Citation: | Alberto Gómez-Carballa, Xabier Bello, Jacobo Pardo-Seco, María Luisa Pérez del Molino, Federico Martinón-Torres, Antonio Salas. Phylogeography of SARS-CoV-2 pandemic in Spain: a story of multiple introductions, micro-geographic stratification, founder effects, and super-spreaders. Zoological Research, 2020, 41(6): 605-620. doi: 10.24272/j.issn.2095-8137.2020.217 |
[1] |
Bandelt H-J, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1): 37−48. doi: 10.1093/oxfordjournals.molbev.a026036
|
[2] |
Ceraolo C, Giorgi FM. 2020. Genomic variance of the 2019-nCoV coronavirus. Journal of Medical Virology, 92(5): 522−528. doi: 10.1002/jmv.25700
|
[3] |
Colijn C, Gardy J. 2014. Phylogenetic tree shapes resolve disease transmission patterns. Evolution, Medicine, and Public Health, 2014(1): 96−108. doi: 10.1093/emph/eou018
|
[4] |
Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, et al. 2015. System for automated geoscientific analyses (SAGA) v.2.1.4. Geoscientific Model Development, 8(7): 1991−2007. doi: 10.5194/gmd-8-1991-2015
|
[5] |
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7: 214. doi: 10.1186/1471-2148-7-214
|
[6] |
Endo A, Abbott S, Kucharski AJ, Funk S. 2020. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Research, 5: 67. doi: 10.12688/wellcomeopenres.15842.3
|
[7] |
Forster P, Forster L, Renfrew C, Forster M. 2020a. Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences of the United States of America, 117(17): 9241−9243. doi: 10.1073/pnas.2004999117
|
[8] |
Forster P, Forster L, Renfrew C, Forster M. 2020b. Reply to Sanchez-Pacheco et al., Chookajorn, and Mavian et al.: explaining phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences of the United States of America, 117(23): 12524−12525. doi: 10.1073/pnas.2007433117
|
[9] |
Gómez-Carballa A, Bello X, Pardo-Seco J, Martinón-Torres F, Salas A. 2020. Mapping genome variation of SARS-CoV-2 worldwide highlights the impact of COVID-19 super-spreaders. Genome Research. doi: 10.1101/gr.266221.120.
|
[10] |
Heled J, Drummond AJ. 2008. Bayesian inference of population size history from multiple loci. BMC Evolutionary Biology, 8: 289. doi: 10.1186/1471-2148-8-289
|
[11] |
Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2): 254−267. doi: 10.1093/molbev/msj030
|
[12] |
Kendall M, Boyd M, Colijn C. 2018-02-21. Calculating topological properties of phylogenies. https://cran.r-project.org/web/packages/phyloTop/.
|
[13] |
Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. 2020. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 Virus. Cell, 182(4): 812−827. doi: 10.1016/j.cell.2020.06.043
|
[14] |
Kupferschmidt K. 2020-05-19. Why do some COVID-19 patients infect many others, whereas most don’t spread the virus at all? https://www.sciencemag.org/news/2020/05/why-do-some-covid-19-patients-infect-many-others-whereas-most-don-t-spread-virus-all.
|
[15] |
Leigh JW, Bryant D. 2015. POPART: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9): 1110−1116. doi: 10.1111/2041-210X.12410
|
[16] |
Metzig C, Ratmann O, Bezemer D, Colijn C. 2019. Phylogenies from dynamic networks. PLoS Computational Biology, 15(2): e1006761. doi: 10.1371/journal.pcbi.1006761
|
[17] |
Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10): 5269−5273. doi: 10.1073/pnas.76.10.5269
|
[18] |
Norström MM, Prosperi MCF, Gray RR, Karlsson AC, Salemi M. 2012. PhyloTempo: a set of R scripts for assessing and visualizing temporal clustering in genealogies inferred from serially sampled viral sequences. Evolutionary Bioinformatics, 8: 261−269.
|
[19] |
Shen ZJ, Xiao Y, Kang L, Ma WT, Shi LS, Zhang L, et al. 2020. Genomic diversity of severe acute respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019. Clinical Infectious Diseases, 71(15): 713−720. doi: 10.1093/cid/ciaa203
|
[20] |
Shu YL, McCauley J. 2017. GISAID: global initiative on sharing all influenza data - from vision to reality. Eurosurveillance, 22(13): 30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494
|
[21] |
Tang XL, Wu CC, Li X, Song YH, Yao XM, Wu XK, et al. 2020. On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6): 1012−1023. doi: 10.1093/nsr/nwaa036
|
[22] |
van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, et al. 2020. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution, 83: 104351. doi: 10.1016/j.meegid.2020.104351
|
[23] |
WHO. 2020. WHO Director-General's opening remarks at the media briefing on COVID-19 – 11 March 2020.
|
[24] |
Wong G, Bi YH, Wang QH, Chen XW, Zhang ZG, Yao YG. 2020. Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important?. Zoological Research, 41(3): 213−219. doi: 10.24272/j.issn.2095-8137.2020.031
|
[25] |
Yu WB, Tang GD, Zhang L, Corlett RT. 2020. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2 / HCoV-19) using whole genomic data. Zoological Research, 41(3): 247−257. doi: 10.24272/j.issn.2095-8137.2020.022
|
![]() |
![]() |