Citation: | Elise Savier, Madineh Sedigh-Sarvestani, Ralf Wimmer, David Fitzpatrick. A bright future for the tree shrew in neuroscience research: Summary from the inaugural Tree Shrew Users Meeting. Zoological Research, 2021, 42(4): 478-481. doi: 10.24272/j.issn.2095-8137.2021.178 |
[1] |
Casagrande VA, Diamond IT. 1974. Ablation study of the superior colliculus in the tree shrew (Tupaia glis). The Journal of Comparative Neurology, 156(2): 207−237. doi: 10.1002/cne.901560206
|
[2] |
Darwish M, Nishizono H, Uosaki H, Sawada H, Sadahiro T, Ieda M, et al. 2019. Rapid and high-efficient generation of mutant mice using freeze-thawed embryos of the C57BL/6J strain. Journal of Neuroscience Methods, 317: 149−156. doi: 10.1016/j.jneumeth.2019.01.010
|
[3] |
Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo LH, et al. 2016. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience, 19(12): 1743−1749. doi: 10.1038/nn.4430
|
[4] |
Drenhaus U, Rager G, Eggli P, Kretz R. 2006. On the postnatal development of the striate cortex (V1) in the tree shrew (Tupaia belangeri). European Journal of Neuroscience, 24(2): 479−490. doi: 10.1111/j.1460-9568.2006.04916.x
|
[5] |
El Hamdaoui M, Levy AM, Gaonkar M, Gawne TJ, Girkin CA, Samuels BC, et al. 2021. Effect of scleral crosslinking using multiple doses of genipin on experimental progressive myopia in tree shrews. Translational Vision Science & Technology, 10(5): 1. doi: 10.1167/tvst.10.5.1
|
[6] |
Emmons LH, Greene HW. 2000. Tupai: A Field Study of Bornean Treeshrews. Berkeley: University of California Press.
|
[7] |
Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. 2013. Genome of the Chinese tree shrew. Nature Communications, 4: 1426. doi: 10.1038/ncomms2416
|
[8] |
Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, et al. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521. doi: 10.24272/j.issn.2095-8137.2019.063
|
[9] |
Fuchs E. 2015. Tree shrews at the German Primate Center. Primate Biology, 2(1): 111−118. doi: 10.5194/pb-2-111-2015
|
[10] |
Gawne TJ, Ward AH, Norton TT. 2017. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews. Vision Research, 140: 55−65. doi: 10.1016/j.visres.2017.07.011
|
[11] |
Hubrecht R, Kirkwood J. 2010. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. 8th ed. Chichester: Wiley.
|
[12] |
Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, et al. 2007. Molecular and genomic data identify the closest living relative of primates. Science, 318(5851): 792−794. doi: 10.1126/science.1147555
|
[13] |
Johnson EN, Westbrook T, Shayesteh R, Chen EL, Schumacher JW, Fitzpatrick D, et al. 2019. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. Journal of Comparative Neurology, 527(1): 328−344. doi: 10.1002/cne.24377
|
[14] |
Khani A, Rainer G. 2012. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions. Behavioural Processes, 90(3): 364−371. doi: 10.1016/j.beproc.2012.03.019
|
[15] |
Le Gros Clark WE. 1924. On the brain of the tree-shrew (Tupaia minor). Proceedings of the Zoological Society of London, 94(4): 1053−1074. doi: 10.1111/j.1096-3642.1924.tb03328.x
|
[16] |
Lee KS, Huang XY, Fitzpatrick D. 2016. Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature, 533(7601): 90−94. doi: 10.1038/nature17941
|
[17] |
Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, et al. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. Cell Research, 27(2): 241−252. doi: 10.1038/cr.2016.156
|
[18] |
Lyon Jr MW. 1913. Treeshrews: an account of the mammalian family Tupaiidae. Proceedings of the United States National Museum, 45(1976): 1−188. doi: 10.5479/si.00963801.45-1976.1
|
[19] |
Maher EE, Prillaman ME, Keskinoz EN, Petry HM, Erisir A. 2021. Immunocytochemical and ultrastructural organization of the taste thalamus of the tree shrew (Tupaia belangeri). Journal of Comparative Neurology, 529(10): 2558−2575. doi: 10.1002/cne.25109
|
[20] |
Mantilla GPW, Chester SGB, Clemens WA, Moore JR, Sprain CJ, Hovatter BT, et al. 2021. Earliest Palaeocene purgatoriids and the initial radiation of stem primates. Royal Society Open Science, 8(2): 210050. doi: 10.1098/rsos.210050
|
[21] |
Müller B, Peichl L. 1989. Topography of cones and rods in the tree shrew retina. Journal of Comparative Neurology, 282(4): 581−594. doi: 10.1002/cne.902820409
|
[22] |
Mustafar F, Harvey MA, Khani A, Arató J, Rainer G. 2018. Divergent solutions to visual problem solving across mammalian species. eNeuro, 5(4): e0167−18.2018. doi: 10.1523/ENEURO.0167-18.2018
|
[23] |
Ni XJ, Qiu ZD. 2012. Tupaiine tree shrews (Scandentia, Mammalia) from the Yuanmou Lufengpithecus locality of Yunnan, China. Swiss Journal of Palaeontology, 131(1): 51−60. doi: 10.1007/s13358-011-0029-0
|
[24] |
Norton TT, Khanal S, Gawne TJ. 2021. Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light. Experimental Eye Research, 206: 108525. doi: 10.1016/j.exer.2021.108525
|
[25] |
Petry HM, Bickford ME. 2019. The second visual system of the tree shrew. Journal of Comparative Neurology, 527(3): 679−693. doi: 10.1002/cne.24413
|
[26] |
Petry HM, Fox R, Casagrande VA. 1984. Spatial contrast sensitivity of the tree shrew. Vision Research, 24(9): 1037−1042. doi: 10.1016/0042-6989(84)90080-4
|
[27] |
Sajdak BS, Salmon AE, Cava JA, Allen KP, Freling S, Ramamirtham R, et al. 2019. Noninvasive imaging of the tree shrew eye: wavefront analysis and retinal imaging with correlative histology. Experimental Eye Research, 185: 107683. doi: 10.1016/j.exer.2019.05.023
|
[28] |
Sedigh-Sarvestani M, Lee KS, Satterfield R, Shultz N, Fitzpatrick D. 2021. A sinusoidal transform of the visual field in cortical area V2. bioRxiv, doi: https://doi.org/10.1101/2020.12.08.416651.
|
[29] |
Sherman SM, Norton TT, Casagrande VA. 1975. X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis). Brain Research, 93(1): 152−157. doi: 10.1016/0006-8993(75)90294-2
|
[30] |
Simpson GG. 1945. The principles of classification and a classification of Mammals. Bulletin of the American Museum of Natural History, 85(16): 1−350.
|
[31] |
Smith GB, Fitzpatrick D. 2016. Viral injection and cranial window implantation for in vivo two-photon imaging. In: Schwartzbach SD, Skalli O, Schikorski T. High-Resolution Imaging of Cellular Proteins. New York, NY: Springer New York, 171–185.
|
[32] |
Snyder M, Diamond IT. 1968. The organization and function of the visual cortex in the tree shrew. Brain, Behavior and Evolution, 1(3): 244−288. doi: 10.1159/000125507
|
[33] |
Van Valen L. 1965. Treeshrews, primates, and fossils. Evolution, 19(2): 137−151. doi: 10.1111/j.1558-5646.1965.tb01701.x
|
[34] |
Wilson DE, Mittermeier RA. 2009. Handbook of the Mammals of the World. Barcelona: Lynx Edicions.
|
[35] |
Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. 2012. Evaluating the phylogenetic position of chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. Journal of Genetics and Genomics, 39(3): 131−137. doi: 10.1016/j.jgg.2012.02.003
|
[36] |
Yartsev MM. 2017. The emperor’s new wardrobe: rebalancing diversity of animal models in neuroscience research. Science, 358(6362): 466−469. doi: 10.1126/science.aan8865
|