Volume 42 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Xing Guo, Xin-Xin He, Hong Chen, Zhi-Cheng Wang, Hui-Fang Li, Jiang-Xian Wang, Ming-Shan Wang, Run-Shen Jiang. Revisiting the evolutionary history of domestic and wild ducks based on genomic analyses. Zoological Research, 2021, 42(1): 43-50. doi: 10.24272/j.issn.2095-8137.2020.133
Citation: Xing Guo, Xin-Xin He, Hong Chen, Zhi-Cheng Wang, Hui-Fang Li, Jiang-Xian Wang, Ming-Shan Wang, Run-Shen Jiang. Revisiting the evolutionary history of domestic and wild ducks based on genomic analyses. Zoological Research, 2021, 42(1): 43-50. doi: 10.24272/j.issn.2095-8137.2020.133

Revisiting the evolutionary history of domestic and wild ducks based on genomic analyses

doi: 10.24272/j.issn.2095-8137.2020.133
#Authors contributed equally to this work
Funds:  This study was supported by the Natural Science Foundation of Anhui Province (1908085QC143) and the Natural Science Foundation for Young Scholars of Anhui Agricultural University (yj2018-51)
More Information
  • Although domestic ducks have been important poultry species throughout human history, their origin remains enigmatic, with mallards and/or Chinese spot-billed ducks being proposed as the direct wild ancestor(s) of domestic ducks. Here, we analyzed 118 whole genomes from mallard, Chinese spot-billed, and domestic ducks to reconstruct their evolutionary history. We found pervasive introgression patterns among these duck populations. Furthermore, we showed that domestic ducks separated from mallard and Chinese spot-billed ducks nearly 38 thousand years ago (kya) and 54 kya, respectively, which is considerably outside the time period of presumed duck domestication. Thus, our results suggest that domestic ducks may have originated from another wild duck population that is currently undefined or unsampled, rather than from present-day mallard and/or Chinese spot-billed ducks, as previously thought. Overall, this study provides new insight into the complex evolution of ducks.
  • #Authors contributed equally to this work
  • loading
  • [1]
    Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9): 1655−1664. doi: 10.1101/gr.094052.109
    Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4(1): 7. doi: 10.1186/s13742-015-0047-8
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. 2011. The variant call format and VCFtools. Bioinformatics, 27(15): 2156−2158. doi: 10.1093/bioinformatics/btr330
    Dong Y, Xie M, Jiang Y, Xiao NQ, Du XY, Zhang WG, et al. 2013. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 31(2): 135−141. doi: 10.1038/nbt.2478
    Excoffier L, Dupanloup I, Huerta-Sanchez E, Sousa VC, Foll M. 2013. Robust demographic inference from genomic and SNP data. PLoS Genetics, 9(10): e1003905. doi: 10.1371/journal.pgen.1003905
    Fages A, Hanghoj K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, et al. 2019. Tracking five millennia of horse management with extensive ancient genome time series. Cell, 177(6): 1419−1435.e31. doi: 10.1016/j.cell.2019.03.049
    Fan ZX, Silva P, Gronau I, Wang SG, Armero AS, Schweizer RM, et al. 2016. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Research, 26(2): 163−173. doi: 10.1101/gr.197517.115
    Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N, Schubert M, et al. 2018. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science, 360(6348): 111−114.
    Grant PR, Grant BR. 1992. Hybridization of bird species. Science, 256(5054): 193−197. doi: 10.1126/science.256.5054.193
    Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491(7424): 393−398. doi: 10.1038/nature11622
    Guo X, Fang Q, Ma CD, Zhou BY, Wan Y, Jiang RS. 2016. Whole-genome resequencing of Xishuangbanna fighting chicken to identify signatures of selection. Genetics Selection Evolution, 48(1): 62. doi: 10.1186/s12711-016-0239-4
    Hillier LDW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, et al. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432(7018): 695−716. doi: 10.1038/nature03154
    Hitosugi S, Tsuda K, Okabayashi H, Tanabe Y. 2007. Phylogenetic relationships of mitochondrial DNA cytochrome b gene in east asian ducks. The Journal of Poultry Science, 44(2): 141−145. doi: 10.2141/jpsa.44.141
    Hou ZC, Yang FX, Qu LJ, Zheng JX, Brun JM, Basso B, et al. 2012. Genetic structure of Eurasian and North American mallard ducks based on mtDNA data. Animal Genetics, 43(3): 352−355. doi: 10.1111/j.1365-2052.2011.02248.x
    Huang YH, Li YR, Burt DW, Chen HL, Zhang Y, Qian WB, et al. 2013. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 45(7): 776−783. doi: 10.1038/ng.2657
    Hudson RR. 2002. Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics, 18(2): 337−338. doi: 10.1093/bioinformatics/18.2.337
    Jin SD, Hoque R, Seo DW, Paek WK, Kang TH, Kim HK, et al. 2014. Phylogenetic analysis between domestic and wild duck species in Korea using mtDNA D-loop sequences. Molecular Biology Reports, 41(3): 1645−1652. doi: 10.1007/s11033-013-3012-6
    Kong Y. 2011. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics, 98(2): 152−153. doi: 10.1016/j.ygeno.2011.05.009
    Kozma R, Melsted P, Magnusson KP, Höglund J. 2016. Looking into the past - the reaction of three grouse species to climate change over the last million years using whole genome sequences. Molecular Ecology, 25(2): 570−580. doi: 10.1111/mec.13496
    Kulikova IV, Chelomina GN, Zhuravlev YN. 2003. Low genetic differentiation of and close evolutionary relationships between Anas platyrhynchos and Anas poecilorhyncha: RAPD–PCR evidence. Russian Journal of Genetics, 39(10): 1143−1151. doi: 10.1023/A:1026174910872
    Kulikova IV, Drovetski SV, Gibson DD, Harrigan RJ, Rohwer S, Sorenson MD, et al. 2005. Phylogeography of the mallard (Anas platyrhynchos): hybridization, dispersal, and lineage sorting contribute to complex geographic structure. The Auk, 122(3): 949−965. doi: 10.1093/auk/122.3.949
    Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7. 0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    Larson G, Burger J. 2013. A population genetics view of animal domestication. Trends in Genetics, 29(4): 197−205. doi: 10.1016/j.tig.2013.01.003
    Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M, et al. 2014. Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences of the United States of America, 111(17): 6139−6146. doi: 10.1073/pnas.1323964111
    Lavretsky P, McCracken KG, Peters JL. 2014. Phylogenetics of a recent radiation in the mallards and allies (Aves: Anas): inferences from a genomic transect and the multispecies coalescent. Molecular Phylogenetics and Evolution, 70: 402−411. doi: 10.1016/j.ympev.2013.08.008
    Lavretsky P, McInerney NR, Mohl JE, Brown JI, James HF, McCracken KG, et al. 2020. Assessing changes in genomic divergence following a century of human-mediated secondary contact among wild and captive-bred ducks. Molecular Ecology, 29(3): 578−595. doi: 10.1111/mec.15343
    Li H. 2014. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30(20): 2843−2851. doi: 10.1093/bioinformatics/btu356
    Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature, 475(7357): 493−496. doi: 10.1038/nature10231
    Li HF, Zhu WQ, Song WT, Shu JT, Han W, Chen KW. 2010. Origin and genetic diversity of Chinese domestic ducks. Molecular Phylogenetics and Evolution, 57(2): 634−640. doi: 10.1016/j.ympev.2010.07.011
    Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 438(7069): 803−819. doi: 10.1038/nature04338
    Liu YP, Wu GS, Yao YG, Miao YW, Luikart G, Baig M, et al. 2006. Multiple maternal origins of chickens: out of the Asian jungles. Molecular Phylogenetics and Evolution, 38(1): 12−19. doi: 10.1016/j.ympev.2005.09.014
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9): 1297−1303. doi: 10.1101/gr.107524.110
    Miao YW, Peng MS, Wu GS, Ouyang YN, Yang ZY, Yu N, et al. 2013. Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity, 110(3): 277−282. doi: 10.1038/hdy.2012.83
    Muñoz-Fuentes V, Vilà C, Green AJ, Negro JJ, Sorenson MD. 2007. Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Molecular Ecology, 16(3): 629−638.
    Museum ZC. 1979. The excavation of the mound tomb at Guoyuan of Fushan, Jurong County, Jiangsu Province. Kaogu, 1979(2): 113.
    Nadachowska-Brzyska K, Li C, Smeds L, Zhang GJ, Ellegren H. 2015. Temporal dynamics of avian populations during pleistocene revealed by whole-genome sequences. Current Biology, 25(10): 1375−1380. doi: 10.1016/j.cub.2015.03.047
    Orlando L, Ginolhac A, Zhang GJ, Froese D, Albrechtsen A, Stiller M, et al. 2013. Recalibrating Equus evolution using the genome sequence of an early middle pleistocene horse. Nature, 499(7456): 74−78. doi: 10.1038/nature12323
    Park SDE, Magee DA, McGettigan PA, Teasdale MD, Edwards CJ, Lohan AJ, et al. 2015. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biology, 16(1): 234. doi: 10.1186/s13059-015-0790-2
    Patterson N, Moorjani P, Luo YT, Mallick S, Rohland N, Zhan YP, et al. 2012. Ancient admixture in human history. Genetics, 192(3): 1065−1093. doi: 10.1534/genetics.112.145037
    Peters JL, Zhuravlev Y, Fefelov I, Logie A, Omland KE. 2007. Nuclear loci and coalescent methods support ancient hybridization as cause of mitochondrial paraphyly between gadwall and falcated duck (Anas spp.). Evolution, 61(8): 1992−2006. doi: 10.1111/j.1558-5646.2007.00149.x
    Plassais J, Kim J, Davis BW, Karyadi DM, Hogan AN, Harris AC, et al. 2019. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nature Communications, 10(1): 1489. doi: 10.1038/s41467-019-09373-w
    Price MN, Dehal PS, Arkin AP. 2010. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One, 5(3): e9490. doi: 10.1371/journal.pone.0009490
    Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T. 2002. Genetic evidence for an East Asian origin of domestic dogs. Science, 298(5598): 1610−1613. doi: 10.1126/science.1073906
    Schiffels S, Durbin R. 2014. Inferring human population size and separation history from multiple genome sequences. Nature Genetics, 46(8): 919−925. doi: 10.1038/ng.3015
    Shin JH, Lee KS, Kim SH, Hwang JK, Woo C, Kim J, et al. 2015. Tracking mallards (Anas platyrhynchos) with GPS satellite transmitters along their migration route through Northeast Asia. Avian Diseases, 60(1S): 311−315.
    Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK, Greenfield DL, et al. 2013. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science, 342(6160): 871−874. doi: 10.1126/science.1243650
    Wang GD, Xie HB, Peng MS, Irwin D, Zhang YP. 2014. Domestication genomics: evidence from animals. Annual Review of Animal Biosciences, 2: 65−84. doi: 10.1146/annurev-animal-022513-114129
    Wang GD, Zhai WW, Yang HC, Wang L, Zhong L, Liu YH, et al. 2016. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Research, 26(1): 21−33. doi: 10.1038/cr.2015.147
    Wang MS, Li Y, Peng MS, Zhong L, Wang ZJ, Li QY, et al. 2015. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Molecular Biology and Evolution, 32(7): 1880−1889. doi: 10.1093/molbev/msv071
    Wang MS, Otecko NO, Wang S, Wu DD, Yang MM, Xu YL, et al. 2017. An evolutionary genomic perspective on the breeding of dwarf chickens. Molecular Biology and Evolution, 34(12): 3081−3088. doi: 10.1093/molbev/msx227
    Wang MS, Wang S, Li Y, Jhala Y, Thakur M, Otecko NO, et al. 2020. Ancient hybridization with an unknown population facilitated high-altitude adaptation of canids. Molecular Biology and Evolution, 37(9): 2616−2629. doi: 10.1093/molbev/msaa113
    Wang WJ, Wang YF, Lei FM, Liu Y, Wang HT, Chen JK. 2019. Incomplete lineage sorting and introgression in the diversification of chinese spot-billed ducks and mallards. Current Zoology, 65(5): 589−597. doi: 10.1093/cz/zoy074
    Williams BR, Benson TJ, Yetter AP, Lancaster JD, Hagy HM. 2020. Habitat use of spring migrating dabbling ducks in the Wabash River Valley, USA. The Condor, 122(1): duz061. doi: 10.1093/condor/duz061
    Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88(1): 76−82. doi: 10.1016/j.ajhg.2010.11.011
    Zhang Y, Chen Y, Zhen T, Huang ZY, Chen CY, Li XY, et al. 2014. Analysis of the genetic diversity and origin of some chinese domestic duck breeds. Journal of Integrative Agriculture, 13(4): 849−857. doi: 10.1016/S2095-3119(13)60447-5
    Zhang Z, Khederzadeh S, Li Y. 2020. Deciphering the puzzles of dog domestication. Zoological Research, 41(2): 97−104. doi: 10.24272/j.issn.2095-8137.2020.002
    Zhang ZB, Jia YX, Almeida P, Mank JE, van Tuinen M, Wang Q, et al. 2018. Whole-genome resequencing reveals signatures of selection and timing of duck domestication. Gigascience, 7(4): giy027.
    Zhou ZK, Li M, Cheng H, Fan WL, Yuan ZR, Gao Q, et al. 2018. An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications, 9(1): 2648. doi: 10.1038/s41467-018-04868-4
  • ZR-2020-133S1.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (1755) PDF downloads(224) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint