Volume 42 Issue 3
May  2021
Turn off MathJax
Article Contents
Bo Li, Yuan-Wei Zhang, Xiao Liu, Li Ma, Jun-Xing Yang. Molecular mechanisms of intermuscular bone development in fish: a review. Zoological Research, 2021, 42(3): 362-376. doi: 10.24272/j.issn.2095-8137.2021.044
Citation: Bo Li, Yuan-Wei Zhang, Xiao Liu, Li Ma, Jun-Xing Yang. Molecular mechanisms of intermuscular bone development in fish: a review. Zoological Research, 2021, 42(3): 362-376. doi: 10.24272/j.issn.2095-8137.2021.044

Molecular mechanisms of intermuscular bone development in fish: a review

doi: 10.24272/j.issn.2095-8137.2021.044
Funds:  This work was supported by the National Natural Science Foundation of China (U1702233 and U1902202), Program of the Chinese Academy of Sciences (XDA24030505 and XDA23080502), and Program of Yunnan Provincial Science and Technology Department (202003AD150017 and 2018FY001-007)
More Information
  • Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
  • loading
  • [1]
    Aizawa R, Yamada A, Seki T, Tanaka J, Nagahama R, Ikehata M, et al. 2019. Cdc42 regulates cranial suture morphogenesis and ossification. Biochemical and Biophysical Research Communications, 512(2): 145−149. doi: 10.1016/j.bbrc.2019.02.106
    Akiyama H, Chaboissier MC, Martin JF, Schedl A, De Crombrugghe B. 2002. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes & Development, 16(21): 2813−2828.
    Bassett JHD, Logan JG, Boyde A, Cheung MS, Evans H, Croucher P, et al. 2012. Mice lacking the calcineurin inhibitor Rcan2 have an isolated defect of osteoblast function. Endocrinology, 153(7): 3537−3548. doi: 10.1210/en.2011-1814
    Beck-Cormier S, Lelliott CJ, Logan JG, Lafont DT, Merametdjian L, Leitch VD, et al. 2019. Slc20a2, encoding the phosphate transporter PiT2, Is an important genetic determinant of bone quality and strength. Journal of Bone and Mineral Research, 34(6): 1101−1114. doi: 10.1002/jbmr.3691
    Bendall AJ, Abate-Shen C. 2000. Roles for Msx and Dlx homeoproteins in vertebrate development. Gene, 247(1-2): 17−31. doi: 10.1016/S0378-1119(00)00081-0
    Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott CE, Knaus P. 2013. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. The International Journal of Biochemistry & Cell Biology, 45(3): 696−705.
    Bing Z. 1962. On the myoseptal spines of the carp (Cyprinus carpio L.). Acta Zoologica Sinica, 14(2): 175−179. (in Chinese)
    Cao DC, Kuang YY, Zheng XH, Tong GX, Li CT, Sun XW. 2015. Comparative analysis of intermuscular bones in three strains of common carp. Journal of Applied Ichthyology, 31(1): 32−36. doi: 10.1111/jai.12483
    Celil AB, Campbell PG. 2005. BMP-2 and insulin-like growth Factor-I mediate Osterix (Osx) expression in human Mesenchymal stem cells via the MAPK and protein Kinase D signaling pathways. Journal of Biological Chemistry, 280(36): 31353−31359. doi: 10.1074/jbc.M503845200
    Chakrapani V, Patra SK, Panda RP, Rasal KD, Jayasankar P, Barman HK. 2016. Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Developmental & Comparative Immunology, 61: 242−247.
    Chen G, Xiong L, Wang YM, He LB, Huang R, Liao LJ, et al. 2018. ITGB1b-deficient rare minnows delay grass carp reovirus (GCRV) entry and attenuate GCRV-triggered apoptosis. International Journal of Molecular Sciences, 19(10): 3175. doi: 10.3390/ijms19103175
    Chen GJ, Tang QM, Yu SL, Xie YN, Sun JW, Li S, et al. 2020. The biological function of BMAL1 in skeleton development and disorders. Life Sciences, 253: 117636. doi: 10.1016/j.lfs.2020.117636
    Chen HL, Wang J, Du JX, Si ZX, Yang H, Xu XD, et al. 2019. ASIP disruption via CRISPR/Cas9 system induces black patches dispersion in Oujiang color common carp. Aquaculture, 498: 230−235. doi: 10.1016/j.aquaculture.2018.08.057
    Chen J, Chen XL, Huang X, Huang GH, Gao ZX, Wang WM, et al. 2021a. Genome-wide analysis of intermuscular bone development reveals changes of key genes expression and signaling pathways in blunt snout bream (Megalobrama amblycephala). Genomics, 113(1): 654−663. doi: 10.1016/j.ygeno.2020.09.062
    Chen J, Lv YP, Dai QM, Zhang L, Yang LY. 2021b. Molecular characterization of two twist genes in barbel steed (Hemibarbus labeo) and their relationship with intermuscular bone development. Journal of Fisheries of China, 45(4): 489−496. (in Chinese)
    Chen L, Tian X, Mi JL, Huang XQ, Wang L, Dong CJ, et al. 2017a. Developmental and morphological study of intermuscular bones in Cyprinus carpio haematopterus. Journal of Shanghai Ocean University, 26(4): 481−489. (in Chinese)
    Chen L, Tian X, Mi JL, Huang XQ, Wang L, Dong CJ, et al. 2017b. Developmental and morphological study of intermuscular bones in Cyprinus carpio haematopterus. Journal of Shanghai Ocean University, 26(4): 481−489. (in Chinese)
    Danos N, Ward AB. 2012. The homology and origins of intermuscular bones in fishes: phylogenetic or biomechanical determinants?. Biological Journal of the Linnean Society, 106(3): 607−622. doi: 10.1111/j.1095-8312.2012.01893.x
    Dong ZJ, Huang DZ, Li LJ, Yuan XH, Miao WM, Chen QQ, et al. 2006. Preliminary study on intermuscular bones of several cultured cyprinids. Journal of Shanghai Fisheries University, 15(4): 425−429. (in Chinese)
    Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, et al. 2008. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 26(6): 702−708. doi: 10.1038/nbt1409
    FAO. 2020. The State of World Fisheries and Aquaculture 2020. Rome: Sustainability in action.
    Fiedler IAK, Zeveleva S, Duarte A, Zhao X, Depalle B, Cardoso L, et al. 2019. Microstructure, mineral and mechanical properties of teleost intermuscular bones. Journal of Biomechanics, 94: 59−66. doi: 10.1016/j.jbiomech.2019.07.009
    Fine ML, Lin H, Nguyen BB, Rountree RA, Cameron TM, Parmentier E. 2007. Functional morphology of the sonic apparatus in the fawn cusk-eel Lepophidium profundorum (Gill, 1863). Journal of Morphology, 268(11): 953−966. doi: 10.1002/jmor.10551
    Funato N, Chapman SL, McKee MD, Funato H, Morris JA, Shelton JM, et al. 2009. Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2. Development, 136(4): 615−625. doi: 10.1242/dev.029355
    Gaj T, Gersbach CA, Barbas III CF. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnology, 31(7): 397−405. doi: 10.1016/j.tibtech.2013.04.004
    Gemballa S, Britz R. 1998. Homology of intermuscular bones in acanthomorph fishes. American Museum Novitates, (3241): 1−25.
    Gilbert SF, Barresi MJF. 2016. Developmental Biology. 11th ed. Sunderland, Massachusetts USA: Sinauer Associates, Inc.
    Göllner H, Dani C, Phillips B, Philipsen S, Suske G. 2001. Impaired ossification in mice lacking the transcription factor Sp3. Mechanisms of Development, 106(1-2): 77−83. doi: 10.1016/S0925-4773(01)00420-8
    Gotesman M, Soliman H, Besch R, El-Matbouli M. 2015. Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi. Journal of Fish Diseases, 38(2): 197−207. doi: 10.1111/jfd.12227
    Hatta M, Yoshimura Y, Deyama Y, Fukamizu A, Suzuki K. 2006. Molecular characterization of the zinc finger transcription factor, Osterix. International Journal of Molecular Medicine, 17(3): 425−430.
    Havens BA, Velonis D, Kronenberg MS, Lichtler AC, Oliver B, Mina M. 2008. Roles of FGFR3 during morphogenesis of Meckel's cartilage and mandibular bones. Developmental Biology, 316(2): 336−349. doi: 10.1016/j.ydbio.2008.01.035
    Hirsch P. 1938. Les arêtes dans le poisson d'étang. Bulletin Français de Pisciculture, 114: 36−39.
    Hong SHH, Lu XH, Nanes MS, Mitchell J. 2009. Regulation of osterix (Osx, Sp7) and the Osx promoter by parathyroid hormone in osteoblasts. Journal of Molecular Endocrinology, 43(5): 197−207. doi: 10.1677/JME-09-0012
    Huang P, Xiao A, Zhou MG, Zhu ZY, Lin S, Zhang B. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 29(8): 699−700. doi: 10.1038/nbt.1939
    Huang YY, Meng T, Wang SZ, Zhang H, Mues G, Qin CL, et al. 2014. Twist1- and Twist2-haploinsufficiency results in reduced bone formation. PLoS One, 9(6): e99331. doi: 10.1371/journal.pone.0099331
    Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3): 227−229. doi: 10.1038/nbt.2501
    Javed A, Chen HY, Ghori FY. 2010. Genetic and transcriptional control of bone formation. Oral and Maxillofacial Surgery Clinics of North America, 22(3): 283−293. doi: 10.1016/j.coms.2010.05.001
    Jiang SW, Shen QW. 2019. Principles of gene editing techniques and applications in animal husbandry. 3 Biotech, 9(1): 28. doi: 10.1007/s13205-018-1563-x
    Jiang Z, Von Den Hoff JW, Torensma R, Meng LY, Bian Z. 2014. Wnt16 is involved in intramembranous ossification and suppresses osteoblast differentiation through the Wnt/β-catenin pathway. Journal of Cellular Physiology, 229(3): 384−392. doi: 10.1002/jcp.24460
    Jochum W, David JP, Elliott C, Wutz A, Plenk Jr H, Matsuo K, et al. 2000. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Medicine, 6(9): 980−984. doi: 10.1038/79676
    Kaback LA, Soung DY, Naik A, Geneau G, Schwarz EM, Rosier RN, et al. 2008. Teriparatide (1-34 human PTH) regulation of Osterix during fracture repair. Journal of Cellular Biochemistry, 105(1): 219−226. doi: 10.1002/jcb.21816
    Kague E, Hughes SM, Lawrence EA, Cross S, Martin-Silverstone E, Hammond CL, et al. 2019. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish. The FASEB Journal, 33(8): 9116−9130. doi: 10.1096/fj.201802654RR
    Karsenty G, Wagner EF. 2002. Reaching a genetic and molecular understanding of skeletal development. Developmental Cell, 2(4): 389−406. doi: 10.1016/S1534-5807(02)00157-0
    Ke ZH, Zhang W, Jiang Y, Bao BL. 2008. Developmental morphology of the intermuscular bone in Hypophthalmichthys molitrix. Chinese Journal of Zoology, 43(6): 88−96. (in Chinese)
    Knight LC, Lesser TH. 1989. Fish bones in the throat. Emergency Medicine Journal, 6(1): 13−16. doi: 10.1136/emj.6.1.13
    Koga T, Matsui Y, Asagiri M, Kodama T, De Crombrugghe B, Nakashima K, et al. 2005. NFAT and Osterix cooperatively regulate bone formation. Nature Medicine, 11(8): 880−885. doi: 10.1038/nm1270
    Kossmann H. 1972. Untersuchungen über die genetische Varianz der Zwischenmuskelgräten des Karpfens. Theoretical and Applied Genetics, 42(3): 130−135. doi: 10.1007/BF00583415
    Krebs JE, Goldstein ES, Kilpatrick ST. 2018. Lewin's Genes XII. 12th ed. Burlington: Jones & Bartlett Learning.
    Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R. 2000. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. The Journal of Cell Biology, 151(4): 931−944. doi: 10.1083/jcb.151.4.931
    Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM. 2003. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochemical and Biophysical Research Communications, 309(3): 689−694. doi: 10.1016/j.bbrc.2003.08.058
    Lee SY, Park KH, Yu HG, Kook E, Song WH, Lee G, et al. 2019. Controlling hypoxia-inducible factor-2α is critical for maintaining bone homeostasis in mice. Bone Research, 7: 14. doi: 10.1038/s41413-019-0054-y
    Lenton K, James AW, Manu A, Brugmann SA, Birker D, Nelson ER, et al. 2011. Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis, 49(10): 784−796. doi: 10.1002/dvg.20768
    Li L, Cserjesi P, Olson EN. 1995. Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Developmental Biology, 172(1): 280−292. doi: 10.1006/dbio.1995.0023
    Li L, Zhong ZZ, Zeng M, Liu SJ, Zhou Y, Xiao J, et al. 2013. Comparative analysis of intermuscular bones in fish of different ploidies. Science China Life Sciences, 56(4): 341−350. doi: 10.1007/s11427-013-4465-5
    Li YX, Farrell MJ, Liu RP, Mohanty N, Kirby ML. 2000. Double-stranded RNA injection produces null phenotypes in zebrafish. Developmental Biology, 217(2): 394−405. doi: 10.1006/dbio.1999.9540
    Li Z, Zhou L, Wang ZW, Li XY, Zhang XJ, Wang Y, et al. 2017. Comparative analysis of intermuscular bones between clone A+ and clone F strains of allogynogenetic gibel carp. Acta Hydrobiologica Sinica, 41(4): 860−869. (in Chinese)
    Lian JB, Stein GS, Van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, et al. 2012. MicroRNA control of bone formation and homeostasis. Nature Reviews Endocrinology, 8(4): 212−227. doi: 10.1038/nrendo.2011.234
    Lieder U. 1961. Wieviel Gräten haben unsere Süßwasserfische?. Deutsche Fischerei-Zeitung, 8: 334−338.
    Liu H, Chen CH, Gao ZX, Min JM, Gu YM, Jian JB, et al. 2017. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. GigaScience, 6(7): gix039.
    Liu QF, Qi YH, Liang QL, Song J, Liu JM, Li WH, et al. 2019. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Science China Life Sciences, 62(9): 1194−1202. doi: 10.1007/s11427-018-9404-7
    Lu XH, Beck Jr GR, Gilbert LC, Camalier CE, Bateman NW, Hood BL, et al. 2011. Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation. Journal of Bone and Mineral Research, 26(1): 209−219. doi: 10.1002/jbmr.203
    Lund R. 1966. Intermuscular bones in pholidophorus bechei from the lower lias of England. Science, 152(3720): 348−349. doi: 10.1126/science.152.3720.348
    Lv YP, Bao BL, Jiang Y, Yang LL, Li JL. 2007. Comparative analysis of intermuscular bones in lower teleosts. Journal of Fisheries of China, 31(5): 661−668. (in Chinese)
    Lv YP, Chen J, Bao BL, Huang PP. 2012. The ossificational process of the intermuscular bones in Hemibarbus labeo. Journal of Shanghai Ocean University, 21(4): 549−553. (in Chinese)
    Lv YP, Yao WJ, Chen J, Bao BL. 2015. Newly identified gene muscle segment homeobox C may play a role in intermuscular bone development of Hemibarbus labeo. Genetics and Molecular Research, 14(3): 11324−11334. doi: 10.4238/2015.September.22.26
    Lv YP, Zhou CC, Yang LM, Bao BL. 2014. Ossification pattern of the intermuscular bone in Cyprinus carpio var. color. Journal of Shanghai Ocean University, 23(1): 58−63. (in Chinese)
    Ma J, Fan YD, Zhou Y, Liu WZ, Jiang N, Zhang JM, et al. 2018. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish & Shellfish Immunology, 76: 206−215.
    Maehata Y, Takamizawa S, Ozawa S, Kato Y, Sato S, Kubota E, et al. 2006. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biology, 25(1): 47−58. doi: 10.1016/j.matbio.2005.09.001
    Marofi F, Vahedi G, Solali S, Alivand M, Salarinasab S, Heydarabad MZ, et al. 2019. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells. Journal of Cellular Physiology, 234(5): 6230−6243. doi: 10.1002/jcp.27352
    McLarren KW, Lo R, Grbavec D, Thirunavukkarasu K, Karsenty G, Stifani S. 2000. The mammalian basic helix loop helix protein HES-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. The Journal of Biological Chemistry, 275(1): 530−538. doi: 10.1074/jbc.275.1.530
    Miyama K, Yamada G, Yamamoto TS, Takagi C, Miyado K, Sakai M, et al. 1999. A BMP-inducible gene, Dlx5, regulates osteoblast differentiation and mesoderm induction. Developmental Biology, 208(1): 123−133. doi: 10.1006/dbio.1998.9197
    Moav R, Finkel A, Wohlfarth G. 1975. Variability of intermuscular bones, vertebrae, ribs, dorsal fin rays and skeletal disorders in the common carp. Theoretical and Applied Genetics, 46(1): 33−43. doi: 10.1007/BF00264753
    Murakami T, Saito A, Hino SI, Kondo S, Kanemoto S, Chihara K, et al. 2009. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nature Cell Biology, 11(10): 1205−1211. doi: 10.1038/ncb1963
    Nakashima K, De Crombrugghe B. 2003. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends in Genetics, 19(8): 458−466. doi: 10.1016/S0168-9525(03)00176-8
    Nie CH, Chen ZX, Dai CJ, Wan SM, Gao ZX. 2018. Ossification patterns of intermuscular bones in different fish species. Acta Hydrobiologica Sinica, 42(1): 131−137. (in Chinese)
    Nie CH, Hilsdorf AWS, Wan SM, Gao ZX. 2020. Understanding the development of intermuscular bones in teleost: status and future directions for aquaculture. Reviews in Aquaculture, 12(2): 759−772. doi: 10.1111/raq.12348
    Nie CH, Wan SM, Chen YL, Zhu DJ, Wang XD, Dong XR, et al. 2021. Loss of scleraxis leads to distinct reduction of mineralized intermuscular bone in zebrafish. Aquaculture and Fisheries, 6(2): 169−177. doi: 10.1016/j.aaf.2020.04.006
    Nie CH, Wan SM, Liu YL, Liu H, Wang WM, Gao ZX. 2019. Development of teleost intermuscular bones undergoing intramembranous ossification based on histological-transcriptomic-proteomic data. International Journal of Molecular Sciences, 20(19): 4698. doi: 10.3390/ijms20194698
    Nunes JRS, Pértille F, Andrade SCS, Perazza CA, Villela PMS, Almeida-Val VMF, et al. 2020. Genome-wide association study reveals genes associated with the absence of intermuscular bones in tambaqui (Colossoma macropomum). Animal Genetics, 51(6): 899−909. doi: 10.1111/age.13001
    Padovano JD, Ramachandran A, Bahmanyar S, Ravindran S, George A. 2014. Bone-specific overexpression of DMP1 influences osteogenic gene expression during endochondral and intramembranous ossification. Connective Tissue Research, 55(S1): 121−124.
    Patterson C, Johnson GD. 1995. Intermuscular Bones and Ligaments of Teleostean Fishes. Washington, DC: Smithsonlan Institution Press.
    Perazza CA, De Menezes JTB, Ferraz JBS, Pinaffi FLV, Silva LA, Hilsdorf AWS. 2017. Lack of intermuscular bones in specimens of Colossoma macropomum: an unusual phenotype to be incorporated into genetic improvement programs. Aquaculture, 472: 57−60. doi: 10.1016/j.aquaculture.2016.05.014
    Perrien DS, Brown EC, Aronson J, Skinner RA, Montague DC, Badger Jr TM, et al. 2002. Immunohistochemical study of osteopontin expression during distraction osteogenesis in the rat. Journal of Histochemistry & Cytochemistry, 50(4): 567−574.
    Qin LJ, Ding DX, Cui LL, Huang QY. 2013. Expression and regulation of the SOST gene. Hereditas, 35(8): 939−947. (in Chinese)
    Rosenblum JS, Maggio D, Pang Y, Nazari MA, Gonzales MK, Lechan RM, et al. 2019. Chiari Malformation Type 1 in EPAS1-Associated Syndrome. International Journal of Molecular Sciences, 20(11): 2819. doi: 10.3390/ijms20112819
    Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, et al. 2000. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature Medicine, 6(9): 985−990. doi: 10.1038/79683
    Sengbusch RV, Meske C. 1967. Auf dem Wege zum grätenlosen Karpfen. Der Züchter, 37(6): 271−274.
    Sengbusch RV. 1967. Eine Schnellbestimmungsmethode der Zwischenmuskelgräten bei Karpfen zur Auslese von?grätenfreien “Mutanten (mit Röntgen-Fernsehkamera und Bildschirmgerät). Der Züchter, 37(6): 275−276.
    Si ZX, Chen HL, Xu XD, Wang J, Wang CH. 2020. Effect of Dct on pigmentation patterns in Oujiang color common carp. Journal of Fishery Sciences of China, 27(6): 605−612. (in Chinese)
    Sinha KM, Yasuda H, Coombes MM, Dent SYR, De Crombrugghe B. 2010. Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. The EMBO Journal, 29(1): 68−79. doi: 10.1038/emboj.2009.332
    Sinha KM, Zhou X. 2013. Genetic and molecular control of osterix in skeletal formation. Journal of Cellular Biochemistry, 114(5): 975−984. doi: 10.1002/jcb.24439
    Su SY, Dong ZJ. 2018. Comparative expression analyses of bone morphogenetic protein 4 (BMP4) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner. Gene Expression Patterns, 27: 106−113. doi: 10.1016/j.gep.2017.11.005
    Sun XD, Zhang RB, Liu M, Chen HG, Chen L, Luo FT, et al. 2019. Rmrp mutation disrupts chondrogenesis and bone ossification in zebrafish model of cartilage-Hair Hypoplasia via Enhanced Wnt/β-Catenin signaling. Journal of Bone and Mineral Research, 34(11): 2101−2116. doi: 10.1002/jbmr.3820
    Suo JL, Feng X, Li JY, Wang JH, Wang ZY, Zhang L, et al. 2020. VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription. Science Advances, 6(43): eaba4147. doi: 10.1126/sciadv.aba4147
    Takarada T, Nakazato R, Tsuchikane A, Fujikawa K, Iezaki T, Yoneda Y, et al. 2016. Genetic analysis of Runx2 function during intramembranous ossification. Development, 143(2): 211−218. doi: 10.1242/dev.128793
    Tang GP, Lv WH, Sun ZP, Cao DC, Zheng XH, Tong GX, et al. 2020. Heritability and quantitative trait locus analyses of intermuscular bones in mirror carp (Cyprinus carpio). Aquaculture, 515: 734601. doi: 10.1016/j.aquaculture.2019.734601
    Thirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. 1998. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfβ. Molecular and Cellular Biology, 18(7): 4197−4208. doi: 10.1128/MCB.18.7.4197
    Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC, et al. 2001. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Molecular Cell, 8(2): 303−316. doi: 10.1016/S1097-2765(01)00327-6
    Tintut Y, Parhami F, Le V, Karsenty G, Demer LL. 1999. Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells: ubiquitin/proteasome-dependent regulation. Journal of Biological Chemistry, 274(41): 28875−28879. doi: 10.1074/jbc.274.41.28875
    Uemura M, Nagasawa A, Terai K. 2016. Yap/Taz transcriptional activity in endothelial cells promotes intramembranous ossification via the BMP pathway. Scientific Reports, 6: 27473. doi: 10.1038/srep27473
    Wan SM, Xiong XM, Tomljanović T, Chen YL, Liu H, Treer T, et al. 2019. Identification and mapping of SNPs associated with number of intermuscular bone in blunt snout bream. Aquaculture, 507: 75−82. doi: 10.1016/j.aquaculture.2019.04.013
    Wan SM, Yi SK, Zhong J, Nie CH, Guan NN, Chen BX, et al. 2015. Identification of MicroRNA for intermuscular bone development in blunt snout bream (Megalobrama amblycephala). International Journal of Molecular Sciences, 16(5): 10686−10703.
    Wan SM, Yi SK, Zhong J, Wang WM, Jiang EM, Chen BX, et al. 2014. Developmental and morphological observation of intermuscular bones in Megalobrama amblycephala. Acta Hydrobiologica Sinica, 38(6): 1143−1151. (in Chinese)
    Wang LJ, Huang JH, Moore DC, Song YM, Ehrlich MG, Yang WT. 2019. SHP2 regulates intramembranous ossification by modifying the TGFβ and BMP2 signaling pathway. Bone, 120: 327−335. doi: 10.1016/j.bone.2018.11.014
    Woynárovich A, Van Anrooy R. 2019. Field guide to the culture of tambaqui (Colossoma macropomum, Cuvier, 1816). FAO Fisheries and Aquaculture Technical Paper No. 624. Rome: FAO.
    Wu CX, Xu XW, Zhi XP, Jiang ZY, Li YP, Xie XF, et al. 2019. Identification and functional characterization of IRAK-4 in grass carp (Ctenopharyngodon idellus). Fish & Shellfish Immunology, 87: 438−448.
    Xiao GZ, Jiang D, Gopalakrishnan R, Franceschi RT. 2002. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. Journal of Biological Chemistry, 277(39): 36181−36187. doi: 10.1074/jbc.M206057200
    Xing WR, Singgih A, Kapoor A, Alarcon CM, Baylink DJ, Mohan S. 2007. Nuclear factor-E2-related factor-1 mediates ascorbic acid induction of osterix expression via interaction with antioxidant-responsive element in bone cells. Journal of Biological Chemistry, 282(30): 22052−22061. doi: 10.1074/jbc.M702614200
    Xiong XM, Robinson NA, Zhou JJ, Chen YL, Wang WM, Wang XB, et al. 2019. Genetic parameter estimates for intermuscular bone in blunt snout bream (Megalobrama amblycephala) based on a microsatellite-based pedigree. Aquaculture, 502: 371−377. doi: 10.1016/j.aquaculture.2018.12.072
    Xu XF, Zheng JB, Qian YQ, Luo C. 2015. Normally grown and developed intermuscular bone-deficient mutant in grass carp, Ctenopharyngodon idellus. Chinese Science Bulletin, 60(1): 52−57. (in Chinese) doi: 10.1360/N972014-00637
    Yamashiro T, Wang XP, Li Z, Oya S, Åberg T, Fukunaga T, et al. 2004. Possible roles of Runx1 and Sox9 in incipient intramembranous ossification. Journal of Bone and Mineral Research, 19(10): 1671−1677. doi: 10.1359/JBMR.040801
    Yan NN, Su JG, Yang CR, Rao YL, Feng XL, Wan QY, et al. 2015. Grass carp SARM1 and its two splice variants negatively regulate IFN-I response and promote cell death upon GCRV infection at different subcellular locations. Developmental & Comparative Immunology, 48(1): 102−115.
    Yan XC, Liang LQ, Cao DC, Sun XW. 2013. Detection and Analysis of Transgenic Common Carp with RNAi. Chinese Journal of Fisheries, 26(3): 1−5. (in Chinese)
    Yang G, Qin ZD, Kou HY, Liang RS, Zhao LJ, Jiang SJ, et al. 2019a. A comparative genomic and transcriptional survey providing novel insights into bone morphogenetic protein 2 (bmp2) in Fishes. International Journal of Molecular Sciences, 20(24): 6137. doi: 10.3390/ijms20246137
    Yang J, Tong GX, Sun ZP, Zheng XH, Lv WH, Cao DC, et al. 2020a. Comparative analysis of muscle development in zebrafish with different intermuscular-bones patterns. Pakistan Journal of Zoology, 53(1): 313−322.
    Yang J, Tong GX, Zheng XH, Sun ZP, Lv WH, Sun XW, et al. 2019b. Comparative analysis of embryonic muscle development in wildtype zebrafish and its intermuscular bone deficiency mutant. Journal of Fishery Sciences of China, 26(2): 296−303. (in Chinese) doi: 10.3724/SP.J.1118.2019.18119
    Yang J, Tong GX, Zheng XH, Sun ZP, Lv WH, Sun XW, et al. 2020b. Comparative analysis of skeletal development between wildtype zebrafish and intermuscular bone-deficient mutants. Acta Hydrobiologica Sinica, 44(3): 546−553. (in Chinese)
    Yang KF, Jiang WS, Wang XA, Zhang YW, Pan XF, Yang JX. 2019c. Evolution of the intermuscular bones in the Cyprinidae (Pisces) from a phylogenetic perspective. Ecology and Evolution, 9(15): 8555−8566. doi: 10.1002/ece3.5374
    Yang KF, Pan XF, Wang XA, Liu Q, Yang JX. 2015. Quantitative variation and morphotype of intermuscular bones in Sinocyclocheilus cavefish. Cave Research, 2: 3.
    Yang MX, Zhu ZA, Chen JJ, Cai XZ, Fan ZY, Huang CN, et al. 2019d. Cloning and prokaryotic expression of the SOST gene of Carassius auratus. Journal of Zhongkai University of Agriculture and Engineering, 32(2): 58−63. (in Chinese)
    Yao WJ, Gong XL, Lv YP, Bao BL. 2014. The ossificational process of the intermuscular bones in Anguilla japonica. Journal of Shanghai Ocean University, 23(6): 810−813. (in Chinese)
    Yao WJ, Lv YP, Gong XL, Wu JM, Bao BL. 2015. Different ossification patterns of intermuscular bones in fish with different swimming modes. Biology Open, 4(12): 1727−1732. doi: 10.1242/bio.012856
    Yasutake J, Inohaya K, Kudo A. 2004. Twist functions in vertebral column formation in medaka, Oryzias latipes. Mechanisms of Development, 121(7-8): 883−894. doi: 10.1016/j.mod.2004.03.008
    Yu HMI, Jerchow B, Sheu TJ, Liu B, Costantini F, Puzas JE, et al. 2005. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development, 132(8): 1995−2005. doi: 10.1242/dev.01786
    Yu SB, Franceschi RT, Luo M, Fan J, Jiang D, Cao HL, et al. 2009. Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone. PLoS One, 4(10): e7583. doi: 10.1371/journal.pone.0007583
    Zambetti GP, Horwitz EM, Schipani E. 2006. Skeletons in the p53 tumor suppressor closet: genetic evidence that p53 blocks bone differentiation and development. Journal of Cell Biology, 172(6): 795−797. doi: 10.1083/jcb.200601114
    Zhang C. 2010. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. Journal of Orthopaedic Surgery and Research, 5(1): 37. doi: 10.1186/1749-799X-5-37
    Zhang F, Wen Y, Guo X. 2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 23(R1): R40−R46. doi: 10.1093/hmg/ddu125
    Zhang WZ, Lan T, Nie CH, Guan NN, Gao ZX. 2018. Characterization and spatiotemporal expression analysis of nine bone morphogenetic protein family genes during intermuscular bone development in blunt snout bream. Gene, 642: 116−124. doi: 10.1016/j.gene.2017.11.027
    Zhang X, Zara J, Siu RK, Ting K, Soo C. 2010. The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. Journal of Dental Research, 89(9): 865−878. doi: 10.1177/0022034510376401
    Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai JI, et al. 2000. A RUNX2/PEBP2αA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proceedings of the National Academy of Sciences of the United States of America, 97(19): 10549−10554. doi: 10.1073/pnas.180309597
    Zhong ZM, Niu PF, Wang MY, Huang GD, Xu SH, Sun Y, et al. 2016. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Scientific Reports, 6: 22953. doi: 10.1038/srep22953
    Zhu J, Shimizu E, Zhang XR, Partridge NC, Qin L. 2011. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and osterix. Journal of Cellular Biochemistry, 112(7): 1749−1760. doi: 10.1002/jcb.23094
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (1373) PDF downloads(229) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint