Citation: | Chao-Chao Yan, Xin-Shang Zhang, Liang Zhou, Qiao Yang, Min Zhou, Lin-Wan Zhang, Jin-Chuan Xing, Zhi-Feng Yan, Megan Price, Jing Li, Bi-Song Yue, Zhen-Xin Fan. Effects of aging on gene expression in blood of captive Tibetan macaques (Macaca thibetana) and comparisons with expression in humans. Zoological Research, 2020, 41(5): 557-563. doi: 10.24272/j.issn.2095-8137.2020.092 |
[1] |
Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2): 166−169. doi: 10.1093/bioinformatics/btu638
|
[2] |
Aziz H, Zaas A, Ginsburg GS. 2007. Peripheral blood gene expression profiling for cardiovascular disease assessment. Genomic Medicine, 1(3-4): 105−112. doi: 10.1007/s11568-008-9017-x
|
[3] |
Charruau P, Johnston RA, Stahler DR, Lea A, Snyder-Mackler N, Smith DW, et al. 2016. Pervasive effects of aging on gene expression in wild wolves. Molecular Biology and Evolution, 33(8): 1967−1978. doi: 10.1093/molbev/msw072
|
[4] |
Dannemann M, Kelso J. 2017. The contribution of Neanderthals to phenotypic variation in modern humans. The American Journal of Human Genetics, 101(4): 578−589. doi: 10.1016/j.ajhg.2017.09.010
|
[5] |
de Magalhães JP, Passos JF. 2018. Stress, cell senescence and organismal ageing. Mechanisms of Ageing and Development, 170: 2−9. doi: 10.1016/j.mad.2017.07.001
|
[6] |
Eghlidi DH, Luna SL, Brown DI, Garyfallou VT, Kohama SG, Urbanski HF. 2018. Gene expression profiling of the SCN in young and old rhesus macaques. Journal of Molecular Endocrinology, 61(2): 57−67. doi: 10.1530/JME-18-0062
|
[7] |
Fan ZX, Zhao G, Li P, Osada N, Xing JC, Yi Y, et al. 2014. Whole-genome sequencing of Tibetan macaque (Macaca thibetana) provides new insight into the macaque evolutionary history. Molecular Biology and Evolution, 31(6): 1475−1489. doi: 10.1093/molbev/msu104
|
[8] |
Favaloro EJ, Franchini M, Lippi G. 2014. Aging hemostasis: changes to laboratory markers of hemostasis as we age-a narrative review. Seminars in Thrombosis and Hemostasis, 40(6): 621−633. doi: 10.1055/s-0034-1384631
|
[9] |
Frehlick LJ, Eirín-López JM, Ausió J. 2007. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. BioEssays, 29(1): 49−59. doi: 10.1002/bies.20512
|
[10] |
Gibbons A. 2017. Neandertal genome reveals greater legacy in the living. Science, 358(6359): 21. doi: 10.1126/science.358.6359.21
|
[11] |
Göring HHH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, et al. 2007. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics, 39(10): 1208−1216. doi: 10.1038/ng2119
|
[12] |
Granneman S, Tollervey D. 2007. Building ribosomes: even more expensive than expected?. Current Biology, 17(11): R415−R417. doi: 10.1016/j.cub.2007.04.011
|
[13] |
Hong MG, Myers AJ, Magnusson PKE, Prince JA. 2008. Transcriptome-wide assessment of human brain and lymphocyte senescence. PLoS One, 3(8): e3024. doi: 10.1371/journal.pone.0003024
|
[14] |
Hoopes BC, Rimbault M, Liebers D, Ostrander EA, Sutter NB. 2012. The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs. Mammalian Genome, 23(11-12): 780−790. doi: 10.1007/s00335-012-9417-z
|
[15] |
Horvath S, Zhang YF, Langfelder P, Kahn RS, Boks MPM, van Eijk K, et al. 2012. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biology, 13(10): R97. doi: 10.1186/gb-2012-13-10-r97
|
[16] |
Kenyon CJ. 2010. The genetics of ageing. Nature, 467(7315): 622.
|
[17] |
Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi: 10.1038/nmeth.3317
|
[18] |
Lan Y, Wang J, Yang Q, Tang RX, Zhou M, Lei GL, et al. 2020. Blood transcriptome analysis reveals gene expression features of breast-feeding rhesus macaque (Macaca mulatta) infants. Zoological Research, 41(4): 431−436. doi: 10.24272/j.issn.2095-8137.2020.044
|
[19] |
Lapointe J, Li CD, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. 2004. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(3): 811−816. doi: 10.1073/pnas.0304146101
|
[20] |
Lindqvist LM, Tandoc K, Topisirovic I, Furic L. 2018. Cross-talk between protein synthesis, energy metabolism and autophagy in cancer. Current Opinion in Genetics & Development, 48: 104−111.
|
[21] |
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell, 153(6): 1194−1217. doi: 10.1016/j.cell.2013.05.039
|
[22] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi: 10.1186/s13059-014-0550-8
|
[23] |
Lyman GH, Culakova E, Poniewierski MS, Kuderer NM. 2018. Morbidity, mortality and costs associated with venous thromboembolism in hospitalized patients with cancer. Thrombosis Research, 164: S112−S118. doi: 10.1016/j.thromres.2018.01.028
|
[24] |
Mari D, Coppola R, Provenzano R. 2008. Hemostasis factors and aging. Experimental Gerontology, 43(2): 66−73. doi: 10.1016/j.exger.2007.06.014
|
[25] |
Mesko B, Poliska S, Nagy L. 2011. Gene expression profiles in peripheral blood for the diagnosis of autoimmune diseases. Trends in Molecular Medicine, 17(4): 223−33. doi: 10.1016/j.molmed.2010.12.004
|
[26] |
Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, et al. 2015. The transcriptional landscape of age in human peripheral blood. Nature Communications, 6: 8570. doi: 10.1038/ncomms9570
|
[27] |
Reynolds LM, Ding JZ, Taylor JR, Lohman K, Soranzo N, de la Fuente A, et al. 2015. Transcriptomic profiles of aging in purified human immune cells. BMC Genomics, 16(1): 333. doi: 10.1186/s12864-015-1522-4
|
[28] |
Sheffield WD, Squire RA, Strandberg JD. 1981. Cerebral venous thrombosis in the rhesus monkey. Veterinary Pathology, 18(3): 326−334. doi: 10.1177/030098588101800305
|
[29] |
Shu TJ, Zhang YZ. 2007. Nucleoplasmin, an important nuclear chaperone. Chinese Journal of Biochemistry and Molecular Biology, 23(9): 718−723. (in Chinese)
|
[30] |
Simon AK, Hollander GA, McMichael A. 2015. Evolution of the immune system in humans from infancy to old age. Proceedings Biological Sciences, 282(1821): 20143085.
|
[31] |
Stute P, Sielker S, Wood CE, Register TC, Lees CJ, Dewi FN, Williams JK, Wagner JD, Stefenelli U, Cline JM. 2012. Life stage differences in mammary gland gene expression profile in non-human primates. Breast Cancer Research and Treatment, 133(2): 617−634.
|
[32] |
Tung J, Zhou X, Alberts SC, Stephens M, Gilad Y. 2015. The genetic architecture of gene expression levels in wild baboons. eLife, 4: e04729. doi: 10.7554/eLife.04729
|
[33] |
van der Horst A, Burgering BMT. 2007. Stressing the role of foxo proteins in lifespan and disease. Nature Reviews Molecular Cell Biology, 8(6): 440−450. doi: 10.1038/nrm2190
|
[34] |
van den Akker EB, Passtoors WM, Jansen R, van Zwet EW, Goeman JJ, Hulsman M, et al. 2014. Meta-analysis on blood transcriptomic studies identifies consistently coexpressed protein- protein interaction modules as robust markers of human aging. Aging Cell, 13(2): 216−225. doi: 10.1111/acel.12160
|
[35] |
Wei K, Liang X, Zou FD, Yin HL, Yue BS. 2006. Molecular cloning and sequence analysis of interferon-gamma and interleukin-6 from Tibetan macaque (Macaca thibetana). Veterinary Immunology and Immunopathology, 114(3−4): 346−354. doi: 10.1016/j.vetimm.2006.08.014
|
[36] |
Wu D, Yi Y, Sun F, Zhou L, Yang F, Wang H, et al. 2014. Effects of age and sex on the hematology and blood chemistry of Tibetan macaques (Macaca thibetana). Journal of the American Association for Laboratory Animal Science, 53(1): 12−17.
|
[37] |
Wu D, Yue F, Zou CL, Chan P, Zhang YA. 2012. Analysis of glucose metabolism in cynomolgus monkeys during aging. Biogerontology, 13(2): 147−155. doi: 10.1007/s10522-011-9364-1
|
[38] |
Xie C, Mao XZ, Huang JJ, Ding Y, Wu JM, Dong S, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 39(S2): W316−W322.
|
[39] |
Yao YF, Zhao JJ, Dai QX, Li JY, Zhou L, Wang YT, et al. 2013. Identification and characterization of the major histocompatibility complex class II DQB (MhcMath-DQB1) alleles in Tibetan macaques (Macaca thibetana). Tissue Antigens, 82(2): 113−121. doi: 10.1111/tan.12145
|
[40] |
Yin JA, Gao G, Liu XJ, Hao ZQ, Li K, Kang XL, et al. 2017. Genetic variation in glia-neuron signalling modulates ageing rate. Nature, 551(7679): 198−203. doi: 10.1038/nature24463
|
[41] |
Zheng HR, Liu T, Lei TT, Girani L, Wang Y, Deng SP. 2019. Promising potentials of Tibetan macaques in xenotransplantation. Xenotransplantation, 26(1): e12489. doi: 10.1111/xen.12489
|
![]() |
![]() |
![]() |
![]() |