Volume 43 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Wan-Wan Zhang, Peng Jia, Xiao-Bing Lu, Xiao-Qi Chen, Jue-Hua Weng, Kun-Tong Jia, Mei-Sheng Yi. Capsid protein from red-spotted grouper nervous necrosis virus induces incomplete autophagy by inactivating the HSP90ab1-AKT-MTOR pathway. Zoological Research, 2022, 43(1): 98-110. doi: 10.24272/j.issn.2095-8137.2021.249
Citation: Wan-Wan Zhang, Peng Jia, Xiao-Bing Lu, Xiao-Qi Chen, Jue-Hua Weng, Kun-Tong Jia, Mei-Sheng Yi. Capsid protein from red-spotted grouper nervous necrosis virus induces incomplete autophagy by inactivating the HSP90ab1-AKT-MTOR pathway. Zoological Research, 2022, 43(1): 98-110. doi: 10.24272/j.issn.2095-8137.2021.249

Capsid protein from red-spotted grouper nervous necrosis virus induces incomplete autophagy by inactivating the HSP90ab1-AKT-MTOR pathway

doi: 10.24272/j.issn.2095-8137.2021.249
Funds:  This study was supported by the Pearl River S&T Nova Program of Guangzhou (201806010047), National Natural Science Foundation of China (32173001, 3210284, 31771587), China Postdoctoral Science Foundation Funded Project (2021M693678), and Natural Science Foundation of Guangxi Province (2021GXNSFDA075015)
More Information
  • As a highly important fish virus, nervous necrosis virus (NNV) has caused severe economic losses to the aquaculture industry worldwide. Autophagy, an evolutionarily conserved intracellular degradation process, is involved in the pathogenesis of several viruses. Although NNV can induce autophagy to facilitate infection in grouper fish spleen cells, how it initiates and mediates autophagy pathways during the initial stage of infection is still unclear. Here, we found that red-spotted grouper NNV (RGNNV) induced autophagosome formation in two fish cell lines at 1.5 and 3 h post infection, indicating that autophagy is activated upon entry of RGNNV. Moreover, autophagic detection showed that RGNNV entry induced incomplete autophagy by impairing the fusion of autophagosomes with lysosomes. Further investigation revealed that binding of the RGNNV capsid protein (CP) to the Lateolabrax japonicus heat shock protein HSP90ab1 (LjHSP90ab1), a cell surface receptor of RGNNV, contributed to RGNNV invasion-induced autophagy. Finally, we found that CP blocked the interaction of L. japonicus protein kinase B (AKT) with LjHSP90ab1 by competitively binding the NM domain of LjHSP90ab1 to inhibit the AKT-mechanistic target of the rapamycin (MTOR) pathway. This study provides novel insight into the relationship between NNV receptors and autophagy, which may help clarify the pathogenesis of NNV.
  • loading
  • [1]
    Bandin I, Souto S. 2020. Betanodavirus and VER disease: A 30-year research review. Pathogens, 9(2): 106. doi: 10.3390/pathogens9020106
    Bekki H, Kohashi K, Maekawa A, Yamada Y, Yamamoto H, Harimaya K, et al. 2015. Elevated expression of HSP90 and the antitumor effect of an HSP90 inhibitor via inactivation of the Akt/mTOR pathway in undifferentiated pleomorphic sarcoma. BMC Cancer, 15(1): 804. doi: 10.1186/s12885-015-1830-8
    Boya P, Reggiori F, Codogno P. 2013. Emerging regulation and functions of autophagy. Nature Cell Biology, 15(7): 713−720. doi: 10.1038/ncb2788
    Buonocore F, Nuñez-Ortiz N, Picchietti S, Randelli E, Stocchi V, Guerra L, et al. 2019. Vaccination and immune responses of European sea bass (Dicentrarchus labrax L. ) against betanodavirus. Fish & Shellfish Immunology, 85: 78−84.
    Chang H, Li X, Cai Q, Li CY, Tian L, Chen J, et al. 2017. The PI3K/Akt/mTOR pathway is involved in CVB3-induced autophagy of HeLa cells. International Journal of Molecular Medicine, 40(1): 182−192.
    Chen NC, Yoshimura M, Guan HH, Wang TY, Misumi Y, Lin CC, et al. 2015. Crystal structures of a piscine betanodavirus: mechanisms of capsid assembly and viral infection. PLoS Pathogens, 11(10): e1005203.
    Chen S, Zhang XH, Nie Y, Li HX, Chen WG, Lin WC, et al. 2021. African swine fever virus protein E199L promotes cell autophagy through the interaction of PYCR2. Virologica Sinica, 36(2): 196−206. doi: 10.1007/s12250-021-00375-x
    Cobbold SP. 2013. The mTOR pathway and integrating immune regulation. Immunology, 140(4): 391−398. doi: 10.1111/imm.12162
    Costa JZ, Thompson KD. 2016. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. Fish & Shellfish Immunology, 53: 35−49.
    Ding BB, Zhang LL, Li ZF, Zhong Y, Tang QP, Qin YL, et al. 2017. The Matrix protein of human parainfluenza virus type 3 induces mitophagy that suppresses interferon responses. Cell Host & Microbe, 21(4): 538−547.
    Espert L, Codogno P, Biard-Piechaczyk M. 2007. Involvement of autophagy in viral infections: antiviral function and subversion by viruses. Journal of Molecular Medicine, 85(8): 811−823. doi: 10.1007/s00109-007-0173-6
    Galluzzi L, Pietrocola F, Levine B, Kroemer G. 2014. Metabolic control of autophagy. Cell, 159(6): 1263−1276. doi: 10.1016/j.cell.2014.11.006
    Gannagé M, Dormann D, Albrecht R, Dengjel J, Torossi T, Rämer PC, et al. 2009. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host & Microbe, 6(4): 367−380.
    Han R, Hua CT, Sun SY, Zhang BY, Song YJ, Van Der Veen S, et al. 2020. Autophagy is induced in human keratinocytes during human papillomavirus 11 pseudovirion entry. Aging, 12(22): 23017−23028.
    He CC, Klionsky DJ. 2009. Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics, 43: 67−93. doi: 10.1146/annurev-genet-102808-114910
    Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Cerretti DP, et al. 1988. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology, 6(10): 1204−1210. doi: 10.1038/nbt1088-1204
    Hu BL, Zhang YN, Jia L, Wu HS, Fan CF, Sun YT, et al. 2015. Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway. Autophagy, 11(3): 503−515. doi: 10.1080/15548627.2015.1017184
    Iwamoto T, Okinaka Y, Mise K, Mori KI, Arimoto M, Okuno T, et al. 2004. Identification of host-specificity determinants in betanodaviruses by using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. Journal of Virology, 78(3): 1256−1262. doi: 10.1128/JVI.78.3.1256-1262.2004
    Jia KT, Wu YY, Liu ZY, Mi S, Zheng YW, He J, et al. 2013. Mandarin fish caveolin 1 interaction with major capsid protein of infectious spleen and kidney necrosis virus and its role in early stages of infection. Journal of Virology, 87(6): 3027−3038. doi: 10.1128/JVI.00552-12
    Jia P, Jia KT, Yi MS. 2015. Complete genome sequence of a fish nervous necrosis virus isolated from Sea perch (Lateolabrax japonicus) in China. Genome Announcements, 3(3): e00048−15.
    Joubert PE, Meiffren G, Grégoire IP, Pontini G, Richetta C, Flacher M, et al. 2009. Autophagy induction by the pathogen receptor CD46. Cell Host & Microbe, 6(4): 354−366.
    Klionsky DJ, Abdelmohsen K, Abe A, Abedin J, Abeliovich H, Arozena AA, et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 12(1): 1−222. doi: 10.1080/15548627.2015.1100356
    Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong CS, et al. 2009. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. Journal of Cell Biology, 186(2): 255−268. doi: 10.1083/jcb.200903070
    Le Y, Li YL, Jin YL, Jia P, Jia KT, Yi MS. 2017. Establishment and characterization of a brain cell line from sea perch. Lateolabrax japonicus. In Vitro Cellular & Developmental Biology - Animal, 53(9): 834−840.
    Levine B, Klionsky DJ. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell, 6(4): 463−477. doi: 10.1016/S1534-5807(04)00099-1
    Li C, Liu JX, Zhang X, Yu YP, Huang XH, Wei JG, et al. 2020. Red grouper nervous necrosis virus (RGNNV) induces autophagy to promote viral replication. Fish & Shellfish Immunology, 98: 908−916.
    Li YY, Zhang L, Li K, Li J, Xiang R, Zhang J, et al. 2015. ZNF32 inhibits autophagy through the mTOR pathway and protects MCF-7 cells from stimulus-induced cell death. Scientific Reports, 5(1): 9288. doi: 10.1038/srep09288
    Liang QM, Luo ZF, Zeng JX, Chen WQ, Foo SS, Lee SA, et al. 2016. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell, 19(5): 663−671. doi: 10.1016/j.stem.2016.07.019
    Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, et al. 1998. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. Journal of Virology, 72(11): 8586−8596.
    Liao ZH, Zhang XH, Song CL, Lin WC, Cheng YZ, Xie Z, et al. 2020. ALV-J inhibits autophagy through the GADD45β/MEKK4/P38MAPK signaling pathway and mediates apoptosis following autophagy. Cell Death & Disease, 11(8): 684.
    Lin HX, Li B, Liu MX, Zhou H, He KW, Fan HJ. 2020a. Nonstructural protein 6 of porcine epidemic diarrhea virus induces autophagy to promote viral replication via the PI3K/Akt/mTOR axis. Veterinary Microbiology, 244: 108684. doi: 10.1016/j.vetmic.2020.108684
    Lin Y, Zhao ZY, Huang AL, Lu MJ. 2020b. Interplay between cellular autophagy and hepatitis B virus replication: a systematic review. Cells, 9(9): 2101. doi: 10.3390/cells9092101
    Mori M, Hitora T, Nakamura O, Yamagami Y, Horie R, Nishimura H, et al. 2015. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. International Journal of Oncology, 46(1): 47−54. doi: 10.3892/ijo.2014.2727
    Orvedahl A, Alexander D, Tallóczy Z, Sun QH, Wei YJ, Zhang W, et al. 2007. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host & Microbe, 1(1): 23−35.
    Richetta C, Grégoire IP, Verlhac P, Azocar O, Baguet J, Flacher M, et al. 2013. Sustained autophagy contributes to measles virus infectivity. PLoS Pathogens, 9(9): e1003599. doi: 10.1371/journal.ppat.1003599
    Sato S, Fujita N, Tsuruo T. 2000. Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 97(20): 10832−10837. doi: 10.1073/pnas.170276797
    Shintani T, Klionsky DJ. 2004. Autophagy in health and disease: a double-edged sword. Science, 306(5698): 990−995. doi: 10.1126/science.1099993
    Souto S, Mérour E, Biacchesi S, Brémont M, Olveira JG, Bandín I. 2015. In vitro and in vivo characterization of molecular determinants of virulence in reassortant betanodavirus. Journal of General Virology, 96(Pt 6): 1287–1296.
    Sun P, Zhang SM, Qin XD, Chang XN, Cui XR, Li HT, et al. 2018a. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1. Autophagy, 14(2): 336−346.
    Sun Y, Huang YH, Huang FY, Mei WL, Liu Q, Wang CC, et al. 2018b. 3'-epi-12β-hydroxyfroside, a new cardenolide, induces cytoprotective autophagy via blocking the Hsp90/Akt/mTOR axis in lung cancer cells. Theranostics, 8(7): 2044−2060. doi: 10.7150/thno.23304
    Tallóczy Z, Virgin IV H, Levine B. 2006. PKR-dependent xenophagic degradation of herpes simplex virus type 1. Autophagy, 2(1): 24−29. doi: 10.4161/auto.2176
    Viret C, Rozières A, Faure M. 2018. Autophagy during early virus–host cell interactions. Journal of Molecular Biology, 430(12): 1696−1713. doi: 10.1016/j.jmb.2018.04.018
    Wang RF, Zhu YX, Zhao JC, Ren CW, Li P, Chen HC, et al. 2019. Autophagy promotes replication of influenza A virus in vitro. Journal of Virology, 93(4): e01984–18.
    Wang XB, Zheng TY, Lin LL, Zhang YN, Peng XR, Yan Y, et al. 2020. Influenza a virus induces autophagy by its hemagglutinin binding to cell surface heat shock protein 90AA1. Frontiers in Microbiology, 11: 566348. doi: 10.3389/fmicb.2020.566348
    Xie BM, Zhao MQ, Song D, Wu KK, Yi L, Li WH, et al. 2021. Induction of autophagy and suppression of type I IFN secretion by CSFV. Autophagy, 17(4): 925−947. doi: 10.1080/15548627.2020.1739445
    Yang B, Xue QH, Guo JN, Wang XP, Zhang YM, Guo KK, et al. 2020. Autophagy induction by the pathogen receptor NECTIN4 and sustained autophagy contribute to peste des petits ruminants virus infectivity. Autophagy, 16(5): 842−861. doi: 10.1080/15548627.2019.1643184
    Yi MS, Hong N, Hong YH. 2009. Generation of medaka fish haploid embryonic stem cells. Science, 326(5951): 430−433.
    Yi MS, Hong N, Hong YH. 2010. Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Nature Protocols, 5(8): 1418−1430. doi: 10.1038/nprot.2010.104
    Yu L, Chen Y, Tooze SA. 2018. Autophagy pathway: cellular and molecular mechanisms. Autophagy, 14(2): 207−215.
    Zhang WW, Jia KT, Jia P, Xiang YX, Lu XB, Liu W, et al. 2020. Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis. PLoS Pathogens, 16(7): e1008668. doi: 10.1371/journal.ppat.1008668
    Zhang WW, Jia P, Liu W, Jia KT, Yi MS. 2019. Screening for antiviral medaka haploid embryonic stem cells by genome wide mutagenesis. Marine Biotechnology, 21(2): 186−195. doi: 10.1007/s10126-018-09870-x
  • ZR-2021-249 Supplementary Materials.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (501) PDF downloads(70) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint