Volume 43 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Xiao-Xiao Shu, Yin-Meng Hou, Ming-Yang Cheng, Guo-Cheng Shu, Xiu-Qin Lin, Bin Wang, Cheng Li, Zhao-Bin Song, Jian-Ping Jiang, Feng Xie. Rapid genetic divergence and mitonuclear discordance in the Taliang knobby newt (Liangshantriton taliangensis, Salamandridae, Caudata) and their driving forces. Zoological Research, 2022, 43(1): 129-146. doi: 10.24272/j.issn.2095-8137.2021.299
Citation: Xiao-Xiao Shu, Yin-Meng Hou, Ming-Yang Cheng, Guo-Cheng Shu, Xiu-Qin Lin, Bin Wang, Cheng Li, Zhao-Bin Song, Jian-Ping Jiang, Feng Xie. Rapid genetic divergence and mitonuclear discordance in the Taliang knobby newt (Liangshantriton taliangensis, Salamandridae, Caudata) and their driving forces. Zoological Research, 2022, 43(1): 129-146. doi: 10.24272/j.issn.2095-8137.2021.299

Rapid genetic divergence and mitonuclear discordance in the Taliang knobby newt (Liangshantriton taliangensis, Salamandridae, Caudata) and their driving forces

doi: 10.24272/j.issn.2095-8137.2021.299
Funds:  This study was supported by the National Key Research and Development Programs of China (2017YFC0505202), Construction of Basic Conditions Platform of Sichuan Science and Technology Department (2019JDPT0020), and Species Conservation Project of Liziping National Nature Reserve
More Information
  • Corresponding author: E-mail: Jiangjp@cib.ac.cnxiefeng@cib.ac.cn
  • Received Date: 2021-10-12
  • Accepted Date: 2021-12-21
  • Available Online: 2021-12-21
  • Publish Date: 2022-01-18
  • The Hengduan Mountains Region (HMR) is the largest “evolutionary frontier” of the northern temperate zone, and the origin and maintenance of species in this area is a research hotspot. Exploring species-specific responses to historical and contemporary environmental changes will improve our understanding of the role of this region in maintaining biodiversity. In this study, mitochondrial and microsatellite diversities were used to assess the contributions of paleogeological events, Pleistocene climatic oscillations, and contemporary landscape characteristics to the rapid intraspecific diversification of Liangshantriton taliangensis, a vulnerable amphibian species endemic to several sky-island mountains in the southeastern HMR. Divergence date estimations suggested that the East Asian monsoon, local uplifting events (Xigeda Formation strata), and Early-Middle Pleistocene transition (EMPT) promoted rapid divergence of L. taliangensis during the Pleistocene, yielding eight mitochondrial lineages and six nuclear genetic lineages. Moreover, population genetic structures were mainly fixed through isolation by resistance. Multiple in situ refugia were identified by ecological niche models and high genetic diversity, which played crucial roles in the persistence and divergence of L. taliangensis during glacial-interglacial cycles. Dramatic climatic fluctuations further promoted recurrent isolation and admixing of populations in scattered glacial refugia. The apparent mitonuclear discordance was likely the result of introgression by secondary contact and/or female-biased dispersal. Postglacial expansion generated two major secondary contact zones (Ganluo (GL) and Chuhongjue (CHJ)). Identification of conservation management units and dispersal corridors offers important recommendations for the conservation of this species.
  • loading
  • [1]
    An ZS, Kutzbach JE, Prell WL, Porter SC. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62−66. doi: 10.1038/35075035
    [2]
    Araújo MB, Guisan A. 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33(10): 1677−1688. doi: 10.1111/j.1365-2699.2006.01584.x
    [3]
    Atlas JE, Fu J. 2019. Isolation by resistance analysis reveals major barrier effect imposed by the Tsinling Mountains on the Chinese wood frog. Journal of Zoology, 309(1): 69−75. doi: 10.1111/jzo.12702
    [4]
    Bani L, Pisa G, Luppi M, Spilotros G, Fabbri E, Randi E, et al. 2015. Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population. Ecology and Evolution, 5(16): 3472−3485. doi: 10.1002/ece3.1617
    [5]
    Beerli P, Palczewski M. 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics, 185(1): 313−326. doi: 10.1534/genetics.109.112532
    [6]
    Belasen A, Burkett E, Injaian A, Li K, Allen D, Perfecto I. 2013. Effect of sub-canopy on habitat selection in the Blue-spotted Salamander (Ambystoma laterale-jeffersonianum unisexual complex). Copeia, 2013(2): 254−261. doi: 10.1643/CE-12-051
    [7]
    Bouchenak-Khelladi Y, Onstein RE, Xing YW, Schwery O, Linder HP. 2015. On the complexity of triggering evolutionary radiations. New Phytologist, 207(2): 313−326. doi: 10.1111/nph.13331
    [8]
    Boufford DE. 2014. Biodiversity hotspot: Chinaʼs Hengduan Mountains. Arnoldia, 72(1): 24−35.
    [9]
    Brown JL. 2014. SDMtoolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7): 694−700. doi: 10.1111/2041-210X.12200
    [10]
    Bryson Jr RW, Smith BT, Nieto-Montes de Oca A, García-Vázquez UO, Riddle BR. 2014. The role of mitochondrial introgression in illuminating the evolutionary history of Nearctic treefrogs. Zoological Journal of the Linnean Society, 172(1): 103−116. doi: 10.1111/zoj.12169
    [11]
    Campos FS, Lourenço-de-Moraes R, Ruas DS, Mira-Mendes CV, Franch M, Llorente GA, et al. 2020. Searching for networks: ecological connectivity for amphibians under climate change. Environmental Management, 65(1): 46−61. doi: 10.1007/s00267-019-01240-0
    [12]
    Chan KMA, Levin SA. 2005. Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evolution, 59(4): 720−729. doi: 10.1111/j.0014-3820.2005.tb01748.x
    [13]
    Chen DQ, Dong ZJ, Fang M, Fu JJ, Jia XY, Jiang BJ, et al. 2019. Microsatellite records for volume 11, issue 1. Conservation Genetics Resources, 11(1): 109−112. doi: 10.1007/s12686-019-01085-z
    [14]
    Clark PU, Alley RB, Pollard D. 1999. Northern Hemisphere ice-sheet influences on global climate change. Science, 286(5442): 1104−1111. doi: 10.1126/science.286.5442.1104
    [15]
    Clark PU, Archer D, Pollard D, Blum JD, Rial JA, Brovkin V, et al. 2006. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 25(23-24): 3150−3184. doi: 10.1016/j.quascirev.2006.07.008
    [16]
    Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10): 1657−1659. doi: 10.1046/j.1365-294x.2000.01020.x
    [17]
    Currat M, Ruedi M, Petit RJ, Excoffier L. 2008. The hidden side of invasions: massive introgression by local genes. Evolution, 62(8): 1908−1920.
    [18]
    Curtis JMR, Taylor EB. 2004. The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biological Conservation, 115(1): 45−54. doi: 10.1016/S0006-3207(03)00092-2
    [19]
    Davis MB, Shaw RG. 2001. Range shifts and adaptive responses to Quaternary climate change. Science, 292(5517): 673−679. doi: 10.1126/science.292.5517.673
    [20]
    Deng JY, Fu RH, Compton SG, Liu M, Wang Q, Yuan C, et al. 2020. Sky islands as foci for divergence of fig trees and their pollinators in Southwest China. Molecular Ecology, 29(4): 762−782. doi: 10.1111/mec.15353
    [21]
    Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB. 1994. Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91(8): 3166−3170. doi: 10.1073/pnas.91.8.3166
    [22]
    Ding WN, Ree RH, Spicer RA, Xing YW. 2020. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science, 369(6503): 578−581. doi: 10.1126/science.abb4484
    [23]
    Doebeli M, Dieckmann U. 2003. Speciation along environmental gradients. Nature, 421(6920): 259−264. doi: 10.1038/nature01274
    [24]
    Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1): 214. doi: 10.1186/1471-2148-7-214
    [25]
    Dufresnes C, Nicieza AG, Litvinchuk SN, Rodrigues N, Jeffries DL, Vences M, et al. 2020. Are glacial refugia hotspots of speciation and cytonuclear discordances? Answers from the genomic phylogeography of Spanish common frogs. Molecular Ecology, 29(5): 986−1000. doi: 10.1111/mec.15368
    [26]
    Earl DA. vonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2): 359−361. doi: 10.1007/s12686-011-9548-7
    [27]
    Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1): 43−57. doi: 10.1111/j.1472-4642.2010.00725.x
    [28]
    Epperson BK. 2005. Mutation at high rates reduces spatial structure within populations. Molecular Ecology, 14(3): 703−710. doi: 10.1111/j.1365-294X.2005.02429.x
    [29]
    Escoriza D, Hassine JB. 2014. Microclimatic variation in multiple Salamandra algira populations along an altitudinal gradient: phenology and reproductive strategies. Acta Herpetologica, 9(1): 33−41.
    [30]
    Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2611−2620. doi: 10.1111/j.1365-294X.2005.02553.x
    [31]
    Excoffier L, Foll M, Petit RJ. 2009. Genetic consequences of range expansions. Annual Review of Ecology, Evolution, and Systematics, 40: 481−501. doi: 10.1146/annurev.ecolsys.39.110707.173414
    [32]
    Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3): 564−567. doi: 10.1111/j.1755-0998.2010.02847.x
    [33]
    Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, et al. 2015. The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas. Biological Reviews, 90(1): 236−253. doi: 10.1111/brv.12107
    [34]
    Fei L, Ye CY, Jiang JP. 2012. Colored Atlas of Chinese Amphibians and Their Distributions. Chengdu: Sichuan Publishing House of Science and Technology, 1–620. (in Chinese)
    [35]
    Foll M, Gaggiotti O. 2006. Identifying the environmental factors that determine the genetic structure of populations. Genetics, 174(2): 875−891. doi: 10.1534/genetics.106.059451
    [36]
    Fu YX, Li WH. 1993. Statistical tests of neutrality of mutations. Genetics, 133(3): 693−709. doi: 10.1093/genetics/133.3.693
    [37]
    Garrick RC, Banusiewicz JD, Burgess S, Hyseni C, Symula RE. 2019. Extending phylogeography to account for lineage fusion. Journal of Biogeography, 46(2): 268−278. doi: 10.1111/jbi.13503
    [38]
    Gibbs JP. 1998. Amphibian movements in response to forest edges, roads, and streambeds in Southern New England. The Journal of Wildlife Management, 62(2): 584−589. doi: 10.2307/3802333
    [39]
    Gillespie RG, Roderick GK. 2014. Geology and climate drive diversification. Nature, 509(7500): 297−298. doi: 10.1038/509297a
    [40]
    Goudet J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86(6): 485−486. doi: 10.1093/oxfordjournals.jhered.a111627
    [41]
    Goudet J, Perrin N, Waser P. 2002. Tests for sex‐biased dispersal using bi‐parentally inherited genetic markers. Molecular Ecology, 11(6): 1103−1114. doi: 10.1046/j.1365-294X.2002.01496.x
    [42]
    Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2): 221−224. doi: 10.1093/molbev/msp259
    [43]
    Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano Í. 2017. Integrative inference of population history in the Ibero-Maghrebian endemic Pleurodeles waltl (Salamandridae). Molecular Phylogenetics and Evolution, 112: 122−137. doi: 10.1016/j.ympev.2017.04.022
    [44]
    Harpending HC. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66(4): 591−600.
    [45]
    Harrison TM, Copeland P, Kidd WSF, Yin A. 1992. Raising Tibet. Science, 255(5052): 1663−1670. doi: 10.1126/science.255.5052.1663
    [46]
    Hausdorf B, Wilkens H, Strecker U. 2011. Population genetic patterns revealed by microsatellite data challenge the mitochondrial DNA based taxonomy of Astyanax in Mexico (Characidae, Teleostei). Molecular Phylogenetics and Evolution, 60(1): 89−97. doi: 10.1016/j.ympev.2011.03.009
    [47]
    He JK, Lin SL, Ding CC, Yu JH, Jiang HS. 2021. Geological and climatic histories likely shaped the origins of terrestrial vertebrates endemic to the Tibetan Plateau. Global Ecology and Biogeography, 30(5): 1116−1128. doi: 10.1111/geb.13286
    [48]
    He K, Jiang XL. 2014. Sky islands of southwest China. I: an overview of phylogeographic patterns. Chinese Science Bulletin, 59(7): 585−597. doi: 10.1007/s11434-013-0089-1
    [49]
    Head MJ, Gibbard PL. 2015. Early-Middle Pleistocene transitions: linking terrestrial and marine realms. Quaternary International, 389: 7−46. doi: 10.1016/j.quaint.2015.09.042
    [50]
    Hedges SB, Kumar S. 2004. Precision of molecular time estimates. Trends in Genetics, 20(5): 242−247. doi: 10.1016/j.tig.2004.03.004
    [51]
    Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature, 405(6789): 907−913. doi: 10.1038/35016000
    [52]
    Hofmann S, Stöck M, Zheng YC, Ficetola FG, Li JT, Scheidt U, et al. 2017. Molecular phylogenies indicate a Paleo-Tibetan origin of Himalayan lazy toads (Scutiger). Scientific Reports, 7(1): 3308. doi: 10.1038/s41598-017-03395-4
    [53]
    Hu YB, Guo Y, Qi DW, Zhan XJ, Wu H, Bruford MW, et al. 2011. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Molecular Ecology, 20(13): 2662−2675. doi: 10.1111/j.1365-294X.2011.05126.x
    [54]
    Huang ZS, Yu FL, Gong HS, Song YL, Zeng ZG, Zhang Q. 2017. Phylogeographical structure and demographic expansion in the endemic alpine stream salamander (Hynobiidae: Batrachuperus) of the Qinling Mountains. Scientific Reports, 7(1): 1871. doi: 10.1038/s41598-017-01799-w
    [55]
    IUCN SSC Amphibian Specialist Group. 2020. Tylototriton taliangensis. The IUCN Red List of Threatened Species 2020: e. T59486A63871228.https://dx. doi.org/10.2305/IUCN.UK.2020-2.RLTS.T59486A63871228.en. (Accessed 15 Feb. 2020)
    [56]
    Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14): 1801−1806. doi: 10.1093/bioinformatics/btm233
    [57]
    Jiang FC, Wu XH. 1998. Late Cenozoic tectonic movement in geomorphologic boundary belt of southeastern Qinghai-Xizang Plateau. Journal of Chengdu University of Technology, 25(2): 162−168. (in Chinese)
    [58]
    Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, et al. 2016. Red list of China’s vertebrates. Biodiversity Science, 24(5): 500−551. (in Chinese) doi: 10.17520/biods.2016076
    [59]
    Kozak KH, Wiens JJ. 2010. Niche conservatism drives elevational diversity patterns in Appalachian salamanders. The American Naturalist, 176(1): 40−54. doi: 10.1086/653031
    [60]
    Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3): 772−773.
    [61]
    Leigh JW, Bryant D. 2015. POPART: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9): 1110−1116. doi: 10.1111/2041-210X.12410
    [62]
    Li JJ, Fang XM. 1999. Uplift of the Tibetan Plateau and environmental changes. Chinese Science Bulletin, 44(23): 2117−2124. doi: 10.1007/BF03182692
    [63]
    Li ZW, Chen ZR, Wang ML. 1991. Classification and correlation of the quaternary glacial epoch in the Hengduan (Transverse) Mountains. Geological Review, 37(2): 125−132. (in Chinese)
    [64]
    Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451−1452. doi: 10.1093/bioinformatics/btp187
    [65]
    Liu CR, Newell G, White M. 2016. On the selection of thresholds for predicting species occurrence with presence‐only data. Ecology and Evolution, 6(1): 337−348. doi: 10.1002/ece3.1878
    [66]
    Liu J, Wang CM, Fu DL, Hu XJ, Xie XM, Liu PF, et al. 2015. Phylogeography of Nanorana parkeri (Anura: Ranidae) and multiple refugia on the Tibetan Plateau revealed by mitochondrial and nuclear DNA. Scientific Reports, 5(1): 9857. doi: 10.1038/srep09857
    [67]
    Liu XD, Dong BW. 2013. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chinese Science Bulletin, 58(34): 4277−4291. doi: 10.1007/s11434-013-5987-8
    [68]
    López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S. 2011. Centres of plant endemism in China: places for survival or for speciation?. Journal of Biogeography, 38(7): 1267−1280. doi: 10.1111/j.1365-2699.2011.02504.x
    [69]
    Lu B, Zheng YC, Murphy RW, Zeng XM. 2012. Coalescence patterns of endemic Tibetan species of stream salamanders (Hynobiidae: Batrachuperus). Molecular Ecology, 21(13): 3308−3324. doi: 10.1111/j.1365-294X.2012.05606.x
    [70]
    Lucati F, Poignet M, Miró A, Trochet A, Aubret F, Barthe L, et al. 2020. Multiple glacial refugia and contemporary dispersal shape the genetic structure of an endemic amphibian from the Pyrenees. Molecular Ecology, 29(15): 2904−2921. doi: 10.1111/mec.15521
    [71]
    McCormack JE, Heled J, Delaney KS, Peterson AT, Knowles LL. 2011. Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays. Evolution, 65(1): 184−202. doi: 10.1111/j.1558-5646.2010.01097.x
    [72]
    McRae B, Shah V, Edelman A. 2016. Circuitscape: modeling landscape connectivity to promote conservation and human health. Fort Collins: The Nature Conservancy.
    [73]
    McRae BH. 2006. Isolation by resistance. Evolution, 60(8): 1551−1561. doi: 10.1111/j.0014-3820.2006.tb00500.x
    [74]
    Moritz C. 1994. Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology & Evolution, 9(10): 373−375.
    [75]
    Myers EA, Xue AT, Gehara M, Cox CL, Davis Rabosky AR, Lemos‐Espinal J, et al. 2019. Environmental heterogeneity and not vicariant biogeographic barriers generate community‐wide population structure in desert‐adapted snakes. Molecular Ecology, 28(20): 4535−4548. doi: 10.1111/mec.15182
    [76]
    Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853−858. doi: 10.1038/35002501
    [77]
    Nei M, Tajima F, Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data: II. Gene frequency data. Journal of Molecular Evolution, 19(2): 153−170. doi: 10.1007/BF02300753
    [78]
    Noroozi J, Talebi A, Doostmohammadi M, Rumpf SB, Linder HP, Schneeweiss GM. 2018. Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges. Scientific Reports, 8(1): 10345. doi: 10.1038/s41598-018-28504-9
    [79]
    Otto CRV, Roloff GJ, Thames RE. 2014. Comparing population patterns to processes: abundance and survival of a forest salamander following habitat degradation. PLoS One, 9(4): e93859. doi: 10.1371/journal.pone.0093859
    [80]
    Ouborg NJ. 2010. Integrating population genetics and conservation biology in the era of genomics. Biology Letters, 6(1): 3−6. doi: 10.1098/rsbl.2009.0590
    [81]
    Owen LA, Caffee MW, Finkel RC, Seong YB. 2008. Quaternary glaciation of the Himalayan-Tibetan orogen. Journal of Quaternary Science, 23(6‐7): 513−531.
    [82]
    Pan T, Wang H, Yan P, Zhang CL, Zhou WL, Wu XB, et al. 2020. The impact of stream landscape on genetic structure and dispersal patterns in stream salamander (Pachyhynobius shangchengensis). Asian Herpetological Research, 11(3): 205−218.
    [83]
    Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19): 2537−2539. doi: 10.1093/bioinformatics/bts460
    [84]
    Phillips SJ, Dudík M, Schapire RE. 2017(2021-11-26). Maxent software for modeling species niches and distributions (Version 3.4. 1). http://biodiversityinformatics.amnh.org/open_source/maxent/.
    [85]
    Phuong MA, Bi K, Moritz C. 2017. Range instability leads to cytonuclear discordance in a morphologically cryptic ground squirrel species complex. Molecular Ecology, 26(18): 4743−4755. doi: 10.1111/mec.14238
    [86]
    Piry S, Luikart G, Cornuet JM. 1999. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity, 90(4): 502−503. doi: 10.1093/jhered/90.4.502
    [87]
    Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945−959. doi: 10.1093/genetics/155.2.945
    [88]
    Qiu YX, Fu CX, Comes HP. 2011. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59(1): 225−244. doi: 10.1016/j.ympev.2011.01.012
    [89]
    Qu Y, Lei F, Zhang R, Lu X. 2010. Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai‐Tibetan plateau. Molecular Ecology, 19(2): 338−351. doi: 10.1111/j.1365-294X.2009.04445.x
    [90]
    Qu YH, Luo X, Zhang RY, Song G, Zou FS, Lei FM. 2011. Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evolutionary Biology, 11(1): 147. doi: 10.1186/1471-2148-11-147
    [91]
    Rambaut A, Drummond A. 2012. FigTree: Tree Figure Drawing Tool, v1.4. 0. Institute of Evolutionary Biology, University of Edinburgh.
    [92]
    Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5): 901−904. doi: 10.1093/sysbio/syy032
    [93]
    Rana SK, Luo D, Rana HK, O'Neill AR, Sun H. 2021. Geoclimatic factors influence the population genetic connectivity of Incarvillea arguta (Bignoniaceae) in the Himalaya-Hengduan Mountains biodiversity hotspot. Journal of Systematics and Evolution, 59(1): 151−168. doi: 10.1111/jse.12521
    [94]
    Renner SS. 2016. Available data point to a 4‐km‐high Tibetan Plateau by 40 Ma, but 100 molecular‐clock papers have linked supposed recent uplift to young node ages. Journal of Biogeography, 43(8): 1479−1487. doi: 10.1111/jbi.12755
    [95]
    Rice WR. 1989. Analyzing tables of statistical tests. Evolution, 43(1): 223−225. doi: 10.1111/j.1558-5646.1989.tb04220.x
    [96]
    Robertson JM, Murphy MA, Pearl CA, Adams MJ, Páez‐Vacas MI, Haig SM, et al. 2018. Regional variation in drivers of connectivity for two frog species (Rana pretiosa and R. luteiventris) from the U. S. Pacific Northwest. Molecular Ecology, 27(16): 3242−3256. doi: 10.1111/mec.14798
    [97]
    Rogers AR, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3): 552−569.
    [98]
    Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539−542. doi: 10.1093/sysbio/sys029
    [99]
    Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4(1): 137−138.
    [100]
    Rousset F. 2008. GENEPOP’ 007: a complete re‐implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8(1): 103−106. doi: 10.1111/j.1471-8286.2007.01931.x
    [101]
    Sánchez-Montes G, Recuero E, Barbosa AM, Martínez‐Solano Í. 2019. Complementing the Pleistocene biogeography of European amphibians: Testimony from a southern Atlantic species. Journal of Biogeography, 46(3): 568−583. doi: 10.1111/jbi.13515
    [102]
    Sánchez-Montes G, Wang JL, Ariño AH, Martínez‐Solano Í. 2018. Mountains as barriers to gene flow in amphibians: quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. Journal of Biogeography, 45(2): 318−331. doi: 10.1111/jbi.13132
    [103]
    Shu XX, 2020. Conservation Genetics and Habitat Selection of Taliang Knobby Newt (Liangshantriton taliangensis). Sichuan University, Chengdu. (in Chinese)
    [104]
    Silvestro D, Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution, 12(4): 335−337.
    [105]
    Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K. 2010. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19(17): 3576−3591. doi: 10.1111/j.1365-294X.2010.04657.x
    [106]
    Spicer RA, Su T, Valdes PJ, Farnsworth A, Wu FX, Shi GL, et al. 2021. Why ‘the uplift of the Tibetan Plateau’ is a myth. National Science Review, 8(1): nwaa091. doi: 10.1093/nsr/nwaa091
    [107]
    Su T, Spicer RA, Li SH, Xu H, Huang J, Sherlock S, et al. 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in South-eastern Tibet. National Science Review, 6(3): 495−504. doi: 10.1093/nsr/nwy062
    [108]
    Sun YB, An ZS, Clemens SC, Bloemendal J, Vandenberghe J. 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters, 297(3-4): 525−535. doi: 10.1016/j.jpgl.2010.07.004
    [109]
    Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285−1293. doi: 10.1126/science.3287615
    [110]
    Szpiech ZA, Jakobsson M, Rosenberg NA. 2008. ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics, 24(21): 2498−2504. doi: 10.1093/bioinformatics/btn478
    [111]
    Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3): 585−595. doi: 10.1093/genetics/123.3.585
    [112]
    Takezaki N, Nei M, Tamura K. 2014. POPTREEW: web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Molecular Biology and Evolution, 31(6): 1622−1624. doi: 10.1093/molbev/msu093
    [113]
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725−2729. doi: 10.1093/molbev/mst197
    [114]
    Tang CQ, Matsui T, Ohashi H, Dong YF, Momohara A, Herrando-Moraira S, et al. 2018. Author Correction: identifying long-term stable refugia for relict plant species in East Asia. Nature Communications, 9(1): 5241. doi: 10.1038/s41467-018-07727-4
    [115]
    Toews DPL, Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21(16): 3907−3930. doi: 10.1111/j.1365-294X.2012.05664.x
    [116]
    Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC. 2002. Buffered tree population changes in a Quaternary refugium: evolutionary implications. Science, 297(5589): 2044−2047. doi: 10.1126/science.1073083
    [117]
    Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3): 535−538. doi: 10.1111/j.1471-8286.2004.00684.x
    [118]
    Vasconcellos MM, Colli GR, Weber JN, Ortiz EM, Rodrigues MT, Cannatella DC. 2019. Isolation by instability: Historical climate change shapes population structure and genomic divergence of treefrogs in the Neotropical Cerrado savanna. Molecular Ecology, 28(7): 1748−1764. doi: 10.1111/mec.15045
    [119]
    Wang B, Nishikawa K, Matsui M, Nguyen TQ, Xie F, Li C, et al. 2018. Phylogenetic surveys on the newt genus Tylototriton sensu lato (Salamandridae, Caudata) reveal cryptic diversity and novel diversification promoted by historical climatic shifts. PeerJ, 6: e4384. doi: 10.7717/peerj.4384
    [120]
    Wang B, Xie F, Li JN, Wang G, Li C, Jiang JP. 2017. Phylogeographic investigation and ecological niche modelling of the endemic frog species Nanorana pleskei revealed multiple refugia in the eastern Tibetan Plateau. PeerJ, 5: e3770. doi: 10.7717/peerj.3770
    [121]
    Wang IJ. 2013. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution, 67(12): 3403−3411. doi: 10.1111/evo.12134
    [122]
    Wang J, Raisbeck G, Xu XB, Yiou F, Bai SB. 2006. In situ cosmogenic 10Be dating of the Quaternary glaciations in the southern Shaluli Mountain on the southeastern Tibetan Plateau. Science in China Series D:Earth Sciences, 49(12): 1291−1298. doi: 10.1007/s11430-006-2026-5
    [123]
    Wang ZW, Chen ST, Nie ZL, Zhang JW, Zhou Z, Deng T, et al. 2015. Climatic factors drive population divergence and demography: insights based on the phylogeography of a riparian plant species endemic to the Hengduan Mountains and adjacent regions. PLoS One, 10(12): e0145014. doi: 10.1371/journal.pone.0145014
    [124]
    Waraniak JM, Fisher JDL, Purcell K, Mushet DM, Stockwell CA. 2019. Landscape genetics reveal broad and fine‐scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota. Ecology and Evolution, 9(3): 1041−1060. doi: 10.1002/ece3.4745
    [125]
    Wu YH, Yan F, Stuart BL, Prendini E, Suwannapoom C, Dahn HA, et al. 2020. A combined approach of mitochondrial DNA and anchored nuclear phylogenomics sheds light on unrecognized diversity, phylogeny, and historical biogeography of the torrent frogs, genus Amolops (Anura: Ranidae). Molecular Phylogenetics and Evolution, 148: 106789. doi: 10.1016/j.ympev.2020.106789
    [126]
    Wu YK, Wang YZ, Jiang K, Hanken J. 2013. Significance of pre-Quaternary climate change for montane species diversity: insights from Asian salamanders (Salamandridae: Pachytriton). Molecular Phylogenetics and Evolution, 66(1): 380−390. doi: 10.1016/j.ympev.2012.10.011
    [127]
    Xie C, Xie DF, Zhong Y, Guo XL, Liu Q, Zhou SD, et al. 2019. The effect of Hengduan Mountains Region (HMR) uplift to environmental changes in the HMR and its eastern adjacent area: tracing the evolutionary history of Allium section Sikkimensia (Amaryllidaceae). Molecular Phylogenetics and Evolution, 130: 380−396. doi: 10.1016/j.ympev.2018.09.011
    [128]
    Xing YW, Ree RH. 2017. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 114(17): E3444−E3451. doi: 10.1073/pnas.1616063114
    [129]
    Xu LB, Zhou SZ, Wang J. 2005. Pleistocene glaciations in the Shaluli Shan and the influences of southwest monsoon on the glaciations during the last glacial period. Quaternary Sciences, 25(5): 620−629. (in Chinese)
    [130]
    Yao Q, Song J, Cheng J, Yang W, Xu C, Zhao J. 2017. Integral uplift and anticlockwise rotation of the Daliangshan sub-block. Chinese Journal of Geology, 52(2): 328−342. (in Chinese)
    [131]
    Ye XY, Ma PF, Yang GQ, Guo C, Zhang YX, Chen YM, et al. 2019. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. Journal of Biogeography, 46(12): 2678−2689. doi: 10.1111/jbi.13723
    [132]
    Yu GH, Zhang MW, Rao DQ, Yang JX. 2013. Effect of pleistocene climatic oscillations on the phylogeography and demography of red knobby newt (Tylototriton shanjing) from Southwestern China. PLoS One, 8(2): e56066. doi: 10.1371/journal.pone.0056066
    [133]
    Yu Y, Harris AJ, Blair C, He XJ. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution, 87: 46−49. doi: 10.1016/j.ympev.2015.03.008
    [134]
    Zhan XJ, Zheng YF, Wei FW, Bruford MW, Jia CX. 2011. Molecular evidence for Pleistocene refugia at the eastern edge of the Tibetan Plateau. Molecular Ecology, 20(14): 3014−3026. doi: 10.1111/j.1365-294X.2011.05144.x
    [135]
    Zhang DR, Chen MY, Murphy RW, Che J, Pang JF, HU JS, et al. 2010. Genealogy and palaeodrainage basins in Yunnan Province: phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae). Molecular Ecology, 19(16): 3406−3420. doi: 10.1111/j.1365-294X.2010.04747.x
    [136]
    Zhang YH, Wang IJ, Comes HP, Peng H, Qiu YX. 2016. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Scientific Reports, 6(1): 24041. doi: 10.1038/srep24041
    [137]
    Zheng BX, Xu QQ, Shen YP. 2002. The relationship between climate change and Quaternary glacial cycles on the Qinghai–Tibetan Plateau: review and speculation. Quaternary International, 9798: 93–101.
  • ZR-2021-299 Supplementary Material.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (448) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return