Volume 41 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Zi-Chao Liu, Jin-Yang Liang, Xin-Qiang Lan, Tao Li, Jia-Rui Zhang, Fang Zhao, Geng Li, Pei-Yi Chen, Yun Zhang, Wen-Hui Lee, Feng Zhao. Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica. Zoological Research, 2020, 41(2): 138-147. doi: 10.24272/j.issn.2095-8137.2020.019
Citation: Zi-Chao Liu, Jin-Yang Liang, Xin-Qiang Lan, Tao Li, Jia-Rui Zhang, Fang Zhao, Geng Li, Pei-Yi Chen, Yun Zhang, Wen-Hui Lee, Feng Zhao. Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica. Zoological Research, 2020, 41(2): 138-147. doi: 10.24272/j.issn.2095-8137.2020.019

Comparative analysis of diverse toxins from a new pharmaceutical centipede, Scolopendra mojiangica

doi: 10.24272/j.issn.2095-8137.2020.019
#Authors contributed equally to this work
Funds:  This work was supported by grants from the Chinese National Natural Science Foundation (81860696, 31560596, 81373945, and 31360516), Yunnan Applied Basic Research Projects (2016FD076), Key Research Program of the Chinese Academy of Sciences (KJZD-EW-L03), "Yunling Scholar" Program, Yunnan Provincial Training Programs of Youth Leader in Academic and Technical Reserve Talent (2019HB058), and Puer University (2017XJKT12 & CXTD011)
More Information
  • As the oldest venomous animals, centipedes use their venom as a weapon to attack prey and for protection. Centipede venom, which contains many bioactive and pharmacologically active compounds, has been used for centuries in Chinese medicine, as shown by ancient records. Based on comparative analysis, we revealed the diversity of and differences in centipede toxin-like molecules between Scolopendra mojiangica, a substitute pharmaceutical material used in China, and S. subspinipes mutilans. More than 6 000 peptides isolated from the venom were identified by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and inferred from the transcriptome. As a result, in the proteome of S. mojiangica, 246 unique proteins were identified: one in five were toxin-like proteins or putative toxins with unknown function, accounting for a lower percentage of total proteins than that in S. mutilans. Transcriptome mining identified approximately 10 times more toxin-like proteins, which can characterize the precursor structures of mature toxin-like peptides. However, the constitution and quantity of the toxin transcripts in these two centipedes were similar. In toxicity assays, the crude venom showed strong insecticidal and hemolytic activity. These findings highlight the extensive diversity of toxin-like proteins in S. mojiangica and provide a new foundation for the medical-pharmaceutical use of centipede toxin-like proteins.

  • #Authors contributed equally to this work
  • loading
  • [1]
    Chen K, Yu B. 1999. Certain progress of clinical research on Chinese integrative medicine. Chinese Medical Journal (Engl), 112(10): 934−937.
    Chen M, Li J, Zhang F, Liu Z. 2014. Isolation and characterization of SsmTx-I, a Specific Kv2.1 blocker from the venom of the centipede Scolopendra Subspinipes Mutilans L. Koch. Journal of Peptide Science, 20(3): 159−164. doi: 10.1002/psc.2588
    Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18): 3674−3676. doi: 10.1093/bioinformatics/bti610
    Edgar RC. 2010. Quality measures for protein alignment benchmarks. Nucleic Acids Research, 38(7): 2145−2153. doi: 10.1093/nar/gkp1196
    Edgecombe GD, Giribet G. 2007. Evolutionary biology of centipedes (Myriapoda: Chilopoda). Annual Review of Entomology, 52: 151−170. doi: 10.1146/annurev.ento.52.110405.091326
    Gonzalez-Morales L, Pedraza-Escalona M, Diego-Garcia E, Restano-Cassulini R, Batista CV, Gutierrez Mdel C, Possani LD. 2014. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis. Journal of Proteomics, 111: 224−237. doi: 10.1016/j.jprot.2014.04.033
    Hakim MA, Yang S, Lai R. 2015. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel), 7(11): 4832−4851. doi: 10.3390/toxins7114832
    Harvey AL. 2014. Toxins and drug discovery. Toxicon, 92: 193−200. doi: 10.1016/j.toxicon.2014.10.020
    He QY, He QZ, Deng XC, Yao L, Meng E, Liu ZH, Liang SP. 2008. ATDB: a uni-database platform for animal toxins. Nucleic Acids Research, 36.
    Hou H, Yan W, Du K, Ye Y, Cao Q, Ren W. 2013. Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner. Protein Expression and Purification, 92(2): 230−234. doi: 10.1016/j.pep.2013.10.004
    Jiang H, Wong WH. 2009. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25(8): 1026−1032. doi: 10.1093/bioinformatics/btp113
    Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F. 2015. From foe to friend: using animal toxins to investigate ion channel function. Journal of Molecular Biology, 427(1): 158−175. doi: 10.1016/j.jmb.2014.07.027
    King G. 2013. Venoms to drugs: translating venom peptides into therapeutics. Australian Biochemist, 44(3): 13−16.
    King GF. 2011. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opinion on Biological Therapy, 11(11): 1469−1484. doi: 10.1517/14712598.2011.621940
    Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25
    Liu ZC, Zhang R, Zhao F, Chen ZM, Liu HW, Wang YJ, Jiang P, Zhang Y, Wu Y, Ding JP, Lee WH, Zhang Y. 2012. Venomic and transcriptomic analysis of centipede Scolopendra subspinipes dehaani. Journal of Proteome Research, 11(12): 6197−6212. doi: 10.1021/pr300881d
    Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, Yu H. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon, 55(2-3): 274−279. doi: 10.1016/j.toxicon.2009.07.040
    Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19(5): 651−652. doi: 10.1093/bioinformatics/btg034
    Rong M, Yang S, Wen B, Mo G, Kang D, Liu J, Lin Z, Jiang W, Li B, Du C, Yang S, Jiang H, Feng Q, Xu X, Wang J, Lai R. 2015. Peptidomics combined with cDNA library unravel the diversity of centipede venom. Journal of Proteomics, 114: 28−37. doi: 10.1016/j.jprot.2014.10.014
    Savitski MM, Nielsen ML, Kjeldsen F, Zubarev RA. 2005. Proteomics-grade de novo sequencing approach. Journal of Proteome Research, 4(6): 2348−2354. doi: 10.1021/pr050288x
    Smith JJ, Herzig V, King GF, Alewood PF. 2013. The insecticidal potential of venom peptides. Cellular and Molecular Life Sciences: CMLS, 70(19): 3665−3693. doi: 10.1007/s00018-013-1315-3
    Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105−1111. doi: 10.1093/bioinformatics/btp120
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol, 28(5): 511−515. doi: 10.1038/nbt.1621
    Undheim EA, Fry BG, King GF. 2015. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel), 7(3): 679−704. doi: 10.3390/toxins7030679
    Undheim EA, Jenner RA, King GF. 2016. Centipede venoms as a source of drug leads. Expert Opinion on Drug Discovery, 11(12): 1139−1149. doi: 10.1080/17460441.2016.1235155
    Undheim EA, King GF. 2011. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon, 57(4): 512−524. doi: 10.1016/j.toxicon.2011.01.004
    Wang K, Fang H, Ye M, Chen H, Zhu Y, Fang H. 1997. Investigation on the resources of medicinal centipedes and identification on their commodities. Journal of Chinese Medicinal Materials, 20(9): 450−452.
    Yang S, Liu Z, Xiao Y, Li Y, Rong M, Liang S, Zhang Z, Yu H, King GF, Lai R. 2012. Chemical punch packed in venoms makes centipedes excellent predators. Molecular and Cellular Proteomics, 11(9): 640−650. doi: 10.1074/mcp.M112.018853
    Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF. 2013. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proceedings of the Natlional Academy of Sciences of the Untied States of America, 110(43): 17534−17539. doi: 10.1073/pnas.1306285110
    Yang S, Yang F, Wei N, Hong J, Li B, Luo L, Rong M, Yarov-Yarovoy V, Zheng J, Wang K, Lai R. 2015. A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nature Communications, 6: 8297. doi: 10.1038/ncomms9297
    Zhang Y. 2015. Why do we study animal toxins?. Zoological Research, 36(4): 183−222.
    Zhao F, Guo X, Wang Y, Liu J, Lee WH, Zhang Y. 2014a. Drug target mining and analysis of the Chinese tree shrew for pharmacological testing. PLoS One, 9(8): e104191. doi: 10.1371/journal.pone.0104191
    Zhao F, Lan X, Li T, Xiang Y, Zhao F, Zhang Y, Lee WH. 2018a. Proteotranscriptomic analysis and discovery of the profile and diversity of toxin-like proteins in centipede. Molecular and Cellular Proteomics, 17(4): 709−720. doi: 10.1074/mcp.RA117.000431
    Zhao F, Lan XQ, Du Y, Chen PY, Zhao J, Zhao F, Lee WH, Zhang Y. 2018b. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zoological Research, 39(2): 87−96. doi: 10.24272/j.issn.2095-8137.2018.025
    Zhao F, Yan C, Wang X, Yang Y, Wang G, Lee W, Xiang Y, Zhang Y. 2014b. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Research, 21(1): 1−13. doi: 10.1093/dnares/dst035
  • ZR-2019-163 Supplementary Tables and Figures.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (3383) PDF downloads(293) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint