120136
    [83]
    McFarland HF, Martin R. 2007. Multiple sclerosis: a complicated picture of autoimmunity. Nature Immunology, 8(9): 913−919. doi: 10.1038/ni1507
    [84]
    McGovern JL, Wright GP, Stauss HJ. 2017. Engineering specificity and function of therapeutic regulatory T cells. Frontiers in Immunology, 8: 1517. doi: 10.3389/fimmu.2017.01517
    [85]
    Mohseni YR, Tung SL, Dudreuilh C, Lechler RI, Fruhwirth GO, Lombardi G. 2020. The future of regulatory T cell therapy: promises and challenges of implementing CAR technology. Frontiers in Immunology, 11: 1608. doi: 10.3389/fimmu.2020.01608
    [86]
    Mougiakakos D, Krönke G, Völkl S, Kretschmann S, Aigner M, Kharboutli S, et al. 2021. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. The New England Journal of Medicine, 385(6): 567−569. doi: 10.1056/NEJMc2107725
    [87]
    Murphy ED, Roths JB. 1978. A single gene model for massive lymphoproliferation with immune complex disease in new mouse strain MRL. In: Seno S, Takaku F, Irino S. Topics in Hematology. Amsterdam: Excerpta Medica, 69–72.
    [88]
    Murphy G, Isenberg D. 2013. Effect of gender on clinical presentation in systemic lupus erythematosus. Rheumatology, 52(12): 2108−2115. doi: 10.1093/rheumatology/ket160
    [89]
    Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. 2017. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. The New England Journal of Medicine, 377(26): 2531−2544. doi: 10.1056/NEJMoa1707447
    [90]
    Nie J, Li YY, Zheng SG, Tsun A, Li B. 2015. FOXP3+ Treg cells and gender bias in autoimmune diseases. Frontiers in Immunology, 6: 493.
    [91]
    Nishifuji K, Amagai M, Kuwana M, Iwasaki T, Nishikawa T. 2000. Detection of antigen-specific B cells in patients with pemphigus vulgaris by enzyme-linked immunospot assay: requirement of T cell collaboration for autoantibody production. Journal of Investigative Dermatology, 114(1): 88−94. doi: 10.1046/j.1523-1747.2000.00840.x
    [92]
    Norris JM, Johnson RK, Stene LC. 2020. Type 1 diabetes-early life origins and changing epidemiology. The Lancet Diabetes & Endocrinology, 8(3): 226−238.
    [93]
    Ohyama B, Nishifuji K, Chan PT, Kawaguchi A, Yamashita T, Ishii N, et al. 2012. Epitope spreading is rarely found in pemphigus vulgaris by large-scale longitudinal study using desmoglein 2-based swapped molecules. Journal of Investigative Dermatology, 132(4): 1158−1168. doi: 10.1038/jid.2011.448
    [94]
    Orvain C, Boulch M, Bousso P, Allanore Y, Avouac J. 2021. Is there a place for chimeric antigen receptor-T cells in the treatment of chronic autoimmune rheumatic diseases. Arthritis & Rheumatology, 73(11): 1954−1965.
    [95]
    Park T, Cave D, Marshall C. 2015. Microscopic colitis: a review of etiology, treatment and refractory disease. World Journal of Gastroenterology, 21(29): 8804−8810. doi: 10.3748/wjg.v21.i29.8804
    [96]
    Parvathaneni K, Scott DW. 2018. Engineered FVIII-expressing cytotoxic T cells target and kill FVIII-specific B cells in vitro and in vivo. Blood Advances, 2(18): 2332−2340. doi: 10.1182/bloodadvances.2018018556
    [97]
    Poole BD, Schneider RI, Guthridge JM, Velte CA, Reichlin M, Harley JB, et al. 2009. Early targets of nuclear RNP humoral autoimmunity in human systemic lupus erythematosus. Arthritis & Rheumatology, 60(3): 848−859.
    [98]
    Quintarelli C, Orlando D, Boffa I, Guercio M, Polito VA, Petretto A, et al. 2018. Choice of co-stimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology, 7(6): e1433518. doi: 10.1080/2162402X.2018.1433518
    [99]
    Quintarelli C, Vera JF, Savoldo B, Giordano Attianese GMP, Pule M, Foster AE, et al. 2007. Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood, 110(8): 2793−2802. doi: 10.1182/blood-2007-02-072843
    [100]
    Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. 2019. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. The New England Journal of Medicine, 380(18): 1726−1737. doi: 10.1056/NEJMoa1817226
    [101]
    Ramanayake S, Bilmon I, Bishop D, Dubosq MC, Blyth E, Clancy L, et al. 2015. Low-cost generation of good manufacturing practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials. Cytotherapy, 17(9): 1251−1267. doi: 10.1016/j.jcyt.2015.05.013
    [102]
    Ramos CA, Dotti G. 2011. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opinion on Biological Therapy, 11(7): 855−873. doi: 10.1517/14712598.2011.573476
    [103]
    Rodgers DT, Mazagova M, Hampton EN, Cao Y, Ramadoss NS, Hardy IR, et al. 2016. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proceedings of the National Academy of Sciences of the United States of America, 113(4): E459−E468. doi: 10.1073/pnas.1524155113
    [104]
    Rosado-Sánchez I, Levings MK. 2020. Building a CAR-Treg: going from the basic to the luxury model. Cellular Immunology, 358: 104220. doi: 10.1016/j.cellimm.2020.104220
    [105]
    Rose NR. 2016. Prediction and prevention of autoimmune disease in the 21st century: a review and preview. American Journal of Epidemiology, 183(5): 403−406. doi: 10.1093/aje/kwv292
    [106]
    Sadelain M, Brentjens R, Rivière I. 2013. The basic principles of chimeric antigen receptor design. Cancer Discovery, 3(4): 388−398. doi: 10.1158/2159-8290.CD-12-0548
    [107]
    Sakaguchi S, Yamaguchi T, Nomura T, Ono M. 2008. Regulatory T cells and immune tolerance. Cell, 133(5): 775−787. doi: 10.1016/j.cell.2008.05.009
    [108]
    Sanders SL, Nelson CT. 1965. Pemphigus and pemphigoid. Medical Clinics of North America, 49(3): 681−694. doi: 10.1016/S0025-7125(16)33314-4
    [109]
    Schmidt E, Spindler V, Eming R, Amagai M, Antonicelli F, Baines JF, et al. 2017. Meeting report of the pathogenesis of pemphigus and pemphigoid meeting in Munich, September 2016. Journal of Investigative Dermatology, 137(6): 1199−1203. doi: 10.1016/j.jid.2017.01.028
    [110]
    Schmidt J. 2018. Current classification and management of inflammatory myopathies. Journal of Neuromuscular Diseases, 5(2): 109−129. doi: 10.3233/JND-180308
    [111]
    Schober K, Müller TR, Gökmen F, Grassmann S, Effenberger M, Poltorak M, et al. 2019. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nature Biomedical Engineering, 3(12): 974−984. doi: 10.1038/s41551-019-0409-0
    [112]
    Schultz L, Mackall C. 2019. Driving CAR T cell translation forward. Science Translational Medicine, 11(481): eaaw2127. doi: 10.1126/scitranslmed.aaw2127
    [113]
    Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. 2017. Chimeric antigen receptor T cells in refractory B-cell lymphomas. The New England Journal of Medicine, 377(26): 2545−2554. doi: 10.1056/NEJMoa1708566
    [114]
    Sermer D, Brentjens R. 2019. CAR T-cell therapy: full speed ahead. Hematological Oncology, 37 Suppl 1: 95–100.
    [115]
    Shimizu A, Ishiko A, Ota T, Tsunoda K, Koyasu S, Amagai M, et al. 2002. Ultrastructural changes in mice actively producing antibodies to desmoglein 3 parallel those in patients with pemphigus vulgaris. Archives of Dermatological Research, 294(7): 318−323. doi: 10.1007/s00403-002-0341-z
    [116]
    Siddiqi HF, Staser KW, Nambudiri VE. 2018. Research techniques made simple: CAR T-cell therapy. Journal of Investigative Dermatology, 138(12): 2501−2504.e1. doi: 10.1016/j.jid.2018.09.002
    [117]
    Sospedra M, Martin R. 2005. Immunology of multiple sclerosis. Annual Review of Immunology, 23: 683−747. doi: 10.1146/annurev.immunol.23.021704.115707
    [118]
    Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H. 2003. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Science, 94(11): 965−973. doi: 10.1111/j.1349-7006.2003.tb01386.x
    [119]
    Tang QZ, Henriksen KJ, Bi MY, Finger EB, Szot G, Ye JQ, et al. 2004. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. Journal of Experimental Medicine, 199(11): 1455−1465. doi: 10.1084/jem.20040139
    [120]
    Tebbe B, Orfanos CE. 1997. Epidemiology and socioeconomic impact of skin disease in lupus erythematosus. Lupus, 6(2): 96−104. doi: 10.1177/096120339700600204
    [121]
    Tenspolde M, Zimmermann K, Weber LC, Hapke M, Lieber M, Dywicki J, et al. 2019. Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. Journal of Autoimmunity, 103: 102289. doi: 10.1016/j.jaut.2019.05.017
    [122]
    Toni G, Berioli MG, Cerquiglini L, Ceccarini G, Grohmann U, Principi N, et al. 2017. Eating disorders and disordered eating symptoms in adolescents with type 1 diabetes. Nutrients, 9(8): 906. doi: 10.3390/nu9080906
    [123]
    Torpy JM, Lynm C, Glass RM. 2007. JAMA patient page. Type 1 diabetes. JAMA, 298(12): 1472. doi: 10.1001/jama.298.12.1472
    [124]
    Tsunoda K, Ota T, Aoki M, Yamada T, Nagai T, Nakagawa T, et al. 2003. Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. The Journal of Immunology, 170(4): 2170−2178. doi: 10.4049/jimmunol.170.4.2170
    [125]
    Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. 2016. CD19 CAR-T cells of defined CD4+: CD8+ composition in adult B cell all patients. The Journal of Clinical Investigation, 126(6): 2123−2138. doi: 10.1172/JCI85309
    [126]
    van Venrooij WJ, van Beers JJBC, Pruijn GJM. 2011. Anti-CCP antibodies: the past, the present and the future. Nature Reviews Rheumatology, 7(7): 391−398. doi: 10.1038/nrrheum.2011.76
    [127]
    Vossenaar ER, Després N, Lapointe E, van der Heijden A, Lora M, Senshu T, et al. 2004. Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. Arthritis Research & Therapy, 6(2): R142−R150.
    [128]
    Wahren-Herlenius M, Dörner T. 2013. Immunopathogenic mechanisms of systemic autoimmune disease. The Lancet, 382(9894): 819−831. doi: 10.1016/S0140-6736(13)60954-X
    [129]
    Wang LF, Wang FS, Gershwin ME. 2015. Human autoimmune diseases: a comprehensive update. Journal of Internal Medicine, 278(4): 369−395. doi: 10.1111/joim.12395
    [130]
    Wang XX, Cheng H, Shen YG, Li B. 2021. Metabolic choice tunes Foxp3+ regulatory T cell function. Advances in Experimental Medicine and Biology, 1278: 81−94.
    [131]
    Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. 2015. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science, 350(6258): aab4077. doi: 10.1126/science.aab4077
    [132]
    Yamaguchi T, Wing JB, Sakaguchi S. 2011. Two modes of immune suppression by Foxp3+ regulatory T cells under inflammatory or non-inflammatory conditions. Seminars in Immunology, 23(6): 424−430. doi: 10.1016/j.smim.2011.10.002
    [133]
    Yang W, Ng P, Zhao M, Hirankarn N, Lau CS, Mok CC, et al. 2009. Population differences in SLE susceptibility genes: STAT4 and BLK, but not PXK, are associated with systemic lupus erythematosus in Hong Kong Chinese. Genes & Immunity, 10(3): 219−226.
    [134]
    Yaniv G, Twig G, Shor DBA, Furer A, Sherer Y, Mozes O, et al. 2015. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmunity Reviews, 14(1): 75−79. doi: 10.1016/j.autrev.2014.10.003
    [135]
    Yanovsky RL, McLeod M, Ahmed AR. 2019. Treatment of pemphigus vulgaris: part 2 - emerging therapies. Expert Review of Clinical Immunology, 15(10): 1061−1071. doi: 10.1080/1744666X.2020.1672539
    [136]
    Yu JX, Hubbard-Lucey VM, Tang J. 2019. The global pipeline of cell therapies for cancer. Nature Reviews Drug Discovery, 18(11): 821−822. doi: 10.1038/d41573-019-00090-z
    [137]
    Zhang B, Wang Y, Yuan YS, Sun JQ, Liu LL, Huang D, et al. 2021a. In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Annals of the Rheumatic Diseases, 80(2): 176−184. doi: 10.1136/annrheumdis-2020-217844
    [138]
    Zhang EH, Xu HM. 2017. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. Journal of Hematology & Oncology, 10(1): 1.
    [139]
    Zhang H, Zhao P, Huang H. 2020. Engineering better chimeric antigen receptor T cells. Experimental Hematology & Oncology, 9(1): 34.
    [140]
    Zhang L, Sosinowski T, Cox AR, Cepeda JR, Sekhar NS, Hartig SM, et al. 2019. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II: peptide complex modulate the progression of autoimmune diabetes. Journal of Autoimmunity, 96: 50−58. doi: 10.1016/j.jaut.2018.08.004
    [141]
    Zhang QF, Lu WH, Liang CL, Chen YC, Liu HZ, Qiu FF, et al. 2018. Chimeric antigen receptor (CAR) Treg: a promising approach to inducing immunological tolerance. Frontiers in Immunology, 9: 2359. doi: 10.3389/fimmu.2018.02359
    [142]
    Zhang WQ, Liu X, Zhu YC, Liu XN, Gu YT, Dai XY, et al. 2021b. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. European Journal of Immunology, 51(9): 2137−2150. doi: 10.1002/eji.202048794
    [143]
    Zheng WT, O'Hear CE, Alli R, Basham JH, Abdelsamed HA, Palmer LE, et al. 2018. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia, 32(5): 1157−1167. doi: 10.1038/s41375-017-0008-6
    [144]
    Zhou XY, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martínez-Llordella M, Ashby M, et al. 2009. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunology, 10 (9): 1000–1007.
    [145]
    Zhou XH, Kong N, Wang JL, Fan HM, Zou HJ, Horwitz D, et al. 2010. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. The Journal of Immunology, 185(5): 2675−2679. doi: 10.4049/jimmunol.1000598
    [146]
    Zhuang CL, Guan XH, Ma H, Cong H, Zhang WN, Miao ZY. 2019. Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. European Journal of Medicinal Chemistry, 163: 883−895. doi: 10.1016/j.ejmech.2018.12.035
    [147]
    Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. 2021. Application of CAR-T cell therapy beyond oncology: autoimmune diseases and viral infections. Biomedicines, 9(1): 59. doi: 10.3390/biomedicines9010059
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (4649) PDF downloads(510) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return