Citation: | Wen-Cong Gao, Xin Ma, Peng Wang, Xiao-Yan He, Yong-Tang Zheng, Feng-Liang Liu, Chang-Bo Zheng. Captopril alleviates lung inflammation in SARS-CoV-2-infected hypertensive mice. Zoological Research, 2021, 42(5): 633-636. doi: 10.24272/j.issn.2095-8137.2021.206 |
[1] |
Groel JT, Tadros SS, Dreslinski GR, Jenkins AC. 1983. Long-term antihypertensive therapy with captopril. Hypertension, 5(5 Pt 2): III-145−III-151.
|
[2] |
Gu HJ, Chen Q, Yang G, He L, Fan H, Deng YQ, et al. 2020. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science, 369(6511): 1603−1607. doi: 10.1126/science.abc4730
|
[3] |
Hijriani N, Yusetyani L, Hasmono D. 2020. The effect of curcuma (Curcuma xanthorrizha roxb. ) extract as an adjuvant of captopril therapy on cardiac histopathology of male mice (Mus musculus) with hypertension. Journal of Basic and Clinical Physiology and Pharmacology, 30(6): 20190280.
|
[4] |
Hsu CY, Huang LY, Saver JL, Wu YL, Lee JD, Chen PC, et al. 2019. Oral short-acting antihypertensive medications and the occurrence of stroke: a nationwide case-crossover study. Hypertension Research, 42(11): 1794−1800. doi: 10.1038/s41440-019-0300-0
|
[5] |
Liu FL, Wu KX, Sun JY, Duan ZL, Quan XZ, Kuang JQ, et al. 2021. Rapid generation of ACE2 humanized inbred mouse model for COVID-19 with tetraploid complementation. National Science Review, 8(2): nwaa285.
|
[6] |
Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE. 2020. Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large data set from Mexico. Annals of Epidemiology, 52: 93−98.e2. doi: 10.1016/j.annepidem.2020.08.005
|
[7] |
Pedrosa MA, Valenzuela R, Garrido-Gil P, Labandeira CM, Navarro G, Franco R, et al. 2021. Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clinical Science, 135(3): 465−481. doi: 10.1042/CS20201511
|
[8] |
Song TZ, Zheng HY, Han JB, Jin L, Yang X, Liu FL, et al. 2020. Delayed severe cytokine storm and immune cell infiltration in SARS-CoV-2-infected aged Chinese rhesus macaques. Zoological Research, 41(5): 503−516. doi: 10.24272/j.issn.2095-8137.2020.202
|
[9] |
Tian RR, Yang CX, Zhang M, Feng XL, Luo RH, Duan ZL, et al. 2021. Lower respiratory tract samples are reliable for severe acute respiratory syndrome coronavirus 2 nucleic acid diagnosis and animal model study. Zoological Research, 42(2): 161−169. doi: 10.24272/j.issn.2095-8137.2020.329
|
[10] |
Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu JS, et al. 2020. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunology, 21(11): 1327−1335. doi: 10.1038/s41590-020-0778-2
|
[11] |
Xu L, Yu DD, Ma YH, Yao YL, Luo RH, Feng XL, et al. 2020. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zoological Research, 41(5): 517−526. doi: 10.24272/j.issn.2095-8137.2020.053
|
[12] |
Zhang MZ, Wang SW, Yang SL, Yang HC, Fan XF, Takahashi T, et al. 2012. Role of blood pressure and the renin-angiotensin system in development of diabetic nephropathy (DN) in eNOS-/- db/db mice. American Journal of Physiology-Renal Physiology, 302(4): F433−F438. doi: 10.1152/ajprenal.00292.2011
|
[13] |
Zheng CB, Gao WC, Xie MX, Li ZC, Ma X, Song WC, et al. 2021. Ang II promotes cardiac autophagy and hypertrophy via orai1/STIM1. Frontiers in Pharmacology, 12: 622774. doi: 10.3389/fphar.2021.622774
|
[14] |
Zhou Z, Ren LL, Zhang L, Zhong JX, Xiao Y, Jia ZL, et al. 2020. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host & Microbe, 27(6): 883−890.e2.
|
![]() |
![]() |