Turn off MathJax
Article Contents
Ming Li. Lateral habenula neurocircuits mediate the maternal disruptive effect of maternal stress: A hypothesis. Zoological Research, 2022, 43(2): 166-175. doi: 10.24272/j.issn.2095-8137.2021.362
Citation: Ming Li. Lateral habenula neurocircuits mediate the maternal disruptive effect of maternal stress: A hypothesis. Zoological Research, 2022, 43(2): 166-175. doi: 10.24272/j.issn.2095-8137.2021.362

Lateral habenula neurocircuits mediate the maternal disruptive effect of maternal stress: A hypothesis

doi: 10.24272/j.issn.2095-8137.2021.362
More Information
  • Corresponding author: E-mail: mli@unl.edu
  • Received Date: 2021-12-14
  • Accepted Date: 2021-12-29
  • Available Online: 2021-12-31
  • Up to 20% of women experience stress-related disorders during the postpartum period; however, little is known about the specific neural circuitry by which maternal stress exerts its negative impacts on mental health and maternal caregiving behavior. Theoretically, such a circuitry should serve as an interface between the stress response system and maternal neural network, transmitting stress signals to the neural circuitry that mediates maternal behavior. In this paper, I propose that the lateral habenula (LHb) serves this interface function. Evidence shows that the LHb plays a key role in encoding stress-induced effects and in the pathophysiology of major depression and stress-related anxiety, and thus may play a role in maternal behavior as part of the maternal brain network. I hypothesize that maternal stress acts upon the LHb and two of its major downstream targets, i.e., ventral tegmental area (VTA) and dorsal raphe nucleus (DRN), compromising the maternal care and contributing to postpartum mental disorders. This hypothesis makes three predictions: (1) maternal stress enhances LHb neuronal activity; (2) activation of DRN- and VTA-projecting neurons in the LHb mimics the detrimental effects of maternal stress on maternal behavior; and (3) suppression of DRN- and VTA-projecting neurons in the LHb attenuates the detrimental effects of maternal stress on maternal care in stressed mothers. Confirmation of this hypothesis is expected to enhance our understanding of the neurocircuit mechanisms mediating stress effects on maternal behavior.
  • loading
  • [1]
    Agrati D, Lonstein JS. 2016. Affective changes during the postpartum period: influences of genetic and experiential factors. Hormones and Behavior, 77: 141−152. doi: 10.1016/j.yhbeh.2015.07.016
    [2]
    Aizawa H, Amo R, Okamoto H. 2011. Phylogeny and ontogeny of the habenular structure. Frontiers in Neuroscience, 5: 138.
    [3]
    Andersson L, Sundström-Poromaa I, Wulff M, Åström M, Bixo M. 2006. Depression and anxiety during pregnancy and six months postpartum: a follow-up study. Acta Obstetricia et Gynecologica Scandinavica, 85(8): 937−944. doi: 10.1080/00016340600697652
    [4]
    Baker PM, Jhou T, Li B, Matsumoto M, Mizumori SJY, Stephenson-Jones M, et al. 2016. The lateral habenula circuitry: reward processing and cognitive control. Journal of Neuroscience, 36(45): 11482−11488. doi: 10.1523/JNEUROSCI.2350-16.2016
    [5]
    Baker PM, Oh SE, Kidder KS, Mizumori SJY. 2015. Ongoing behavioral state information signaled in the lateral habenula guides choice flexibility in freely moving rats. Frontiers in Behavioral Neuroscience, 9: 295.
    [6]
    Barofsky AL, Taylor J, Massari VJ. 1983a. Dorsal raphe-hypothalamic projections provide the stimulatory serotonergic input to suckling-induced prolactin release. Endocrinology, 113(5): 1894−1903. doi: 10.1210/endo-113-5-1894
    [7]
    Barofsky AL, Taylor J, Tizabi Y, Kumar R, Jones-Quartey K. 1983b. Specific neurotoxin lesions of median raphe serotonergic neurons disrupt maternal behavior in the lactating rat. Endocrinology, 113(5): 1884−1893. doi: 10.1210/endo-113-5-1884
    [8]
    Beck CT. 2006. Postpartum depression: it isn't just the blues. American Journal of Nursing, 106(5): 40−50. doi: 10.1097/00000446-200605000-00020
    [9]
    Bernard R, Veh RW. 2012. Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei. Journal of Comparative Neurology, 520(11): 2545−2558. doi: 10.1002/cne.23080
    [10]
    Berridge KC. 2007. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl), 191(3): 391–431.
    [11]
    Berridge KC, Robinson TE. 1998. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Research Reviews, 28(3): 309−369. doi: 10.1016/S0165-0173(98)00019-8
    [12]
    Bifulco A, Brown GW, Moran P, Ball C, Campbell C. 1998. Predicting depression in women: the role of past and present vulnerability. Psychological Medicine, 28(1): 39−50. doi: 10.1017/S0033291797005953
    [13]
    Boccia ML, Razzoli M, Vadlamudi SP, Trumbull W, Caleffie C, Pedersen CA. 2007. Repeated long separations from pups produce depression-like behavior in rat mothers. Psychoneuroendocrinology, 32(1): 65−71. doi: 10.1016/j.psyneuen.2006.10.004
    [14]
    Bowman RE, Beck KD, Luine VN. 2003. Chronic stress effects on memory: sex differences in performance and monoaminergic activity. Hormones and Behavior, 43(1): 48−59. doi: 10.1016/S0018-506X(02)00022-3
    [15]
    Brown PL, Palacorolla H, Brady D, Riegger K, Elmer GI, Shepard PD. 2017. Habenula-induced inhibition of midbrain dopamine neurons is diminished by lesions of the rostromedial tegmental nucleus. Journal of Neuroscience, 37(1): 217−225. doi: 10.1523/JNEUROSCI.1353-16.2016
    [16]
    Brown PL, Shepard PD. 2016. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat. Journal of Neurophysiology, 116(3): 1161−1174. doi: 10.1152/jn.00305.2016
    [17]
    Brummelte S, Galea LAM. 2010. Chronic corticosterone during pregnancy and postpartum affects maternal care, cell proliferation and depressive-like behavior in the dam. Hormones and Behavior, 58(5): 769−779. doi: 10.1016/j.yhbeh.2010.07.012
    [18]
    Brummelte S, Galea LAM. 2016. Postpartum depression: etiology, treatment and consequences for maternal care. Hormones and Behavior, 77: 153−166. doi: 10.1016/j.yhbeh.2015.08.008
    [19]
    Brummelte S, Pawluski JL, Galea LAM. 2006. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: a model of post-partum stress and possible depression. Hormones and Behavior, 50(3): 370−382. doi: 10.1016/j.yhbeh.2006.04.008
    [20]
    Bubar MJ, Cunningham KA. 2007. Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience, 146(1): 286−297. doi: 10.1016/j.neuroscience.2006.12.071
    [21]
    Bubar MJ, Stutz SJ, Cunningham KA. 2011. 5-HT2C receptors localize to dopamine and GABA neurons in the rat mesoaccumbens pathway. PLoS One, 6(6): e20508. doi: 10.1371/journal.pone.0020508
    [22]
    Byrnes EM, Bridges RS, Scanlan VF, Babb JA, Byrnes JJ. 2007. Sensorimotor gating and dopamine function in postpartum rats. Neuropsychopharmacology, 32(5): 1021−1031. doi: 10.1038/sj.npp.1301222
    [23]
    Caldecott-Hazard S, Mazziotta J, Phelps M. 1988. Cerebral correlates of depressed behavior in rats, visualized using 14C- 2-deoxyglucose autoradiography. Journal of Neuroscience, 8(6): 1951−1961. doi: 10.1523/JNEUROSCI.08-06-01951.1988
    [24]
    Chase HW, Moses-Kolko EL, Zevallos C, Wisner KL, Phillips ML. 2014. Disrupted posterior cingulate-amygdala connectivity in postpartum depressed women as measured with resting BOLD fMRI. Social Cognitive and Affective Neuroscience, 9(8): 1069−1075. doi: 10.1093/scan/nst083
    [25]
    Corodimas KP, Rosenblatt JS, Canfield ME, Morrell JI. 1993. Neurons in the lateral subdivision of the habenular complex mediate the hormonal onset of maternal behavior in rats. Behavioral Neuroscience, 107(5): 827−843. doi: 10.1037/0735-7044.107.5.827
    [26]
    Corodimas KP, Rosenblatt JS, Morrell JI. 1992. The habenular complex mediates hormonal stimulation of maternal behavior in rats. Behavioral Neuroscience, 106(5): 853−865. doi: 10.1037/0735-7044.106.5.853
    [27]
    De Almeida RMM, Lucion AB. 1997. 8-OH-DPAT in the median raphe, dorsal periaqueductal gray and corticomedial amygdala nucleus decreases, but in the medial septal area it can increase maternal aggressive behavior in rats. Psychopharmacology (Berl), 134(4): 392–400.
    [28]
    Deligiannidis KM, Fales CL, Kroll-Desrosiers AR, Shaffer SA, Villamarin V, Tan YL, et al. 2019. Resting-state functional connectivity, cortical GABA, and neuroactive steroids in peripartum and peripartum depressed women: a functional magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology, 44(3): 546−554. doi: 10.1038/s41386-018-0242-2
    [29]
    Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E. 2000. Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin2C/2B receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse, 35(1): 53−61. doi: 10.1002/(SICI)1098-2396(200001)35:1<53::AID-SYN7>3.0.CO;2-2
    [30]
    Di Matteo V, Cacchio M, Di Giulio C, Esposito E. 2002. Role of serotonin2C receptors in the control of brain dopaminergic function. Pharmacology Biochemistry and Behavior, 71(4): 727−734. doi: 10.1016/S0091-3057(01)00705-5
    [31]
    Dolzani SD, Baratta MV, Amat J, Agster KL, Saddoris MP, Watkins LR, et al. 2016. Activation of a habenulo-raphe circuit is critical for the behavioral and neurochemical consequences of uncontrollable stress in the male rat. eNeuro, 3(5): ENEURO.0229−16.
    [32]
    England MJ, Sims LJ. 2009. Depression in Parents, Parenting, and Children: Opportunities to Improve Identification, Treatment, and Prevention. Washington: National Academies Press.
    [33]
    Fang YY, Yamaguchi T, Song SC, Tritsch NX, Lin DY. 2018. A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron, 98(1): 192−207.E10. doi: 10.1016/j.neuron.2018.02.019
    [34]
    Felton TM, Linton L, Rosenblatt JS, Morrell JI. 1998. Intact neurons of the lateral habenular nucleus are necessary for the nonhormonal, pup-mediated display of maternal behavior in sensitized virgin female rats. Behavioral Neuroscience, 112(6): 1458−1465. doi: 10.1037/0735-7044.112.6.1458
    [35]
    Fenno LE, Ramakrishnan C, Kim YS, Evans KE, Lo M, Vesuna S, et al. 2020. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron, 107(5): 836−853.E11. doi: 10.1016/j.neuron.2020.06.003
    [36]
    Fletcher PJ, Chintoh AF, Sinyard J, Higgins GA. 2004. Injection of the 5-HT2C receptor agonist Ro60-0175 into the ventral tegmental area reduces cocaine-induced locomotor activity and cocaine self-administration. Neuropsychopharmacology, 29(2): 308−318. doi: 10.1038/sj.npp.1300319
    [37]
    Fu R, Mei QH, Shiwalkar N, Zuo WH, Zhang HF, Gregor D, et al. 2020. Anxiety during alcohol withdrawal involves 5-HT2C receptors and M-channels in the lateral habenula. Neuropharmacology, 163: 107863. doi: 10.1016/j.neuropharm.2019.107863
    [38]
    Galea LA, Wide JK, Barr AM. 2001. Estradiol alleviates depressive-like symptoms in a novel animal model of post-partum depression. Behavioural Brain Research, 122(1): 1−9. doi: 10.1016/S0166-4328(01)00170-X
    [39]
    Gao J, Chen LL, Li M. 2019. 5-HT2A receptors modulate dopamine D2-mediated maternal effects. Pharmacology Biochemistry and Behavior, 180: 32−43. doi: 10.1016/j.pbb.2019.03.003
    [40]
    Gao J, Nie LN, Li Y, Li M. 2020. Serotonin 5-HT2A and 5-HT2C receptors regulate rat maternal behavior through distinct behavioral and neural mechanisms. Neuropharmacology, 162: 107848. doi: 10.1016/j.neuropharm.2019.107848
    [41]
    Gao J, Wu RY, Davis C, Li M. 2018. Activation of 5-HT2A receptor disrupts rat maternal behavior. Neuropharmacology, 128: 96–105.
    [42]
    Gonçalves L, Sego C, Metzger M. 2012. Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat. Journal of Comparative Neurology, 520(6): 1278−1300. doi: 10.1002/cne.22787
    [43]
    Goodman SH, Rouse MH, Connell AM, Broth MR, Hall CM, Heyward D. 2011. Maternal depression and child psychopathology: a meta-analytic review. Clinical Child and Family Psychology Review, 14: 1−27. doi: 10.1007/s10567-010-0080-1
    [44]
    Haim A, Albin-Brooks C, Sherer M, Mills E, Leuner B. 2016. The effects of gestational stress and Selective Serotonin reuptake inhibitor antidepressant treatment on structural plasticity in the postpartum brain — A translational model for postpartum depression. Hormones and Behavior, 77: 124−131. doi: 10.1016/j.yhbeh.2015.05.005
    [45]
    Hansen S. 1994. Maternal behavior of female rats with 6-OHDA lesions in the ventral striatum: characterization of the pup retrieval deficit. Physiology & Behavior, 55(4): 615−620.
    [46]
    Hård E, Hansen S. 1985. Reduced fearfulness in the lactating rat. Physiology & Behavior, 35(4): 641−643.
    [47]
    Henry JD, Rendell PG. 2007. A review of the impact of pregnancy on memory function. Journal of Clinical and Experimental Neuropsychology, 29(8): 793−803. doi: 10.1080/13803390701612209
    [48]
    Hillerer KM, Neumann ID, Slattery DA. 2012. From stress to postpartum mood and anxiety disorders: how chronic peripartum stress can impair maternal adaptations. Neuroendocrinology, 95: 22−38. doi: 10.1159/000330445
    [49]
    Hillerer KM, Reber SO, Neumann ID, Slattery DA. 2011. Exposure to chronic pregnancy stress reverses peripartum-associated adaptations: implications for postpartum anxiety and mood disorders. Endocrinology, 152(10): 3930−3940. doi: 10.1210/en.2011-1091
    [50]
    Holschbach MA, Vitale EM, Lonstein JS. 2018. Serotonin-specific lesions of the dorsal raphe disrupt maternal aggression and caregiving in postpartum rats. Behavioural Brain Research, 348: 53−64. doi: 10.1016/j.bbr.2018.04.008
    [51]
    Howell LL, Cunningham KA. 2015. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacological Reviews, 67(1): 176−197. doi: 10.1124/pr.114.009514
    [52]
    Hu HL, Cui YH, Yang Y. 2020. Circuits and functions of the lateral habenula in health and in disease. Nature Reviews Neuroscience, 21(5): 277−295. doi: 10.1038/s41583-020-0292-4
    [53]
    Jakobs M, Pitzer C, Sartorius A, Unterberg A, Kiening K. 2019. Acute 5 Hz deep brain stimulation of the lateral habenula is associated with depressive-like behavior in male wild-type Wistar rats. Brain Research, 1721: 146283. doi: 10.1016/j.brainres.2019.06.002
    [54]
    Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS. 2009. The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative Neurology, 513(6): 566−596. doi: 10.1002/cne.21891
    [55]
    Jones I, Heron J, Blackmore ER, Craddock N. 2008. Incidence of hospitalization for postpartum psychotic and bipolar episodes. Arch Gen Psychiatry, 65(3): 356.
    [56]
    Kalinichev M, Rosenblatt JS, Nakabeppu Y, Morrell JI. 2000. Induction of c-fos-like and fosB-like immunoreactivity reveals forebrain neuronal populations involved differentially in pup-mediated maternal behavior in juvenile and adult rats. Journal of Comparative Neurology, 416(1): 45−78. doi: 10.1002/(SICI)1096-9861(20000103)416:1<45::AID-CNE5>3.0.CO;2-K
    [57]
    Kask K, Backstrom T, Gulinello M, Sundström-Poromaa I. 2008. Lower levels of prepulse inhibition of startle response in pregnant women compared to postpartum women. Psychoneuroendocrinology, 33(1): 100−107. doi: 10.1016/j.psyneuen.2007.10.005
    [58]
    Kaufling J, Aston-Jones G. 2015. Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. Journal of Neuroscience, 35(28): 10290−10303. doi: 10.1523/JNEUROSCI.0715-15.2015
    [59]
    Kim P, Leckman JF, Mayes LC, Feldman R, Wang X, Swain JE. 2010. The plasticity of human maternal brain: longitudinal changes in brain anatomy during the early postpartum period. Behavioral Neuroscience, 124(5): 695−700. doi: 10.1037/a0020884
    [60]
    Kim P, Strathearn L, Swain JE. 2016. The maternal brain and its plasticity in humans. Hormones and Behavior, 77: 113−123. doi: 10.1016/j.yhbeh.2015.08.001
    [61]
    Kim S, Strathearn L. 2016. Oxytocin and maternal brain plasticity. New Directions for Child and Adolescent Development, 2016(153): 59−72. doi: 10.1002/cad.20170
    [62]
    Kimble DP, Rogers L, Hendrickson CW. 1967. Hippocampal lesions disrupt maternal, not sexual, behavior in the albino rat. Journal of Comparative and Physiological Psychology, 63(3): 401−407. doi: 10.1037/h0024605
    [63]
    Kinsley CH, Lambert KG. 2008. Reproduction-induced neuroplasticity: natural behavioural and neuronal alterations associated with the production and care of offspring. Journal of Neuroendocrinology, 20(4): 515−525. doi: 10.1111/j.1365-2826.2008.01667.x
    [64]
    Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B, Kapoor V, et al. 2018. Functional circuit architecture underlying parental behaviour. Nature, 556(7701): 326−331. doi: 10.1038/s41586-018-0027-0
    [65]
    Kohl J, Dulac C. 2018. Neural control of parental behaviors. Current Opinion in Neurobiology, 49: 116−122. doi: 10.1016/j.conb.2018.02.002
    [66]
    Langlois LD, Berman RY, Shepard RD, Simmons SC, Tsuda MC, Gouty S, et al. 2021. Potentiation of glutamatergic synaptic transmission onto lateral habenula neurons following early life stress and intravenous morphine self-administration in rats. Addiction Biology,doi: 10.1111/adb.13064 .
    [67]
    Lecourtier L, Kelly PH. 2005. Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacology, 30(3): 484−496. doi: 10.1038/sj.npp.1300595
    [68]
    Lee EHY, Huang SL. 1988. Role of lateral habenula in the regulation of exploratory behavior and its relationship to stress in rats. Behavioural Brain Research, 30(3): 265−271. doi: 10.1016/0166-4328(88)90169-6
    [69]
    Leuner B, Fredericks PJ, Nealer C, Albin-Brooks C. 2014. Chronic gestational stress leads to depressive-like behavior and compromises medial prefrontal cortex structure and function during the postpartum period. PLoS One, 9(3): e89912. doi: 10.1371/journal.pone.0089912
    [70]
    Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, et al. 2011. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature, 470(7335): 535−539. doi: 10.1038/nature09742
    [71]
    Li M. 2015. Antipsychotic drugs on maternal behavior in rats. Behavioural Pharmacology, 26(6): 616−626. doi: 10.1097/FBP.0000000000000168
    [72]
    Li M. 2020. Psychological and neurobiological mechanisms underlying the decline of maternal behavior. Neuroscience & Biobehavioral Reviews, 116: 164−181.
    [73]
    Li M, Chou SY. 2016. Modeling postpartum depression in rats: theoretic and methodological issues. Zoological Research, 37(4): 229−236.
    [74]
    Li M, Fleming AS. 2003. The nucleus accumbens shell is critical for normal expression of pup-retrieval in postpartum female rats. Behavioural Brain Research, 145(1-2): 99−111. doi: 10.1016/S0166-4328(03)00135-9
    [75]
    Li XN, Ding XJ, Wu RY, Chen LL, Gao J, Hu G, et al. 2018. A behavioral mechanistic investigation of the role of 5-HT1A receptors in the mediation of rat maternal behavior. Pharmacology Biochemistry and Behavior, 169: 16−26. doi: 10.1016/j.pbb.2018.04.002
    [76]
    Lonstein JS. 2005. Reduced anxiety in postpartum rats requires recent physical interactions with pups, but is independent of suckling and peripheral sources of hormones. Hormones and Behavior, 47(3): 241−255. doi: 10.1016/j.yhbeh.2004.11.001
    [77]
    Lonstein JS. 2007. Regulation of anxiety during the postpartum period. Frontiers in Neuroendocrinology, 28(2-3): 115−141. doi: 10.1016/j.yfrne.2007.05.002
    [78]
    Lonstein JS, Maguire J, Meinlschmidt G, Neumann ID. 2014. Emotion and mood adaptations in the peripartum female: complementary contributions of GABA and oxytocin. Journal of Neuroendocrinology, 26(10): 649−664. doi: 10.1111/jne.12188
    [79]
    Lonstein JS, Simmons DA, Swann JM, Stern JM. 1998. Forebrain expression of c-fos due to active maternal behaviour in lactating rats. Neuroscience, 82(1): 267−281.
    [80]
    Maccari S, Krugers HJ, Morley-Fletcher S, Szyf M, Brunton PJ. 2014. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. Journal of Neuroendocrinology, 26(10): 707−723. doi: 10.1111/jne.12175
    [81]
    Matsumoto M, Hikosaka O. 2007. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148): 1111−1115. doi: 10.1038/nature05860
    [82]
    Matsumoto M, Hikosaka O. 2009. Representation of negative motivational value in the primate lateral habenula. Nature Neuroscience, 12(1): 77−84. doi: 10.1038/nn.2233
    [83]
    Matthews-Felton T, Corodimas KP, Rosenblatt JS, Morrell JI. 1995. Lateral habenula neurons are necessary for the hormonal onset of maternal behavior and for the display of postpartum estrus in naturally parturient female rats. Behavioral Neuroscience, 109(6): 1172−1188. doi: 10.1037/0735-7044.109.6.1172
    [84]
    McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RAM, et al. 2014. Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Reports, 8(6): 1857−1869. doi: 10.1016/j.celrep.2014.08.037
    [85]
    Metzger M, Bueno D, Lima LB. 2017. The lateral habenula and the serotonergic system. Pharmacology Biochemistry and Behavior, 162: 22−28. doi: 10.1016/j.pbb.2017.05.007
    [86]
    Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C, et al. 2021. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. European Journal of Neuroscience, 53(1): 65−88. doi: 10.1111/ejn.14647
    [87]
    Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ. 1999. Covariation of activity in habenula and dorsal raphé nuclei following tryptophan depletion. NeuroImage, 10(2): 163−172. doi: 10.1006/nimg.1999.0455
    [88]
    Nair SG, Strand NS, Neumaier JF. 2013. DREADDing the lateral habenula: a review of methodological approaches for studying lateral habenula function. Brain Research, 1511: 93−101. doi: 10.1016/j.brainres.2012.10.011
    [89]
    Nephew BC, Bridges RS. 2011. Effects of chronic social stress during lactation on maternal behavior and growth in rats. Stress, 14(6): 677−684. doi: 10.3109/10253890.2011.605487
    [90]
    Neumann ID, Toschi N, Ohl F, Torner L, Krömer SA. 2001. Maternal defence as an emotional stressor in female rats: correlation of neuroendocrine and behavioural parameters and involvement of brain oxytocin. European Journal of Neuroscience, 13(5): 1016−1024. doi: 10.1046/j.0953-816x.2001.01460.x
    [91]
    Nie LN, Di TQ, Li Y, Cheng P, Li M, Gao J. 2018. Blockade of serotonin 5-HT2A receptors potentiates dopamine D2 activation-induced disruption of pup retrieval on an elevated plus maze, but has no effect on D2 blockade-induced one. Pharmacology Biochemistry and Behavior, 171: 74−84. doi: 10.1016/j.pbb.2018.06.004
    [92]
    Numan M. 2007. Motivational systems and the neural circuitry of maternal behavior in the rat. Developmental Psychobiology, 49(1): 12−21. doi: 10.1002/dev.20198
    [93]
    Numan M. 2015. Neurobiology of Social Behavior: Toward an Understanding of the Prosocial and Antisocial Brain. Waltham: Academic Press.
    [94]
    Numan M. 2020. The Parental Brain: Mechanisms, Development, and Evolution. New York: Oxford University Press.
    [95]
    Numan M, Insel TR. 2003. The Neurobiology of Parental Behavior: Hormones, Brain, and Behavior. New York: Springer.
    [96]
    Numan M, Smith HG. 1984. Maternal behavior in rats: evidence for the involvement of preoptic projections to the ventral tegmental area. Behavioral Neuroscience, 98(4): 712−727. doi: 10.1037/0735-7044.98.4.712
    [97]
    O'Hara MW, McCabe JE. 2013. Postpartum depression: current status and future directions. Annual Review of Clinical Psychology, 9: 379−407. doi: 10.1146/annurev-clinpsy-050212-185612
    [98]
    Olazábal DE, Pereira M, Agrati D, Ferreira A, Fleming AS, González-Mariscal G, et al. 2013. New theoretical and experimental approaches on maternal motivation in mammals. Neuroscience & Biobehavioral Reviews, 37(8): 1860−1874.
    [99]
    Ootsuka Y, Mohammed M. 2015. Activation of the habenula complex evokes autonomic physiological responses similar to those associated with emotional stress. Physiological Reports, 3(2): e12297. doi: 10.14814/phy2.12297
    [100]
    Paris R, Bolton RE, Weinberg MK. 2009. Postpartum depression, suicidality, and mother-infant interactions. Archives of Women's Mental Health, 12(5): 309−321. doi: 10.1007/s00737-009-0105-2
    [101]
    Parker KJ, Schatzberg AF, Lyons DM. 2003. Neuroendocrine aspects of hypercortisolism in major depression. Hormones and Behavior, 43(1): 60−66. doi: 10.1016/S0018-506X(02)00016-8
    [102]
    Pawluski JL, Hoekzema E, Leuner B, Lonstein JS. 2021. Less can be more: fine tuning the maternal brain. Neuroscience & Biobehavioral Reviews,doi: 10.1016/j.neubiorev.2021.11.045.
    [103]
    Pawluski JL, Lambert KG, Kinsley CH. 2016. Neuroplasticity in the maternal hippocampus: relation to cognition and effects of repeated stress. Hormones and Behavior, 77: 86−97. doi: 10.1016/j.yhbeh.2015.06.004
    [104]
    Pawluski JL, Lonstein JS, Fleming AS. 2017. The neurobiology of postpartum anxiety and depression. Trends in Neurosciences, 40(1): 106−120.
    [105]
    Pereira M, Ferreira A. 2006. Demanding pups improve maternal behavioral impairments in sensitized and haloperidol-treated lactating female rats. Behavioural Brain Research, 175(1): 139−148. doi: 10.1016/j.bbr.2006.08.013
    [106]
    Pereira M, Ferreira A. 2016. Neuroanatomical and neurochemical basis of parenting: dynamic coordination of motivational, affective and cognitive processes. Hormones and Behavior, 77: 72−85. doi: 10.1016/j.yhbeh.2015.08.005
    [107]
    Pereira M, Uriarte N, Agrati D, Zuluaga MJ, Ferreira A. 2005. Motivational aspects of maternal anxiolysis in lactating rats. Psychopharmacology (Berl), 180(2): 241–248.
    [108]
    Proulx CD, Hikosaka O, Malinow R. 2014. Reward processing by the lateral habenula in normal and depressive behaviors. Nature Neuroscience, 17(9): 1146−1152. doi: 10.1038/nn.3779
    [109]
    Ragan CM, Lonstein JS. 2014. Differential postpartum sensitivity to the anxiety-modulating effects of offspring contact is associated with innate anxiety and brainstem levels of dopamine beta-hydroxylase in female laboratory rats. Neuroscience, 256: 433−444. doi: 10.1016/j.neuroscience.2013.10.014
    [110]
    Rayen I, van den Hove DL, Prickaerts J, Steinbusch HW, Pawluski JL. 2011. Fluoxetine during development reverses the effects of prenatal stress on depressive-like behavior and hippocampal neurogenesis in adolescence. PLoS One, 6(9): e24003. doi: 10.1371/journal.pone.0024003
    [111]
    Sego C, Gonçalves L, Lima L, Furigo IC, Donato Jr J, Metzger M. 2014. Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. Journal of Comparative Neurology, 522(7): 1454−1484. doi: 10.1002/cne.23533
    [112]
    Shahrokh DK, Zhang TY, Diorio J, Gratton A, Meaney MJ. 2010. Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology, 151(5): 2276−2286. doi: 10.1210/en.2009-1271
    [113]
    Sheehan TP, Cirrito J, Numan MJ, Numan M. 2000. Using c-Fos immunocytochemistry to identify forebrain regions that may inhibit maternal behavior in rats. Behavioral Neuroscience, 114(2): 337−352. doi: 10.1037/0735-7044.114.2.337
    [114]
    Shumake J, Edwards E, Gonzalez-Lima F. 2003. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Research, 963(1-2): 274−281. doi: 10.1016/S0006-8993(02)04048-9
    [115]
    Shumake J, Gonzalez-Lima F. 2003. Brain systems underlying susceptibility to helplessness and depression. Behavioral and Cognitive Neuroscience Reviews, 2(3): 198−221. doi: 10.1177/1534582303259057
    [116]
    Shumake J, Gonzalez-Lima F. 2013. Functional opposition between habenula metabolism and the brain reward system. Frontiers in Human Neuroscience, 7: 662.
    [117]
    Smith JW, Seckl JR, Evans AT, Costall B, Smythe JW. 2004. Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats. Psychoneuroendocrinology, 29(2): 227−244. doi: 10.1016/S0306-4530(03)00025-8
    [118]
    Stack EC, Balakrishnan R, Numan MJ, Numan M. 2002. A functional neuroanatomical investigation of the role of the medial preoptic area in neural circuits regulating maternal behavior. Behavioural Brain Research, 131(1-2): 17−36. doi: 10.1016/S0166-4328(01)00370-9
    [119]
    Stack EC, Numan M. 2000. The temporal course of expression of c-Fos and Fos B within the medial preoptic area and other brain regions of postpartum female rats during prolonged mother-young interactions. Behavioral Neuroscience, 114(3): 609−622. doi: 10.1037/0735-7044.114.3.609
    [120]
    Stern JM, Keer SE. 1999. Maternal motivation of lactating rats is disrupted by low dosages of haloperidol. Behavioural Brain Research, 99(2): 231−239. doi: 10.1016/S0166-4328(98)00108-9
    [121]
    Stolzenberg DS, Numan M. 2011. Hypothalamic interaction with the mesolimbic DA system in the control of the maternal and sexual behaviors in rats. Neuroscience & Biobehavioral Reviews, 35(3): 826−847.
    [122]
    Sutherland RJ. 1982. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neuroscience & Biobehavioral Reviews, 6(1): 1−13.
    [123]
    Tchenio A, Lecca S, Valentinova K, Mameli M. 2017. Limiting habenular hyperactivity ameliorates maternal separation-driven depressive-like symptoms. Nature Communications, 8(1): 1135. doi: 10.1038/s41467-017-01192-1
    [124]
    Terlecki LJ, Sainsbury RS. 1978. Effects of fimbria lesions on maternal behavior in the rat. Physiology & Behavior, 21(1): 89−97.
    [125]
    Thomas SA, Palmiter RD. 1997. Impaired maternal behavior in mice lacking norepinephrine and epinephrine. Cell, 91(5): 583−592. doi: 10.1016/S0092-8674(00)80446-8
    [126]
    Valencia-Torres L, Olarte-Sánchez CM, Lyons DJ, Georgescu T, Greenwald-Yarnell M, Myers Jr MG, et al. 2017. Activation of ventral tegmental area 5-HT2C receptors reduces incentive motivation. Neuropsychopharmacology, 42(7): 1511−1521. doi: 10.1038/npp.2016.264
    [127]
    Wagner CK, Silverman AJ, Morrell JI. 1998. Evidence for estrogen receptor in cell nuclei and axon terminals within the lateral habenula of the rat: regulation during pregnancy. Journal of Comparative Neurology, 392(3): 330−342. doi: 10.1002/(SICI)1096-9861(19980316)392:3<330::AID-CNE4>3.0.CO;2-2
    [128]
    Watabe-Uchida M, Zhu LS, Ogawa SK, Vamanrao A, Uchida N. 2012. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74(5): 858−873. doi: 10.1016/j.neuron.2012.03.017
    [129]
    Weinstock M. 2001a. Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Progress in Neurobiology, 65(5): 427−451. doi: 10.1016/S0301-0082(01)00018-1
    [130]
    Weinstock M. 2001b. Effects of maternal stress on development and behaviour in rat offspring. Stress, 4(3): 157−167. doi: 10.3109/10253890109035015
    [131]
    Weinstock M. 2017. Prenatal stressors in rodents: effects on behavior. Neurobiology of Stress, 6: 3−13. doi: 10.1016/j.ynstr.2016.08.004
    [132]
    Wirtshafter D, Asin KE, Pitzer MR. 1994. Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula. Brain Research, 633(1-2): 21−26. doi: 10.1016/0006-8993(94)91517-2
    [133]
    Wonch KE, de Medeiros CB, Barrett JA, Dudin A, Cunningham WA, Hall GB, et al. 2016. Postpartum depression and brain response to infants: differential amygdala response and connectivity. Social Neuroscience, 11(6): 600−617. doi: 10.1080/17470919.2015.1131193
    [134]
    Wu RY, Davis C, Li M. 2018. Behavioral mechanisms underlying the maternal disruptive effect of serotonin 5-HT2A receptor activation in Sprague-Dawley rats. Journal of Neural Transmission (Vienna), 125(7): 1065−1075. doi: 10.1007/s00702-018-1878-0
    [135]
    Yang LM, Hu B, Xia YH, Zhang BL, Zhao H. 2008. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behavioural Brain Research, 188(1): 84−90. doi: 10.1016/j.bbr.2007.10.022
    [136]
    Yang Y, Qin JX, Chen WH, Sui N, Chen H, Li M. 2015. Behavioral and pharmacological investigation of anxiety and maternal responsiveness of postpartum female rats in a pup elevated plus maze. Behavioural Brain Research, 292: 414−427. doi: 10.1016/j.bbr.2015.07.010
    [137]
    Yang Y, Wang H, Hu J, Hu HL. 2018. Lateral habenula in the pathophysiology of depression. Current Opinion in Neurobiology, 48: 90−96. doi: 10.1016/j.conb.2017.10.024
    [138]
    Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS. 2015. Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. Journal of Comparative Neurology, 523(16): 2426−2456. doi: 10.1002/cne.23797
    [139]
    Zahm DS, Root DH. 2017. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacology Biochemistry and Behavior, 162: 3−21. doi: 10.1016/j.pbb.2017.06.004
    [140]
    Zhao CJ, Li M. 2009. Sedation and disruption of maternal motivation underlie the disruptive effects of antipsychotic treatment on rat maternal behavior. Pharmacology Biochemistry and Behavior, 92(1): 147−156. doi: 10.1016/j.pbb.2008.11.006
    [141]
    Zhao CJ, Li M. 2012. Neuroanatomical substrates of the disruptive effect of olanzapine on rat maternal behavior as revealed by c-Fos immunoreactivity. Pharmacology Biochemistry and Behavior, 103(2): 174−180. doi: 10.1016/j.pbb.2012.08.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (245) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return