Volume 43 Issue 3
May  2022
Turn off MathJax
Article Contents
Jin-Wu He, Ru Zhang, Jie Yang, Zhou Chang, Li-Xin Zhu, Si-Han Lu, Fei-Ang Xie, Jun-Lai Mao, Zhi-Wei Dong, Gui-Chun Liu, Ping Hu, Yan Dong, Wen-Ting Wan, Ruo-Ping Zhao, Tian-Zhu Xiong, Jorge L. León-Cortés, Chu-Yang Mao, Wei Zhang, Shuai Zhan, Jun Li, Lei Chen, Wen Wang, Xue-Yan Li. High-quality reference genomes of swallowtail butterflies provide insights into their coloration evolution. Zoological Research, 2022, 43(3): 367-379. doi: 10.24272/j.issn.2095-8137.2021.303
Citation: Jin-Wu He, Ru Zhang, Jie Yang, Zhou Chang, Li-Xin Zhu, Si-Han Lu, Fei-Ang Xie, Jun-Lai Mao, Zhi-Wei Dong, Gui-Chun Liu, Ping Hu, Yan Dong, Wen-Ting Wan, Ruo-Ping Zhao, Tian-Zhu Xiong, Jorge L. León-Cortés, Chu-Yang Mao, Wei Zhang, Shuai Zhan, Jun Li, Lei Chen, Wen Wang, Xue-Yan Li. High-quality reference genomes of swallowtail butterflies provide insights into their coloration evolution. Zoological Research, 2022, 43(3): 367-379. doi: 10.24272/j.issn.2095-8137.2021.303

High-quality reference genomes of swallowtail butterflies provide insights into their coloration evolution

doi: 10.24272/j.issn.2095-8137.2021.303
#Authors contributed equally to this work
Funds:  This work was supported by the National Natural Science Foundation of China (31621062 to W.W., 32070482 to X.Y.L.), Chinese Academy of Sciences (“Light of West China” to X.Y.L., XDB13000000 to W.W.), Yunnan Provincial Science and Technology Department (Talent Project of Yunnan: 202105AC160039), and Biodiversity Conservation Program of the Ministry of Ecology and Environment, China (China BON-Butterflies)
More Information
  • Swallowtail butterflies (Papilionidae) are a historically significant butterfly group due to their colorful wing patterns, extensive morphological diversity, and phylogenetically important position as a sister group to all other butterflies and have been widely studied regarding ecological adaption, phylogeny, genetics, and evolution. Notably, they contain a unique class of pigments, i.e., papiliochromes, which contribute to their color diversity and various biological functions such as predator avoidance and mate preference. To date, however, the genomic and genetic basis of their color diversity and papiliochrome origin in a phylogenetic and evolutionary context remain largely unknown. Here, we obtained high-quality reference genomes of 11 swallowtail butterfly species covering all tribes of Papilioninae and Parnassiinae using long-read sequencing technology. Combined with previously published butterfly genomes, we obtained robust phylogenetic relationships among tribes, overcoming the challenges of incomplete lineage sorting (ILS) and gene flow. Comprehensive genomic analyses indicated that the evolution of Papilionidae-specific conserved non-exonic elements (PSCNEs) and transcription factor binding sites (TFBSs) of patterning and transporter/cofactor genes, together with the rapid evolution of transporters/cofactors, likely promoted the origin and evolution of papiliochromes. These findings not only provide novel insights into the genomic basis of color diversity, especially papiliochrome origin in swallowtail butterflies, but also provide important data resources for exploring the evolution, ecology, and conservation of butterflies.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Allio R, Scornavacca C, Nabholz B, Clamens AL, Sperling FA, Condamine FL. 2020. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Systematic Biology, 69(1): 38−60. doi: 10.1093/sysbio/syz030
    Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17): 3389−3402. doi: 10.1093/nar/25.17.3389
    Armstrong J, Hickey G, Diekhans M, Fiddes IT, Novak AM, Deran A, et al. 2020. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature, 587(7833): 246−251. doi: 10.1038/s41586-020-2871-y
    Bao WD, Kojima KK, Kohany O. 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6(1): 11. doi: 10.1186/s13100-015-0041-9
    Beldade P, Brakefield PM. 2002. The genetics and evo-devo of butterfly wing patterns. Nature Reviews Genetics, 3(6): 442−452. doi: 10.1038/nrg818
    Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2): 573−580. doi: 10.1093/nar/27.2.573
    Bernards A. 2003. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1603(2): 47–82.
    Bhuin T, Roy JK. 2014. Rab proteins: the key regulators of intracellular vesicle transport. Experimental Cell Research, 328(1): 1−19. doi: 10.1016/j.yexcr.2014.07.027
    Bonebrake TC, Ponisio LC, Boggs CL, Ehrlich PR. 2010. More than just indicators: a review of tropical butterfly ecology and conservation. Biological Conservation, 143(8): 1831−1841. doi: 10.1016/j.biocon.2010.04.044
    Burge C, Karlin S. 1997. Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology, 268(1): 78−94. doi: 10.1006/jmbi.1997.0951
    Carroll SB. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134(1): 25−36. doi: 10.1016/j.cell.2008.06.030
    Chen L, Qiu Q, Jiang Y, Wang K, Lin ZS, Li ZP, et al. 2019. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science, 364(6446): eaav6202. doi: 10.1126/science.aav6202
    Condamine FL, Nabholz B, Clamens AL, Dupuis JR, Sperling FAH. 2018. Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in Bayesian molecular dating. Systematic Entomology, 43(3): 460−480. doi: 10.1111/syen.12284
    Condamine FL, Sperling FAH, Wahlberg N, Rasplus JY, Kergoat GJ. 2012. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters, 15(3): 267−277. doi: 10.1111/j.1461-0248.2011.01737.x
    Cong Q, Borek D, Otwinowski Z, Grishin NV. 2015. Tiger swallowtail genome reveals mechanisms for speciation and caterpillar chemical defense. Cell Reports, 10(6): 910−919. doi: 10.1016/j.celrep.2015.01.026
    Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, Dikow RB, et al. 2019. Genomic architecture and introgression shape a butterfly radiation. Science, 366(6465): 594−599. doi: 10.1126/science.aaw2090
    Espeland M, Breinholt J, Willmott KR, Warren AD, Vila R, Toussaint EFA, et al. 2018. A comprehensive and dated phylogenomic analysis of butterflies. Current Biology, 28(5): 770−778. doi: 10.1016/j.cub.2018.01.061
    Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. 2015. HMMER web server: 2015 update. Nucleic Acids Research, 43(W1): W30−W38. doi: 10.1093/nar/gkv397
    Fornes O, Castro-Mondragon JA, Khan A, Van Der Lee R, Zhang X, Richmond PA, et al. 2020. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 48(D1): D87−D92.
    Gorfinkiel N, Morata G, Guerrero I. 1997. The homeobox gene Distal-less induces ventral appendage development in Drosophila. Genes & Development, 11(17): 2259–2271.
    Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology, 9(1): R7. doi: 10.1186/gb-2008-9-1-r7
    Halfon MS. 2017. Perspectives on gene regulatory network evolution. Trends in Genetics, 33(7): 436−447. doi: 10.1016/j.tig.2017.04.005
    Häuser CL, De Jong R, Lamas G, Robbins RK, Smith C, Vane-Wright RI. 2005. Papilionidae–revised GloBIS/GART species checklist (2nd draft). http://www.insectsonline.de/frames/papilio.htm.
    Hochrainer K, Mayer H, Baranyi U, Binder B, Lipp J, Kroismayr R. 2005. The human HERC family of ubiquitin ligases: novel members, genomic organization, expression profiling, and evolutionary aspects. Genomics, 85(2): 153−164. doi: 10.1016/j.ygeno.2004.10.006
    Hoekstra HE, Coyne JA. 2007. The locus of evolution: evo devo and the genetics of adaptation. Evolution, 61(5): 995−1016. doi: 10.1111/j.1558-5646.2007.00105.x
    Hubisz MJ, Pollard KS, Siepel A. 2011. PHAST and RPHAST: phylogenetic analysis with space/time models. Briefings in Bioinformatics, 12(1): 41−51. doi: 10.1093/bib/bbq072
    Igarashi S. 1984. The classification of the Papilionidae mainly based on the morphology of their immature stages. Lepidoptera Science, 34(2): 41−96.
    Iijima T, Kajitani R, Komata S, Lin CP, Sota T, Itoh T, et al. 2018. Parallel evolution of Batesian mimicry supergene in two Papilio butterflies, P. polytes and P. memnon. Science Advances, 4(4): eaao5416.
    Ishida M, Oguchi ME, Fukuda M. 2016. Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Structure and Function, 41(2): 61−79. doi: 10.1247/csf.16008
    Jagla K, Stanceva I, Dretzen G, Bellard F, Bellard M. 1994. A distinct class of homeodomain proteins is encoded by two sequentially expressed Drosophila genes from the 93D/E cluster. Nucleic Acids Research, 22(7): 1202−1207. doi: 10.1093/nar/22.7.1202
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346(6215): 1320−1331. doi: 10.1126/science.1253451
    Jiao XY, Flouri T, Rannala B, Yang ZH. 2020. The impact of cross-species gene flow on species tree estimation. Systematic Biology, 69(5): 830−847. doi: 10.1093/sysbio/syaa001
    Jin H, Seki T, Yamaguchi J, Fujiwara H. 2019. Prepatterning of Papilio xuthus caterpillar camouflage is controlled by three homeobox genes: clawless, abdominal-A, and Abdominal-B. Science Advances, 5(4): eaav7569.
    Koch PB, Behnecke B, Ffrench-Constant RH. 2000. The molecular basis of melanism and mimicry in a swallowtail butterfly. Current Biology, 10(10): 591−594. doi: 10.1016/S0960-9822(00)00494-2
    Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics, 5(1): 59. doi: 10.1186/1471-2105-5-59
    Lamber EP, Siedenburg AC, Barr FA. 2019. Rab regulation by GEFs and GAPs during membrane traffic. Current Opinion in Cell Biology, 59: 34−39. doi: 10.1016/j.ceb.2019.03.004
    Li XY, Fan DD, Zhang W, Liu GC, Zhang L, Zhao L, et al. 2015. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications, 6(1): 8212. doi: 10.1038/ncomms9212
    Liu GC, Chang Z, Chen L, He JW, Dong ZW, Yang J, et al. 2020. Genome size variation in butterflies (Insecta, Lepidotera, Papilionoidea): a thorough phylogenetic comparison. Systematic Entomology, 45(3): 571−582. doi: 10.1111/syen.12417
    Liu GC, Liu W, Zhao RP, He JW, Dong ZW, Chen L, et al. 2021. Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genomics, 22(1): 120.
    Lloyd V, Ramaswami M, Krämer H. 1998. Not just pretty eyes: Drosophila eye-colour mutations and lysosomal delivery. Trends in Cell Biology, 8(7): 257−259. doi: 10.1016/S0962-8924(98)01270-7
    Lu SH, Yang J, Dai XL, Xie FA, He JW, Dong ZW, et al. 2019. Chromosomal-level reference genome of Chinese peacock butterfly (Papilio bianor) based on third-generation DNA sequencing and Hi-C analysis. Gigascience, 8(11): giz128. doi: 10.1093/gigascience/giz128
    Lü ZM, Gong L, Ren YD, Chen YJ, Wang ZK, Liu LQ, et al. 2021. Large-scale sequencing of flatfish genomes provides insights into the polyphyletic origin of their specialized body plan. Nature Genetics, 53(5): 742−751. doi: 10.1038/s41588-021-00836-9
    Ma JP, Plesken H, Treisman JE, Edelman-Novemsky I, Ren MD. 2004. Lightoid and claret: a rab GTPase and its putative guanine nucleotide exchange factor in biogenesis of Drosophila eye pigment granules. Proceedings of the National Academy of Sciences of the United States of America, 101(32): 11652−11657. doi: 10.1073/pnas.0401926101
    Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics, 20(16): 2878−2879. doi: 10.1093/bioinformatics/bth315
    Mallet J, Besansky N, Hahn MW. 2016. How reticulated are species?. Bioessays, 38(2): 140−149. doi: 10.1002/bies.201500149
    Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, et al. 2012. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proceedings of the National Academy of Sciences of the United States of America, 109(31): 12632−12637. doi: 10.1073/pnas.1204800109
    Martin A, Reed RD. 2010. Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Molecular Biology and Evolution, 27(12): 2864−2878. doi: 10.1093/molbev/msq173
    Martin A, Reed RD. 2014. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Developmental Biology, 395(2): 367−378. doi: 10.1016/j.ydbio.2014.08.031
    Matsuoka Y, Monteiro A. 2018. Melanin pathway genes regulate color and morphology of butterfly wing scales. Cell Reports, 24(1): 56−65. doi: 10.1016/j.celrep.2018.05.092
    Matsuoka Y, Monteiro A. 2021. Hox genes are essential for the development of eyespots in Bicyclus anynana butterflies. Genetics, 217(1): iyaa005. doi: 10.1093/genetics/iyaa005
    Milán M, Weihe U, Tiong S, Bender W, Cohen SM. 2001. msh specifies dorsal cell fate in the Drosophila wing. Development, 128(17): 3263−3268. doi: 10.1242/dev.128.17.3263
    Mishra S, Smolik SM, Forte MA, Stork PJS. 2005. Ras-independent activation of ERK signaling via the Torso receptor tyrosine kinase is mediated by Rap1. Current Biology, 15(4): 366−370. doi: 10.1016/j.cub.2005.02.022
    Nazari V, Zakharov EV, Sperling FAH. 2007. Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Molecular Phylogenetics and Evolution, 42(1): 131−156. doi: 10.1016/j.ympev.2006.06.022
    Nelson AC, Wardle FC. 2013. Conserved non-coding elements and cis regulation: actions speak louder than words. Development, 140(7): 1385−1395. doi: 10.1242/dev.084459
    Nijhout HF. 1990. A comprehensive model for colour pattern formation in butterflies. Proceedings of the Royal Society B Biological Sciences, 239(1294): 81−113.
    Nijhout HF. 1991. The Development and Evolution of Butterfly Wing Patterns. Washington: Smithsonian Institution Press.
    Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, et al. 2015. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nature Genetics, 47(4): 405−409. doi: 10.1038/ng.3241
    Oxford GS, Gillespie RG. 1998. Evolution and ecology of spider coloration. Annual Review of Entomology, 43: 619−643. doi: 10.1146/annurev.ento.43.1.619
    Palmer DH, Kronforst MR. 2020. A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nature Communications, 11(1): 6.
    Podsiadlowski L, Tunström K, Espeland M, Wheat CW. 2021. The genome assembly and annotation of the Apollo butterfly Parnassius apollo, a flagship species for conservation biology. Genome Biology and Evolution, 13(8): evab122. doi: 10.1093/gbe/evab122
    Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. 2017. Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Research, 45(22): 12611−12624. doi: 10.1093/nar/gkx1074
    Reiner DJ, Lundquist EA. 2018. Small GTPases. WormBook: The Online Review of C. elegans Biology [Internet]: 1–65. http://www.wormbook.org/chapters/www_smallGTPases.2/smallGTPases.2.pdf.
    Ruan J, Li H. 2020. Fast and accurate long-read assembly with wtdbg2. Nature Methods, 17(2): 155−158. doi: 10.1038/s41592-019-0669-3
    Sayyari E, Whitfield JB, Mirarab S. 2018. DiscoVista: interpretable visualizations of gene tree discordance. Molecular Phylogenetics and Evolution, 122: 110−115. doi: 10.1016/j.ympev.2018.01.019
    Scriber JM, Tsubaki Y, Lederhouse RC. 1995. Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Gainesville: Scientific Publishers.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498−2504. doi: 10.1101/gr.1239303
    Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou MM, Rosenbloom K, et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research, 15(8): 1034−1050. doi: 10.1101/gr.3715005
    Smit AFA, Hubley R, Green P. 2015. RepeatMasker Open-4.0 (2015). http://www.repeatmasker.org/RMDownload.html.
    Solís-Lemus C, Bastide P, Ané C. 2017. PhyloNetworks: a package for phylogenetic networks. Molecular Biology and Evolution, 34(12): 3292−3298. doi: 10.1093/molbev/msx235
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research, 34(S2): W435−W439.
    Sundaram MV. 2005. The love-hate relationship between Ras and Notch. Genes & Development, 19(16): 1825−1839.
    Swarup S, Verheyen EM. 2012. Wnt/Wingless signaling in Drosophila. Cold Spring Harbor Perspectives in Biology, 4(6): a007930.
    Tatematsu KI, Yamamoto K, Uchino K, Narukawa J, Iizuka T, Banno Y, et al. 2011. Positional cloning of silkworm white egg 2 (w-2) locus shows functional conservation and diversification of ABC transporters for pigmentation in insects. Genes to Cells, 16(4): 331−342. doi: 10.1111/j.1365-2443.2011.01490.x
    Timmermans MJTN, Srivathsan A, Collins S, Meier R, Vogler AP. 2020. Mimicry diversification in Papilio dardanus via a genomic inversion in the regulatory region of engrailed-invected. Proceedings of the Royal Society B-Biological Sciences, 287(1926): 20200443.
    Tong XL, Hrycaj S, Podlaha O, Popadic A, Monteiro A. 2014. Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana. Developmental Biology, 394(2): 357–366.
    Tyler HA, Brown Jr KS, Wilson KH. 1994. Swallowtail Butterflies of the Americas: a Study in Biological Dynamics, Ecological Diversity, Biosystematics, and Conservation. Gainesville: Scientific Publishers.
    Umebachi Y. 1985. Papiliochrome, a new pigment group of butterfly. Zoological Science, 2(2): 163−174.
    Van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DJ, Minet J, et al. 2011a. Order Lepidoptera. Zhang ZQ. In: Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness. Auckland, New Zealand: Zootaxa.
    Van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DJ, Minet J, et al. 2011b. Order Lepidoptera Linnaeus, 1758. Zhang ZQ. In: Animal Biodiversity: An outline of Higher-Level Classification and Survey of Taxonomic Richness (Vol. 3148, pp. 212–221). Auckland, New Zealand: Magnolia Press (Zootaxa).
    Vankuren NW, Massardo D, Nallu S, Kronforst MR. 2019. Butterfly mimicry polymorphisms highlight phylogenetic limits of gene reuse in the evolution of diverse adaptations. Molecular Biology and Evolution, 36(12): 2842−2853. doi: 10.1093/molbev/msz194
    Vavouri T, Walter K, Gilks WR, Lehner B, Elgar G. 2007. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biology, 8(2): R15. doi: 10.1186/gb-2007-8-2-r15
    Villa-Cuesta E, Modolell J. 2005. Mutual repression between msh and Iro-C is an essential component of the boundary between body wall and wing in Drosophila. Development, 132(18): 4087–4096.
    Wallace AR. 1865. On the phenomena of variation and geographical distribution as illustrated by the Papilionidae of the Malayan region. Transactions of the Linnean Society of London, 25(1): 1−71. doi: 10.1111/j.1096-3642.1865.tb00178.x
    Wang K, Lenstra JA, Liu L, Hu QJ, Ma T, Qiu Q, et al. 2018. Incomplete lineage sorting rather than hybridization explains the inconsistent phylogeny of the wisent. Communications Biology, 1(1): 169. doi: 10.1038/s42003-018-0176-6
    Wen DQ, Yu Y, Zhu JF, Nakhleh L. 2018. Inferring phylogenetic networks using PhyloNet. Systematic Biology, 67(4): 735−740. doi: 10.1093/sysbio/syy015
    Wilts BD, Trzeciak TM, Vukusic P, Stavenga DG. 2012. Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids. Journal of Experimental Biology, 215(5): 796−805. doi: 10.1242/jeb.060103
    Wittkopp PJ, Beldade P. 2009. Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Seminars in Cell & Developmental Biology, 20(1): 65−71.
    Wu JM, Mao XZ, Cai T, Luo JC, Wei LP. 2006. KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Research, 34(S2): W720−W724.
    Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research, 35(S2): W265−W268.
    Yagi T, Sasaki G, Takebe H. 1999. Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. Journal of Molecular Evolution, 48(1): 42−48. doi: 10.1007/PL00006443
    Yang J, Wan WT, Xie M, Mao JL, Dong ZW, Lu SH, et al. 2020a. Chromosome-level reference genome assembly and gene editing of the dead-leaf butterfly Kallima inachus. Molecular Ecology Resources, 20(4): 1080–1092.
    Yang YZ, Sun PC, Lv LK, Wang DL, Ru DF, Li Y, et al. 2020b. Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nature Plants, 6(3): 215−222. doi: 10.1038/s41477-020-0594-6
    Yang ZH. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    Yuan Y, Zhang YL, Zhang PJ, Liu C, Wang JH, Gao HY, et al. 2021. Comparative genomics provides insights into the aquatic adaptations of mammals. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2106080118. doi: 10.1073/pnas.2106080118
    Zakharov EV, Caterino MS, Sperling FAH. 2004. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Systematic Biology, 53(2): 278−298. doi: 10.1080/10635150490423692
    Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19(S6): 153. doi: 10.1186/s12859-018-2129-y
    Zou ZT, Zhang JZ. 2015. Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations?. Molecular Biology and Evolution, 32(8): 2085−2096. doi: 10.1093/molbev/msv091
  • ZR-2021-303 Supplementary Materials.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (4044) PDF downloads(544) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint