Volume 41 Issue 3
May  2020
Turn off MathJax
Article Contents
Jing-Ze Ma, Hong-Yu Lu, Xiao-Song Li, Yu Tian. Interfacial phenomena of water striders on water surfaces: a review from biology to biomechanics. Zoological Research, 2020, 41(3): 231-246. doi: 10.24272/j.issn.2095-8137.2020.029
Citation: Jing-Ze Ma, Hong-Yu Lu, Xiao-Song Li, Yu Tian. Interfacial phenomena of water striders on water surfaces: a review from biology to biomechanics. Zoological Research, 2020, 41(3): 231-246. doi: 10.24272/j.issn.2095-8137.2020.029

Interfacial phenomena of water striders on water surfaces: a review from biology to biomechanics

doi: 10.24272/j.issn.2095-8137.2020.029
Funds:  This work was supported by the National Natural Science Foundation of China (51425502)
More Information
  • Corresponding author: E-mail: tianyu@mail.tsinghua.edu.cn
  • Received Date: 2019-12-06
  • Accepted Date: 2020-03-20
  • Published Online: 2020-03-20
  • Publish Date: 2020-05-18
  • Water striders have intrigued researchers for centuries from the viewpoints of biology to biomechanics. In this review, we introduce the basic theories and techniques of physics and force measurement for biomechanical research into water striders. Morphological and behavioral traits of water striders are summarized and discussed from biomechanical perspectives, along with comparative study. This integrated review also highlights potential directions for studies on water-walking arthropods, which might inspire future biological and biomechanical research.

  • loading
  • [1]
    Adamson AW, Gast AP. 1997. Physical Chemistry of Surfaces. 6th ed. New York: John Wiley & Sons, Inc..
    Andersen NM, Polhemus JT. 1976. Water-striders (Hemiptera: Gerridae, Veliidae, etc.). In: Cheng L. Marine Insects. Amsterdam: North-Holland Publ. Co, 187–224.
    Andersen NM. 1995. Cladistic inference and evolutionary scenarios: Locomotory structure, function, and performance in water striders. Cladistics, 11(3): 279−295. doi: 10.1016/0748-3007(95)90016-0
    Armisén D, Nagui Refki P, Crumière AJJ, Viala S, Toubiana W, Khila A. 2015. Predator strike shapes antipredator phenotype through new genetic interactions in water striders. Nature Communications, 6: 8153. doi: 10.1038/ncomms9153
    Armisén D, Rajakumar R, Friedrich M, Benoit JB, Robertson HM, Panfilio KA, Ahn SJ, Poelchau MF, Chao H, Dinh H, Doddapaneni HV, Dugan S, Gibbs RA, Hughes DST, Han Y, Lee SL, Murali SC, Muzny DM, Qu JX, Worley KC, Munoz-Torres M, Abouheif E, Bonneton F, Chen T, Chiang LM, Childers CP, Cridge AG, Crumière AJJ, Decaras A, Didion EM, Duncan EJ, Elpidina EN, Favé MJ, Finet C, Jacobs CGC, Cheatle Jarvela AM, Jennings EC, Jones JW, Lesoway MP, Lovegrove MR, Martynov A, Oppert B, Lillico-Ouachour A, Rajakumar A, Refki PN, Rosendale AJ, Santos ME, Toubiana W, van der Zee M, Vargas Jentzsch IM, Lowman AV, Viala S, Richards S, Khila A. 2018. The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water. BMC Genomics, 19: 832. doi: 10.1186/s12864-018-5163-2
    Bai F, Wu JT, Gong GM, Guo L. 2014. Biomimetic “water strider leg” with highly refined nanogroove structure and remarkable water-repellent performance. ACS Applied Materials & Interfaces, 6(18): 16237−16242.
    Bowdan E. 1978. Walking and rowing in the water strider, Gerris remigis I. A cinematographic analysis of walking. Journal of Comparative Physiology, 123(1): 43−49. doi: 10.1007/BF00657342
    Bühler O. 2007. Impulsive fluid forcing and water strider locomotion. Journal of Fluid Mechanics, 573: 211−236. doi: 10.1017/S002211200600379X
    Bush JWM, Hu DL. 2006. Walking on water: Biolocomotion at the interface. Annual Review of Fluid Mechanics, 38(1): 339−369. doi: 10.1146/annurev.fluid.38.050304.092157
    Bush JWM, Hu DL, Prakash M. 2007. The integument of water-walking arthropods: form and function. Advances in Insect Physiology, 34(147): 117–192.
    Caponigro MA, Eriksen CH. 1976. Surface film locomotion by the water strider, Gerris remigis say. The American Midland Naturalist, 95(2): 268−278. doi: 10.2307/2424392
    Cassie ABD, Baxter S. 1944. Wettability of porous surfaces. Transactions of the Faraday Society, 40: 546−551. doi: 10.1039/tf9444000546
    Cheng YT, Rodak DE. 2005. Is the lotus leaf superhydrophobic?. Applied Physics Letters, 86(14): 144101. doi: 10.1063/1.1895487
    Choi CH, Ulmanella U, Kim J, Ho CM, Kim CJ. 2006. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of Fluids, 18(8): 087105. doi: 10.1063/1.2337669
    Closa F, Chepelianskii AD, Raphaël E. 2010. Capillary-gravity waves generated by a sudden object motion. Physics of Fluids, 22(5): 052107. doi: 10.1063/1.3430004
    Cranston FP, Sprague IB. 1961. A morphological study of the head capsule of Gerris remigis say. Journal of Morphology, 108(3): 287−309. doi: 10.1002/jmor.1051080303
    Crumière AJJ, Santos ME, Sémon M, Armisén D, Moreira FFF, Khila A. 2016. Diversity in morphology and locomotory behavior is associated with niche expansion in the semi-aquatic bugs. Current Biology, 26(24): 3336−3342. doi: 10.1016/j.cub.2016.09.061
    De La Torre Bueno JR. 1911. The Gerrids of the Atlantic States (Subfamily Gerrinæ). Transactions of the American Entomological Society, 37(3): 243−252.
    Denny MW. 1993. Air and Water: the Biology and Physics of Life’s Media. Princeton, N.J.: Princeton University Press.
    Dickinson M. 2003. How to walk on water. Nature, 424(6949): 621−622. doi: 10.1038/424621a
    Fairbairn DJ. 1985. A test of the hypothesis of compensatory upstream dispersal using a stream-dwelling waterstrider, Gerris remigis say. Oecologia, 66(1): 147−153. doi: 10.1007/BF00378567
    Fairbairn DJ, Brassard J. 1988. Dispersion and spatial orientation of Gerris remigis in response to water current: a comparison of pre- and post-diapause adults. Physiological Entomology, 13(2): 153−164. doi: 10.1111/j.1365-3032.1988.tb00919.x
    Feng XQ, Gao XF, Wu ZN, Jiang L, Zheng QS. 2007. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir, 23(9): 4892−4896. doi: 10.1021/la063039b
    Finet C, Decaras A, Armisén D, Khila A. 2018. The achaete–scute complex contains a single gene that controls bristle development in the semi-aquatic bugs. Proceedings of the Royal Society B: Biological Sciences, 285(1892): 20182387. doi: 10.1098/rspb.2018.2387
    Gao P, Feng JJ. 2011. A numerical investigation of the propulsion of water walkers. Journal of Fluid Mechanics, 668: 363−383. doi: 10.1017/S0022112010004763
    Gao XF, Jiang L. 2004. Water-repellent legs of water striders. Nature, 432(7013): 36. doi: 10.1038/432036a
    Hinton HE. 1976. Plastron respiration in bugs and beetles. Journal of Insect Physiology, 22(11): 1529−1550. doi: 10.1016/0022-1910(76)90221-3
    Holdgate MW. 1955. The wetting of insect cuticles by water. Journal of Experimental Biology, 32: 591−617.
    Hu DL, Chan B, Bush JWM. 2003. The hydrodynamics of water strider locomotion. Nature, 424(6949): 663−666. doi: 10.1038/nature01793
    Hu DL, Bush JWM. 2010. The hydrodynamics of water-walking arthropods. Journal of Fluid Mechanics, 644: 5−33. doi: 10.1017/S0022112009992205
    Jabloński PG, Wilcox RS. 1996. Signalling asymmetry in the communication of the water strider Aquarius remigis in the context of dominance and spacing in the non-mating season. Ethology, 102(3): 353−359.
    Ji XY, Wang JW, Feng XQ. 2012. Role of flexibility in the water repellency of water strider legs: Theory and experiment. Physical Review E, 85(2): 021607. doi: 10.1103/PhysRevE.85.021607
    Junger W, Varjú D. 1990. Drift compensation and its sensory basis in waterstriders (Gerris paludum F.). Journal of Comparative Physiology A, 167(3): 441−446.
    Keller JB. 1998. Surface tension force on a partly submerged body. Physics of Fluids, 10(11): 3009−3010. doi: 10.1063/1.869820
    Khila A, Abouheif E, Rowe L. 2009. Evolution of a novel appendage ground plan in water striders is driven by changes in the Hox Gene Ultrabithorax. PLoS Genetics, 5(7): e1000583. doi: 10.1371/journal.pgen.1000583
    Khila A, Abouheif E, Rowe L. 2014. Comparative functional analyses of ultrabithorax reveal multiple steps and paths to diversification of legs in the adaptive radiation of semi-aquatic insects. Evolution, 68(8): 2159−2170.
    Koh JS, Yang E, Jung GP, Jung SP, Son JH, Lee SI, Jablonski PG, Wood RJ, Kim HY, Cho KJ. 2015. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects. Science, 349(6247): 517−521. doi: 10.1126/science.aab1637
    Kovac D, Maschwitz U. 1989. Secretion-grooming in the water bug Plea minutissima: a chemical defence against microorganisms interfering with the hydrofuge properties of the respiratory region. Ecological Entomology, 14(4): 403−411. doi: 10.1111/j.1365-2311.1989.tb00942.x
    Kovac D, Maschwitz U. 1990. Secretion-grooming in aquatic beetles (Hydradephaga): A chemical protection against contamination of the hydrofuge respiratory region. Chemoecology, 1(3–4): 131−138.
    Kovac D. 1993. A quantitative analysis of secretion-grooming behaviour in the water bug Plea minutissima leach (Heteroptera, Pleidae): Control by abiotic factors. Ethology, 93(1): 41−61.
    Kwak B, Bae J. 2018. Locomotion of arthropods in aquatic environment and their applications in robotics. Bioinspiration & Biomimetics, 13(4): 041002.
    Lafuma A, Quéré D. 2003. Superhydrophobic states. Nature Materials, 2(7): 457−460. doi: 10.1038/nmat924
    Lawry JV Jr. 1973. A scanning electron microscopic study of mechanoreceptors in the walking legs of the water strider, Gerris remigis. Journal of Anatomy, 116: 25−30.
    Lee DG, Kim HY. 2009. The role of superhydrophobicity in the adhesion of a floating cylinder. Journal of Fluid Mechanics, 624: 23−32. doi: 10.1017/S002211200900593X
    Liu JL, Feng XQ, Wang GF. 2007. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water. Physical Review E, 76: 066103. doi: 10.1103/PhysRevE.76.066103
    Lu HY, Zheng YL, Yin W, Tao DS, Pesika N, Meng YG, Tian Y. 2018. Propulsion principles of water striders in sculling forward through shadow method. Journal of Bionic Engineering, 15(3): 516−525. doi: 10.1007/s42235-018-0042-8
    Moisy F, Rabaud M, Salsac K. 2009. A synthetic Schlieren method for the measurement of the topography of a liquid interface. Experiments in Fluids, 46(6): 1021−1036. doi: 10.1007/s00348-008-0608-z
    Murphey RK. 1971a. Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis. Zeitschrift für Vergleichende Physiologie, 72(2): 168−185. doi: 10.1007/BF00297820
    Murphey RK. 1971b. Motor control of orientation to prey by the waterstrider, Gerris remigis. Zeitschrift für Vergleichende Physiologie, 72(2): 150−167. doi: 10.1007/BF00297819
    Ortega-Jimenez VM, von Rabenau L, Dudley R. 2017. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces. The Journal of Experimental Biology, 220(15): 2809−2815. doi: 10.1242/jeb.157172
    Patankar NA. 2004. Transition between Superhydrophobic states on rough surfaces. Langmuir, 20: 7097−7102. doi: 10.1021/la049329e
    Perez Goodwyn PJ, Fujisaki K. 2007. Sexual conflicts, loss of flight, and fitness gains in locomotion of polymorphic water striders. Entomologia Experimentalis et Applicata, 124(3): 249−259. doi: 10.1111/j.1570-7458.2007.00571.x
    Perez Goodwyn PJ, Wang JT, Wang ZJ, Ji AH, Dai ZD, Fujisaki K. 2008a. Water striders: The biomechanics of water locomotion and functional morphology of the hydrophobic surface (Insecta: Hemiptera-Heteroptera). Journal of Bionic Engineering, 5(2): 121−126. doi: 10.1016/S1672-6529(08)60015-3
    Perez Goodwyn PJ, Voigt D, Fujisaki K. 2008b. Skating and diving: Changes in functional morphology of the setal and microtrichial cover during ontogenesis in Aquarius paludum fabricius (Heteroptera, Gerridae). Journal of Morphology, 269(6): 734−744. doi: 10.1002/jmor.10619
    Perez Goodwyn P, Katsumata-Wada A, Okada K. 2009a. Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae). Journal of Insect Physiology, 55(9): 855−861. doi: 10.1016/j.jinsphys.2009.06.001
    Perez Goodwyn P, Maezono Y, Takamatsu H, Fujisaki K. 2009b. Semiaquatic Heteroptera locomotion: coral treaders (Hermatobates weddi, Hermatobatidae), sea skaters (Halovelia septentrionalis, Veliidae), and water striders (Metrocoris histrio, Gerridae) Usual and unusualgaits. Hydrobiologia, 630(1): 219−229. doi: 10.1007/s10750-009-9794-9
    Prakash M, Bush JWM. 2011. Interfacial propulsion by directional adhesion. International Journal of Non-Linear Mechanics, 46(4): 607−615. doi: 10.1016/j.ijnonlinmec.2010.12.003
    Rebora M, Salerno G, Piersanti S, Michels J, Gorb S. 2019. Structure and biomechanics of the antennal grooming mechanism in the southern green stink bug Nezara viridula. Journal of Insect Physiology, 112: 57−67. doi: 10.1016/j.jinsphys.2018.12.002
    Refki PN, Armisén D, Crumière AJJ, Viala S, Khila A. 2014. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait. Developmental Biology, 392(2): 441−453. doi: 10.1016/j.ydbio.2014.05.021
    Refki PN, Khila A. 2015. Key patterning genes contribute to leg elongation in water striders. EvoDevo, 6(1): 14. doi: 10.1186/s13227-015-0015-5
    Rinoshika A. 2012. Vortical dynamics in the wake of water strider locomotion. Journal of Visualization, 15(2): 145−153. doi: 10.1007/s12650-011-0117-7
    Roh C, Gharib M. 2019. Honeybees use their wings for water surface locomotion. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24446−24451. doi: 10.1073/pnas.1908857116
    Rubenstein DI. 1984. Resource acquisition and alternative mating strategies in water striders. American Zoologist, 24(2): 345−353. doi: 10.1093/icb/24.2.345
    Santos ME, Berger CS, Refki PN, Khila A. 2015. Integrating evo-devo with ecology for a better understanding of phenotypic evolution. Briefings in Functional Genomics, 14(6): 384−395. doi: 10.1093/bfgp/elv003
    Santos ME, Le Bouquin A, Crumière AJJ, Khila A. 2017. Taxon-restricted genes at the origin of a novel trait allowing access to a new environment. Science, 358(6361): 386−390. doi: 10.1126/science.aan2748
    Shi F, Niu J, Liu J, Liu F, Wang Z, Feng XQ, Zhang X. 2007. Towards understanding why a superhydrophobic coating is needed by water striders. Advanced Materials, 19(17): 2257−2261. doi: 10.1002/adma.200700752
    Song YS, Suhr SH, Sitti M. 2006. Modeling of the supporting legs for designing biomimetic water strider robots. In: Proceedings of the IEEE International Conference on Robotics and Automation. Orlando, Florida, USA: IEEE, 2303–2310.
    Spence JR, Spence DH, Scudder GGE. 1980. Submergence behavior in Gerris: Underwater basking. American Midland Naturalist, 103(2): 385−391. doi: 10.2307/2424638
    Steinmann T, Arutkin M, Cochard P, Raphaël E, Casas J, Benzaquen M. 2018. Unsteady wave pattern generation by water striders. Journal of Fluid Mechanics, 848: 370−387. doi: 10.1017/jfm.2018.365
    Stys P, Kerzhner I. 1975. The rank and nomenclature of higher taxa in recent Heteroptera. Acta Entomologica Bohemoslovaca, 72: 65−79.
    Su YW, Ji BH, Huang YG, Hwang KC. 2010. Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir, 26(24): 18926−18937. doi: 10.1021/la103442b
    Sun PY, Zhao MR, Jiang JL, Zheng YL. 2018. The study of dynamic force acted on water strider leg departing from water surface. AIP Advances, 8(1): 015228. doi: 10.1063/1.5012578
    Sun SM, Keller JB. 2001. Capillary-gravity wave drag. Physics of Fluids, 13(8): 2146−2151. doi: 10.1063/1.1384889
    Thorpe WH, Crisp DJ. 1947. Studies on plastron respiration: I. The biology of Aphelocheirus [hemiptera, Aphelocheiridae (naucoridae)] and the mechanism of plastron retention. Journal of Experimental Biology, 24.
    Thorpe WH, Crisp DJ. 1949. Studies on plastron respiration. Part IV. Plastron respiration in the Coleoptera. Journal of Experimental Biology, 26: 219−260.
    Thorpe WH. 1950. Plastron respiration in aquatic insects. Biological Reviews, 25(3): 344−390. doi: 10.1111/j.1469-185X.1950.tb01590.x
    Uesugi K, Mayama H, Morishima K. 2017. Direct measurement of propelling force of water strider. In: Proceedings of International Symposium on Micro-NanoMechatronics and Human Science (MHS). Nagoya: IEEE, 1–5.
    Vargas-Lowman A, Armisen D, Burguez Floriano CF, da Rocha Silva Cordeiro I, Viala S, Bouchet M, Bernard M, Le Bouquin A, Santos ME, Berlioz-Barbier A, Salvador A, Figueiredo Moreira FF, Bonneton F, Khila A. 2019. Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders. Proceedings of the National Academy of Sciences of the United States of America, 116(38): 19046−19054. doi: 10.1073/pnas.1908316116
    Vella D, Lee DG, Kim HY. 2006. The load supported by small floating objects. Langmuir, 22(14): 5979−5981. doi: 10.1021/la060606m
    Vella D. 2008. Floating objects with finite resistance to bending. Langmuir, 24(16): 8701−8706. doi: 10.1021/la800245k
    Vinnichenko NA, Plaksina YY, Baranova KM, Pushtaev AV, Uvarov AV. 2018. Mobility of free surface in different liquids and its influence on water striders locomotion. Environmental Fluid Mechanics, 18(5): 1045−1056. doi: 10.1007/s10652-018-9577-9
    Wang QB, Yao X, Liu H, Quéré D, Jiang L. 2015. Self-removal of condensed water on the legs of water striders. Proceedings of the National Academy of Sciences of the United States of America, 112(30): 9247−9252. doi: 10.1073/pnas.1506874112
    Wang S, Jiang L. 2007. Definition of superhydrophobic states. Advanced Materials, 19(21): 3423−3424. doi: 10.1002/adma.200700934
    Watson GS, Cribb BW, Watson JA. 2010. Experimental determination of the efficiency of nanostructuring on non-wetting legs of the water strider. Acta Biomaterialia, 6(10): 4060−4064. doi: 10.1016/j.actbio.2010.04.016
    Wei PJ, Chen SC, Lin JF. 2009a. Adhesion forces and contact angles of water strider legs. Langmuir, 25(3): 1526−1528. doi: 10.1021/la803223r
    Wei PJ, Shen YX, Lin JF. 2009b. Characteristics of water strider legs in hydrodynamic situations. Langmuir, 25(12): 7006−7009. doi: 10.1021/la900185a
    Wenzel RN. 1936. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8): 988−994.
    Wier KA, McCarthy TJ. 2006. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir, 22(6): 2433−2436. doi: 10.1021/la0525877
    Wilcox RS. 1979. Sex discrimination in Gerris remigis: Role of a surface wave signal. Science, 206(4424): 1325−1327. doi: 10.1126/science.206.4424.1325
    Wilcox RS, Ruckdeschel T. 1982. Food threshold territoriality in a water strider (Gerris remigis). Behavioral Ecology and Sociobiology, 11(2): 85−90. doi: 10.1007/BF00300096
    Wilcox RS, Di Stefano J. 1991. Vibratory signals enhance mate-guarding in a water strider (Hemiptera: Gerridae). Journal of Insect Behavior, 4(1): 43−50. doi: 10.1007/BF01092550
    Xu L, Yao X, Zheng YM. 2012. Direction-dependent adhesion of water strider’s legs for water-walking. Solid State Sciences, 14(8): 1146−1151. doi: 10.1016/j.solidstatesciences.2012.05.029
    Xue YH, Yuan HJ, Su WD, Shi YP, Duan HL. 2014. Enhanced load-carrying capacity of hairy surfaces floating on water. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2165): 20130832. doi: 10.1098/rspa.2013.0832
    Yang E, Son JH, Lee S, Jablonski PG, Kim HY. 2016. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology. Nature Communications, 7(1): 13698. doi: 10.1038/ncomms13698
    Yin W, Zheng YL, Lu HY, Zhang XJ, Tian Y. 2016. Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs. Applied Physics Letters, 109(16): 163701. doi: 10.1063/1.4964788
    Zheng QS, Yu Y, Zhao ZH. 2005. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir, 21(26): 12207−12212. doi: 10.1021/la052054y
    Zheng QS, Yu Y, Feng XQ. 2009. The role of adaptive-deformation of water strider leg in its walking on water. Journal of Adhesion Science and Technology, 23(3): 493−501. doi: 10.1163/156856108X379155
    Zheng YL, Lu HY, Yin W, Tao DS, Shi LC, Tian Y. 2016. Elegant shadow making tiny force visible for water-walking arthropods and updated Archimedes’ principle. Langmuir, 32(41): 10522−10528. doi: 10.1021/acs.langmuir.6b02922
    Zhukovskaya M, Yanagawa A, Forschler B. 2013. Grooming behavior as a mechanism of insect disease defense. Insects, 4(4): 609−630. doi: 10.3390/insects4040609
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (4134) PDF downloads(217) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint