Volume 43 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Chun-Long Yan, Jun Lin, Yuan-Yuan Huang, Qing-Shan Gao, Zheng-Yu Piao, Shou-Li Yuan, Li Chen, Xue Ren, Rong-Cai Ye, Meng Dong, Han-Lin Zhang, Hui-Qiao Zhou, Xiao-Xiao Jiang, Wan-Zhu Jin, Xu-Ming Zhou, Chang-Guo Yan. Population genomics reveals that natural variation in PRDM16 contributes to cold tolerance in domestic cattle. Zoological Research, 2022, 43(2): 275-284. doi: 10.24272/j.issn.2095-8137.2021.360
Citation: Chun-Long Yan, Jun Lin, Yuan-Yuan Huang, Qing-Shan Gao, Zheng-Yu Piao, Shou-Li Yuan, Li Chen, Xue Ren, Rong-Cai Ye, Meng Dong, Han-Lin Zhang, Hui-Qiao Zhou, Xiao-Xiao Jiang, Wan-Zhu Jin, Xu-Ming Zhou, Chang-Guo Yan. Population genomics reveals that natural variation in PRDM16 contributes to cold tolerance in domestic cattle. Zoological Research, 2022, 43(2): 275-284. doi: 10.24272/j.issn.2095-8137.2021.360

Population genomics reveals that natural variation in PRDM16 contributes to cold tolerance in domestic cattle

doi: 10.24272/j.issn.2095-8137.2021.360
#Authors contributed equally to this work
Funds:  This work was supported by the General Program (Major Research Plan) of National Natural Science Foundation of China (92057208), National Key Research and Development Program of China (2018YFD0501702), Youth Program of the National Natural Science Foundation of China (31900830), National Natural Science Foundation of China (81770834), Jilin Provincial Development and Reform Commission Budget Capital Construction Fund Project (2018M640182) and 111 Project (D20034), and China Postdoctoral Science Foundation Funded Project (2018M640182 to J.L.)
More Information
  • Environmental temperature serves as a major driver of adaptive changes in wild organisms. To discover the mechanisms underpinning cold tolerance in domestic animals, we sequenced the genomes of 28 cattle from warm and cold areas across China. By characterizing the population structure and demographic history, we identified two genetic clusters, i.e., northern and southern groups, as well as a common historic population peak at 30 kilo years ago. Genomic scan of cold-tolerant breeds determined potential candidate genes in the thermogenesis-related pathways that were under selection. Specifically, functional analysis identified a substitution of PRDM16 (p.P779L) in northern cattle, which maintains brown adipocyte formation by boosting thermogenesis-related gene expression, indicating a vital role of this gene in cold tolerance. These findings provide a basis for genetic variation in domestic cattle shaped by environmental temperature and highlight the role of reverse mutation in livestock species.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9): 1655−1664. doi: 10.1101/gr.094052.109
    [2]
    Atshaves BP, Storey SM, Mcintosh AL, Petrescu AD, Lyuksyutova OI, Greenberg AS, et al. 2001. Sterol carrier protein-2 expression modulates protein and lipid composition of lipid droplets. Journal of Biological Chemistry, 276(27): 25324−25335. doi: 10.1074/jbc.M100560200
    [3]
    Barak Y, Kimhi R, Stein D, Gutman J, Weizman A. 1999. Autistic subjects with comorbid epilepsy: a possible association with viral infections. Child Psychiatry and Human Development, 29(3): 245−251. doi: 10.1023/A:1022669125423
    [4]
    Bradley DG, MacHugh DE, Cunningham P, Loftus RT. 1996. Mitochondrial diversity and the origins of African and European cattle. Proceedings of the National Academy of Sciences of the United States of America, 93(10): 5131−5135. doi: 10.1073/pnas.93.10.5131
    [5]
    Buggiotti L, Yurchenko AA, Yudin NS, Vander Jagt CJ, Vorobieva NV, Kusliy MA, et al. 2021. Demographic history, adaptation, and NRAP convergent evolution at amino acid residue 100 in the world northernmost cattle from Siberia. Molecular Biology and Evolution, 38(8): 3093−3110. doi: 10.1093/molbev/msab078
    [6]
    Cai DW, Sun Y, Tang ZW, Hu SM, Li WY, Zhao XB, et al. 2014. The origins of Chinese domestic cattle as revealed by ancient DNA analysis. Journal of Archaeological Science, 41: 423−434. doi: 10.1016/j.jas.2013.09.003
    [7]
    Cannon B, Nedergaard J. 2004. Brown adipose tissue: function and physiological significance. Physiological Reviews, 84(1): 277−359. doi: 10.1152/physrev.00015.2003
    [8]
    Carstens GE. 1994. Cold thermoregulation in the newborn calf. Veterinary Clinics of North America:Food Animal Practice, 10(1): 69−106. doi: 10.1016/S0749-0720(15)30590-9
    [9]
    Chen NB, Cai YD, Chen QM, Li R, Wang K, Huang YZ, et al. 2018. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 9(1): 2337. doi: 10.1038/s41467-018-04737-0
    [10]
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, et al. 2011. The variant call format and VCFtools. Bioinformatics, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    [11]
    Gerst F, Jaghutriz BA, Staiger H, Schulte AM, Lorza-Gil E, Kaiser G, et al. 2018. The expression of aldolase B in islets is negatively associated with insulin secretion in humans. The Journal of Clinical Endocrinology and Metabolism, 103(12): 4373−4383. doi: 10.1210/jc.2018-00791
    [12]
    Ghoreishifar SM, Eriksson S, Johansson AM, Khansefid M, Moghaddaszadeh-Ahrabi S, Parna N, et al. 2020. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genetics Selection Evolution, 52(1): 52. doi: 10.1186/s12711-020-00571-5
    [13]
    Guirguis E, Hockman S, Chung YW, Ahmad F, Gavrilova O, Raghavachari N, et al. 2013. A role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice. Endocrinology, 154(9): 3152−3167. doi: 10.1210/en.2012-2185
    [14]
    Haim A, Levi G. 1990. Role of body temperature in seasonal acclimatization: photoperiod-induced rhythms and heat production in Meriones crassus. Journal of Experimental Zoology, 256(3): 237–241.
    [15]
    Handschin C, Spiegelman BM. 2006. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocrine Reviews, 27(7): 728−735. doi: 10.1210/er.2006-0037
    [16]
    Hayes JP, Garland T Jr. 1995. The evolution of endothermy: testing the aerobic capacity model. Evolution, 49(5): 836−847. doi: 10.1111/j.1558-5646.1995.tb02320.x
    [17]
    Heeren J, Scheja L. 2018. Brown adipose tissue and lipid metabolism. Current Opinion in Lipidology, 29(3): 180−185. doi: 10.1097/MOL.0000000000000504
    [18]
    Heldmaier G, Steinlechner S, Ruf T, Wiesinger H, Klingenspor M. 1989. Photoperiod and thermoregulation in vertebrates: body temperature rhythms and thermogenic acclimation. Journal of Biological Rhythms, 4(2): 139−153. doi: 10.1177/074873048900400211
    [19]
    Horscroft C, Ennis S, Pengelly RJ, Sluckin TJ, Collins A. 2019. Sequencing era methods for identifying signatures of selection in the genome. Briefings in Bioinformatics, 20(6): 1997−2008. doi: 10.1093/bib/bby064
    [20]
    Hu LR, Brito LF, Abbas Z, Sammad A, Kang L, Wang DS, et al. 2021. Investigating the short-term effects of cold stress on metabolite responses and metabolic pathways in inner-Mongolia Sanhe cattle. Animals, 11(9): 2493. doi: 10.3390/ani11092493
    [21]
    Hughes DA, Jastroch M, Stoneking M, Klingenspor M. 2009. Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. BMC Evolutionary Biology, 9: 4. doi: 10.1186/1471-2148-9-4
    [22]
    Igoshin A, Yudin N, Aitnazarov R, Yurchenko AA, Larkin DM. 2021. Whole-genome resequencing points to candidate DNA loci affecting body temperature under cold stress in Siberian cattle populations. Life, 11(9): 959. doi: 10.3390/life11090959
    [23]
    Junier T, Zdobnov EM. 2010. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics, 26(13): 1669−1670. doi: 10.1093/bioinformatics/btq243
    [24]
    Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M. 2010. Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxidants & Redox Signaling, 13(2): 157−192.
    [25]
    Kirov SA, Talan MI, Kosheleva NA, Engel BT. 1996. Nonshivering thermogenesis during acute cold exposure in adult and aged C57BL/6J mice. Experimental Gerontology, 31(3): 409−419. doi: 10.1016/0531-5565(95)02035-7
    [26]
    Klingenberg M. 1999. Uncoupling protein—A useful energy dissepator. Journal of Bioenergetics and Biomembranes, 31(5): 419−430. doi: 10.1023/A:1005440221914
    [27]
    Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. 2020. gprofiler2—an R package for gene list functional enrichment analysis and namespace conversion toolset g: Profiler. F1000 Research, 9: 709. doi: 10.12688/f1000research.24956.2
    [28]
    Lai SJ, Liu YP, Liu YX, Li XW, Yao YG. 2006. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Molecular Phylogenetics and Evolution, 38(1): 146−154. doi: 10.1016/j.ympev.2005.06.013
    [29]
    Lan DL, Xiong XR, Mipam TD, Fu CX, Li Q, Ai Y, et al. 2018. Genetic diversity, molecular phylogeny, and selection evidence of Jinchuan yak revealed by whole-genome resequencing. G3 Genes| Genomes| Genetics, 8(3): 945−952.
    [30]
    Lee J, Choi J, Aja S, Scafidi S, Wolfgang MJ. 2016. Loss of adipose fatty acid oxidation does not potentiate obesity at thermoneutrality. Cell Reports, 14(6): 1308−1316. doi: 10.1016/j.celrep.2016.01.029
    [31]
    Lee J, Ellis JM, Wolfgang MJ. 2015. Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation. Cell Reports, 10(2): 266−279. doi: 10.1016/j.celrep.2014.12.023
    [32]
    Lei CZ, Chen H, Zhang HC, Cai X, Liu RY, Luo LY, et al. 2006. Origin and phylogeographical structure of Chinese cattle. Animal Genetics, 37(6): 579−582. doi: 10.1111/j.1365-2052.2006.01524.x
    [33]
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [34]
    Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature, 475(7357): 493−496. doi: 10.1038/nature10231
    [35]
    Li Z, Yi CX, Katiraei S, Kooijman S, Zhou EC, Chung CK, et al. 2018. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut, 67(7): 1269−1279. doi: 10.1136/gutjnl-2017-314050
    [36]
    Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, et al. 2013. Evidence for two types of brown adipose tissue in humans. Nature Medicine, 19(5): 631−634. doi: 10.1038/nm.3017
    [37]
    Lynes MD, Schulz TJ, Pan AJ, Tseng YH. 2015. Disruption of insulin signaling in myf5-expressing progenitors leads to marked paucity of brown fat but normal muscle development. Endocrinology, 156(5): 1637−1647. doi: 10.1210/en.2014-1773
    [38]
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    [39]
    Mei CG, Wang HC, Liao QJ, Wang LZ, Cheng G, Wang HB, et al. 2018. Genetic architecture and selection of Chinese cattle revealed by whole genome resequencing. Molecular Biology and Evolution, 35(3): 688−699. doi: 10.1093/molbev/msx322
    [40]
    Montanari T, Pošćić N, Colitti M. 2017. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obesity Reviews, 18(5): 495−513. doi: 10.1111/obr.12520
    [41]
    Murray C, Huerta-Sanchez E, Casey F, Bradley DG. 2010. Cattle demographic history modelled from autosomal sequence variation. Philosophical Transactions of the Royal Society B:Biological Sciences, 365(1552): 2531−2539. doi: 10.1098/rstb.2010.0103
    [42]
    Nahon KJ, Janssen LGM, Sardjoe Mishre ASD, Bilsen MP, Van Der Eijk JA, Botani K, et al. 2020. The effect of mirabegron on energy expenditure and brown adipose tissue in healthy lean South Asian and Europid men. Diabetes, Obesity and Metabolism, 22(11): 2032−2044. doi: 10.1111/dom.14120
    [43]
    Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B. 2005. PPARγ in the control of brown adipocyte differentiation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1740(2): 293−304. doi: 10.1016/j.bbadis.2005.02.003
    [44]
    Nicholls DG, Locke RM. 1984. Thermogenic mechanisms in brown fat. Physiological Reviews, 64(1): 1−64. doi: 10.1152/physrev.1984.64.1.1
    [45]
    Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biological Reviews, 80(4): 589−610. doi: 10.1017/S1464793105006822
    [46]
    Payne WJA, Hodges J. 1997. Tropical Cattle: Origins, Breeds & Breeding Policies. Oxford: Wiley-Blackwell.
    [47]
    Plotree D, Plotgram D. 1989. PHYLIP-Phylogeny Inference Package (version 3.2).
    [48]
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8): 904−909. doi: 10.1038/ng1847
    [49]
    Puigserver P, Wu ZD, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92(6): 829−839. doi: 10.1016/S0092-8674(00)81410-5
    [50]
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3): 559−575. doi: 10.1086/519795
    [51]
    Qiu Q, Wang LZ, Wang K, Yang YZ, Ma T, Wang ZF, et al. 2015. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nature Communications, 6: 10283. doi: 10.1038/ncomms10283
    [52]
    Quan LH, Zhang CH, Dong M, Jiang J, Xu HD, Yan CL, et al. 2020. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation. Gut, 69(7): 1239−1247. doi: 10.1136/gutjnl-2019-319114
    [53]
    Rowlatt U, Mrosovsky N, English A. 1971. A comparative survey of brown fat in the neck and axilla of mammals at birth. Neonatology, 17(1-2): 53−83. doi: 10.1159/000240303
    [54]
    Saito S, Saito CT, Shingai R. 2008. Adaptive evolution of the uncoupling protein 1 gene contributed to the acquisition of novel nonshivering thermogenesis in ancestral eutherian mammals. Gene, 408(1-2): 37−44. doi: 10.1016/j.gene.2007.10.018
    [55]
    Scarpace PJ, Matheny M, Borst S, Tümer N. 1994. Thermoregulation with age: role of thermogenesis and uncoupling protein expression in brown adipose tissue. Proceedings of the Society for Experimental Biology and Medicine, 205(2): 154−161. doi: 10.3181/00379727-205-43691
    [56]
    Seale P, Kajimura S, Yang WL, Chin S, Rohas LM, Uldry M, et al. 2007. Transcriptional control of brown fat determination by PRDM16. Cell Metabolism, 6(1): 38−54. doi: 10.1016/j.cmet.2007.06.001
    [57]
    Smith SB, Carstens GE, Randel RD, Mersmann HJ, Lunt DK. 2004. Brown adipose tissue development and metabolism in ruminants. Journal of Animal Science, 82(3): 942−954. doi: 10.2527/2004.823942x
    [58]
    Takato T, Iwata K, Murakami C, Wada Y, Sakane F. 2017. Chronic administration of myristic acid improves hyperglycaemia in the Nagoya-Shibata-Yasuda mouse model of congenital type 2 diabetes. Diabetologia, 60(10): 2076−2083. doi: 10.1007/s00125-017-4366-4
    [59]
    Tontonoz P, Graves RA, Budavari AI, Erdjument-Bromage H, Lui M, Hu ED, et al. 1994. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPARγ and RXRα. Nucleic Acids Research, 22(25): 5628−5634. doi: 10.1093/nar/22.25.5628
    [60]
    Wang K, Li MY, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16): e164. doi: 10.1093/nar/gkq603
    [61]
    Zhao SC, Zheng PP, Dong SS, Zhan XJ, Wu Q, Guo XS, et al. 2013. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics, 45(1): 67−71. doi: 10.1038/ng.2494
    [62]
    Zheng XY, Yu BL, Xie YF, Zhao SP, Wu CL. 2017. Apolipoprotein A5 regulates intracellular triglyceride metabolism in adipocytes. Molecular Medicine Reports, 16(5): 6771−6779. doi: 10.3892/mmr.2017.7461
    [63]
    Zhou A, Pawlowski WP. 2014. Regulation of meiotic gene expression in plants. Frontiers in Plant Science, 5: 413.
  • ZR-2021-360 Supplementary Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1199) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return