Volume 41 Issue 3
May  2020
Turn off MathJax
Article Contents
Rong-Jun Ni, Yang Tian, Xin-Ye Dai, Lian-Sheng Zhao, Jin-Xue Wei, Jiang-Ning Zhou, Xiao-Hong Ma, Tao Li. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zoological Research, 2020, 41(3): 258-272. doi: 10.24272/j.issn.2095-8137.2020.034
Citation: Rong-Jun Ni, Yang Tian, Xin-Ye Dai, Lian-Sheng Zhao, Jin-Xue Wei, Jiang-Ning Zhou, Xiao-Hong Ma, Tao Li. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zoological Research, 2020, 41(3): 258-272. doi: 10.24272/j.issn.2095-8137.2020.034

Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory

doi: 10.24272/j.issn.2095-8137.2020.034
Funds:  This study was supported by the National Natural Science Foundation of China (81671344; 31500859), Major International (Regional) Joint Research Project of the National Natural Science Foundation of China (81920108018), 1.3.5 Project for Disciplines of Excellence, Special Foundation for Brain Research from the Science and Technology Program of Guangdong (2018B030334001), and West China Hospital of Sichuan University (ZY2016103; ZY2016203)
More Information
  • Corresponding author: E-mail: maxiaohong@scu.edu.cn
  • Received Date: 2019-11-01
  • Accepted Date: 2020-03-23
  • Published Online: 2020-03-23
  • Publish Date: 2020-05-18
  • Adult male tree shrews vigorously defend against intruding male conspecifics. However, the characteristics of social behavior have not been entirely explored in these males. In this study, male wild-type tree shrews (Tupaia belangeri chinensis) and C57BL/6J mice were first allowed to familiarize themselves with an open-field apparatus. The tree shrews exhibited a short duration of movement (moving) in the novel environment, whereas the mice exhibited a long duration of movement. In the 30 min social preference-avoidance test, target animals significantly decreased the time spent by the experimental tree shrews in the social interaction (SI) zone, whereas experimental male mice exhibited the opposite. In addition, experimental tree shrews displayed a significantly longer latency to enter the SI zone in the second 15 min session (target-present) than in the first 15 min session (target-absent), which was different from that found in mice. Distinct behavioral patterns in response to a conspecific male were also observed in male tree shrews and mice in the first, second, and third 5 min periods. Thus, social behaviors in tree shrews and mice appeared to be time dependent. In summary, our study provides results of a modified social preference-avoidance test designed for the assessment of social behavior in tree shrews. Our findings demonstrate the existence of social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics. The tree shrew may be a new animal model, which differs from mice, for the study of social avoidance and prosocial behaviors.

  • loading
  • [1]
    Anonymous]. 2001. Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour, 61(1): 271−275. doi: 10.1006/anbe.2000.1652
    Arakawa T, Tanave A, Ikeuchi S, Takahashi A, Kakihara S, Kimura S, Sugimoto H, Asada N, Shiroishi T, Tomihara K, Tsuchiya T, Koide T. 2014. A male-specific QTL for social interaction behavior in mice mapped with automated pattern detection by a hidden Markov model incorporated into newly developed freeware. Journal of Neuroscience Methods, 234: 127−134. doi: 10.1016/j.jneumeth.2014.04.012
    Bales KL, Solomon M, Jacob S, Crawley JN, Silverman JL, Larke RH, Sahagun E, Puhger KR, Pride MC, Mendoza SP. 2014. Long-term exposure to intranasal oxytocin in a mouse autism model. Translational Psychiatry, 4(11): e480. doi: 10.1038/tp.2014.117
    Bartal IBA, Decety J, Mason P. 2011. Empathy and pro-social behavior in rats. Science, 334(6061): 1427−1430. doi: 10.1126/science.1210789
    Basu P, Masters B, Patel B, Urban O. 1993. Food safety and inspection service update on food safety of animals derived from biotechnology experiments. Journal of Animal Science, 71(S3): 41−42.
    Bauman MD, Iosif AM, Ashwood P, Braunschweig D, Lee A, Schumann CM, Van De Water J, Amaral DG. 2013. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Translational Psychiatry, 3(7): e278. doi: 10.1038/tp.2013.47
    Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311(5762): 864−868. doi: 10.1126/science.1120972
    Brodkin ES, Hagemann A, Nemetski SM, Silver LM. 2004. Social approach-avoidance behavior of inbred mouse strains towards DBA/2 mice. Brain Research, 1002(1–2): 151−157.
    Buijs RM, Ruiz MAG, Hernández RM, Cortés BR. 2019. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Autonomic Neuroscience, 218: 43−50. doi: 10.1016/j.autneu.2019.02.001
    Deboer T, Vansteensel MJ, Détári L, Meijer JH. 2003. Sleep states alter activity of suprachiasmatic nucleus neurons. Nature Neuroscience, 6(10): 1086−1090. doi: 10.1038/nn1122
    Ey E, Yang M, Katz AM, Woldeyohannes L, Silverman JL, Leblond CS, Faure P, Torquet N, Le Sourd AM, Bourgeron T, Crawley JN. 2012. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes, Brain and Behavior, 11(8): 928−941.
    Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, Jiang XT, Lai R, Lang YS, Liang B, Liao SG, Mu D, Ma YY, Niu YY, Sun XQ, Xia JQ, Xiao J, Xiong ZQ, Xu L, Yang L, Zhang Y, Zhao W, Zhao XD, Zheng YT, Zhou JM, Zhu YB, Zhang GJ, Wang J, Yao YG. 2013. Genome of the Chinese tree shrew. Nature Communications, 4: 1426. doi: 10.1038/ncomms2416
    Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, Yao YL, Chen JQ, Lv LB, Zheng P, Wu DD, Zhang GJ, Yao YG. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521. doi: 10.24272/j.issn.2095-8137.2019.063
    Fang H, Sun YJ, Lv YH, Ni RJ, Shu YM, Feng XY, Wang Y, Shan QH, Zu YN, Zhou JN. 2016. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew. Scientific Reports, 6: 24905. doi: 10.1038/srep24905
    Farrell MR, Holland FH, Shansky RM, Brenhouse HC. 2016. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats. Behavioural Brain Research, 310: 119−125. doi: 10.1016/j.bbr.2016.05.009
    Fischer HD, Heinzeller T, Raab A. 1985. Gonadal response to psychosocial stress in male tree shrews (Tupaia belangeri) morphometry of testis, epididymis and prostate. Andrologia, 17(3): 262−275.
    Fuchs E, Schumacher M. 1990. Psychosocial stress affects pineal function in the tree shrew (Tupaia belangeri). Physiology & Behavior, 47(4): 713−717.
    Fuchs E, Jöhren O, Flügge G. 1993. Psychosocial conflict in the tree shrew: effects on sympathoadrenal activity and blood pressure. Psychoneuroendocrinology, 18(8): 557−565. doi: 10.1016/0306-4530(93)90033-H
    Fuchs E, Uno H, Flugge G. 1995. Chronic psychosocial stress induces morphological alterations in hippocampal pyramidal neurons of the tree shrew. Brain Research, 673(2): 275−282. doi: 10.1016/0006-8993(94)01424-G
    Fuchs E. 2005. Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectrums, 10(3): 182−190. doi: 10.1017/S1092852900010038
    Glass JD, Grossman GH, Farnbauch L, Dinardo L. 2003. Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. Journal of Neuroscience, 23(20): 7451−7460. doi: 10.1523/JNEUROSCI.23-20-07451.2003
    Golden SA, Covington III HE, Berton O, Russo SJ. 2011. A standardized protocol for repeated social defeat stress in mice. Nature Protocols, 6(8): 1183−1191. doi: 10.1038/nprot.2011.361
    Goodson JL, Lindberg L, Johnson P. 2004. Effects of central vasotocin and mesotocin manipulations on social behavior in male and female zebra finches. Hormones and Behavior, 45(2): 136−143. doi: 10.1016/j.yhbeh.2003.08.006
    Green J, Collins C, Kyzar EJ, Pham M, Roth A, Gaikwad S, Cachat J, Stewart AM, Landsman S, Grieco F, Tegelenbosch R, Noldus LPJJ, Kalueff AV. 2012. Automated high-throughput neurophenotyping of zebrafish social behavior. Journal of Neuroscience Methods, 210(2): 266−271. doi: 10.1016/j.jneumeth.2012.07.017
    Guillen J. 2017. Laboratory Animals: Regulations and Recommendations for the Care and Use of Animals in Research. 2nd ed. London: Academic Press.
    Haller J, Bakos N. 2002. Stress-induced social avoidance: a new model of stress-induced anxiety?. Physiology & Behavior, 77(2–3): 327−332.
    Hefner K, Cameron HA, Karlsson RM, Holmes A. 2007. Short-term and long-term effects of postnatal exposure to an adult male in C57BL/6J mice. Behavioural Brain Research, 182(2): 344−348. doi: 10.1016/j.bbr.2007.03.032
    Henriques-Alves AM, Queiroz CM. 2016. Ethological evaluation of the effects of social defeat stress in mice: beyond the social interaction ratio. Frontiers in Behavioral Neuroscience, 9: 364.
    Hery M, Dusticier G, Faudon M, Barrit MC, Héry F. 1981. Kinetic study of serotonin metabolism in the suprachiasmatic nucleus of the rat: neuroendocrine incidence (author's transl)]. Journal de Physiologie, 77(2–3): 497−500.
    Holst DV. 1977. Social stress in tree-shrews: problems, results, and goals. Journal of Comparative Physiology, 120: 71−86. doi: 10.1007/BF00617538
    Houwing DJ, Heijkoop R, Olivier JDA, Snoeren EMS. 2019. Perinatal fluoxetine exposure changes social and stress-coping behavior in adult rats housed in a seminatural environment. Neuropharmacology, 151: 84−97. doi: 10.1016/j.neuropharm.2019.03.037
    Huang ZH, Ni RJ, Luo PH, Zhou JN. 2020. Distribution of tyrosine-hydroxylase-immunoreactive neurons in the hypothalamus of tree shrews. The Journal of Comparative Neurology, 528(6): 935−952. doi: 10.1002/cne.24803
    Hubrecht R, Kirkwood J. 2010. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. 8th ed. Ames: Universities Federation for Animal Welfare, 262–275.
    Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. 2011. Assessment of social interaction behaviors. Journal of Visualized Experiments, (48): 2473.
    Kawamichi T, Kawamichi M. 1979. Spatial organization and territory of three shrews (Tupaia glis). Animal Behaviour, 27: 381−393. doi: 10.1016/0003-3472(79)90173-8
    Khani A, Rainer G. 2012. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions. Behavioural Processes, 90(3): 364−371. doi: 10.1016/j.beproc.2012.03.019
    Li AF, Jing DQ, Dellarco DV, Hall BS, Yang RR, Heilberg RT, Huang CC, Liston C, Casey BJ, Lee FS. 2019. Role of BDNF in the development of an OFC-amygdala circuit regulating sociability in mouse and human. Molecular Psychiatry. doi: 10.1038/s41380-019-0422-4.
    Lopes PC. 2014. When is it socially acceptable to feel sick?. Proceedings of the Royal Society B: Biological Sciences, 281(1788): 20140218. doi: 10.1098/rspb.2014.0218
    Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID. 2011. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology, 36(11): 2159−2168. doi: 10.1038/npp.2011.95
    Magariños AM, Mcewen BS, Flügge G, Fuchs E. 1996. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. Journal of Neuroscience, 16(10): 3534−3540. doi: 10.1523/JNEUROSCI.16-10-03534.1996
    Meng FT, Zhao J, Fang H, Liu YJ. 2015. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice. Stress, 18(4): 419−426. doi: 10.3109/10253890.2015.1040986
    Meng XL, Shen F, Li CL, Li YH, Wang XW. 2016. Depression-like behaviors in tree shrews and comparison of the effects of treatment with fluoxetine and carbetocin. Pharmacology Biochemistry and Behavior, 145: 1−8. doi: 10.1016/j.pbb.2016.03.006
    Mikics E, Tóth M, Varjú P, Gereben B, Liposits Z, Ashaber M, Halász J, Barna I, Farkas I, Haller J. 2008. Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology, 33(9): 1198−1210. doi: 10.1016/j.psyneuen.2008.06.006
    Moga MM, Moore RY. 1997. Organization of neural inputs to the suprachiasmatic nucleus in the rat. The Journal of Comparative Neurology, 389(3): 508−534. doi: 10.1002/(SICI)1096-9861(19971222)389:3<508::AID-CNE11>3.0.CO;2-H
    Monclús R, Saavedra I, de Miguel J. 2014. Context-dependent responses to neighbours and strangers in wild European rabbits (Oryctolagus cuniculus). Behavioural Processes, 106: 17−21. doi: 10.1016/j.beproc.2014.04.004
    Nair J, Topka M, Khani A, Isenschmid M, Rainer G. 2014. Tree shrews (Tupaia belangeri) exhibit novelty preference in the novel location memory task with 24-h retention periods. Frontiers in Psychology, 5: 303.
    Ni RJ, Huang ZH, Luo PH, Ma XH, Li T, Zhou JN. 2018. The tree shrew cerebellum atlas: systematic nomenclature, neurochemical characterization, and afferent projections. The Journal of Comparative Neurology, 526(17): 2744−2775. doi: 10.1002/cne.24526
    Ni RJ, Wang J, Shu YM, Xu L, Zhou JN. 2020. Mapping of c-Fos expression in male tree shrew forebrain. Neuroscience Letters, 714: 134603. doi: 10.1016/j.neulet.2019.134603
    Ogden BE, Pang WY, Agui T, Lee BH. 2016. Laboratory animal laws, regulations, guidelines and standards in China Mainland, Japan, and Korea. ILAR Journal, 57(3): 301−311.
    Parésys L, Hoffmann K, Froger N, Bianchi M, Villey I, Baulieu EE, Fuchs E. 2016. Effects of the synthetic neurosteroid: 3β-methoxypregnenolone (MAP4343) on behavioral and physiological alterations provoked by chronic psychosocial stress in tree shrews. International Journal of Neuropsychopharmacology, 19(4): pyv119. doi: 10.1093/ijnp/pyv119
    Pfaff D, Barbas H. 2019. Mechanisms for the approach/avoidance decision applied to autism. Trends in Neurosciences, 42(7): 448−457. doi: 10.1016/j.tins.2019.05.002
    Pryce CR, Fuchs E. 2017. Chronic psychosocial stressors in adulthood: studies in mice, rats and tree shrews. Neurobiology of Stress, 6: 94−103. doi: 10.1016/j.ynstr.2016.10.001
    Raab A, Storz H. 1976. A long term study on the impact of sociopsychic stress in tree-shrews (Tupaia belangeri) on central and peripheral tyrosine hydroxylase activity. Journal of Comparative Physiology, 108(2): 115−131. doi: 10.1007/BF02169044
    Raymond JS, Wilson BB, Tan O, Gururajan A, Bowen MT. 2019. Acute alcohol exposure dose-dependently alleviates social avoidance in adolescent mice and inhibits social investigation in adult mice. Psychopharmacology, 236(12): 3625−3639. doi: 10.1007/s00213-019-05335-8
    Schehka S, Esser KH, Zimmermann E. 2007. Acoustical expression of arousal in conflict situations in tree shrews (Tupaia belangeri). Journal of Comparative Physiology A, 193(8): 845−852. doi: 10.1007/s00359-007-0236-8
    Seibenhener ML, Wooten MC. 2015. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments, (96): e52434.
    Taugner R, Forssmann WG, Ganten D, Schiller A. 1980. Studies on the juxtaglomerular apparatus VI. Sympathetic innervation, catecholamines and the renin-angiotensin-system in rats and tree-shrews (Tupaia belangeri). Cell and Tissue Research, 212(3): 375−382.
    Toth I, Neumann ID. 2013. Animal models of social avoidance and social fear. Cell and Tissue Research, 354(1): 107−118. doi: 10.1007/s00441-013-1636-4
    van Dongen WFD. 2008. Mate guarding and territorial aggression vary with breeding synchrony in golden whistlers (Pachycephala pectoralis). Naturwissenschaften, 95(6): 537−545. doi: 10.1007/s00114-008-0356-1
    Vandenbergh JG. 1963. Feeding, activity and social behavior of the tree shrew, Tupaia glis, in a large outdoor enclosure. Folia Primatologica, 1(3–4): 199−207.
    Wang J, Zhou QX, Tian M, Yang YX, Xu L. 2011. Tree shrew models: a chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory. Zoological Research, 32(1): 24−30.
    Wang J, Chai AP, Zhou QX, Lv LB, Wang LP, Yang YX, Xu L. 2013. Chronic clomipramine treatment reverses core symptom of depression in subordinate tree shrews. PLoS One, 8(12): e80980. doi: 10.1371/journal.pone.0080980
    Xiao J, Liu R, Chen CS. 2017. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model. Zoological Research, 38(3): 127−137. doi: 10.24272/j.issn.2095-8137.2017.033
    Xu HF, Liu L, Tian YY, Wang J, Li J, Zheng JQ, Zhao HF, He M, Xu TL, Duan SM, Xu H. 2019. A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron, 102(3): 668−682. doi: 10.1016/j.neuron.2019.02.026
    Yao YG. 2017. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 38(3): 118−126. doi: 10.24272/j.issn.2095-8137.2017.032
    Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. 2006. Afferents to the orexin neurons of the rat brain. The Journal of Comparative Neurology, 494(5): 845−861. doi: 10.1002/cne.20859
    Zheng YT, Yao YG, Xu L. 2014. Basic Biology and Disease Models of Tree Shrews. Kunming, Yunnan: Science and Technology Press. (in Chinese)
  • ZR-2019-178-Supplement_Figur S1.doc
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (2975) PDF downloads(160) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint