Volume 41 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Feng Xu, Ming-Yun Li, Jiong Chen. D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor. Zoological Research, 2020, 41(1): 39-50. doi: 10.24272/j.issn.2095-8137.2020.003
Citation: Feng Xu, Ming-Yun Li, Jiong Chen. D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor. Zoological Research, 2020, 41(1): 39-50. doi: 10.24272/j.issn.2095-8137.2020.003

D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor

doi: 10.24272/j.issn.2095-8137.2020.003
Funds:  This project was supported by the National Natural Science Foundation of China (31772876), Zhejiang Provincial Natural Science Foundation of China (LZ18C190001), Scientific Innovation Team Project of Ningbo (2015C110018), and K.C. Wong Magna Fund in Ningbo University
More Information
  • Corresponding author: E-mail: jchen1975@163.com; chenjiong@nbu.edu.cn
  • Received Date: 2019-09-11
  • Publish Date: 2020-01-01
  • D-dopachrome tautomerase (DDT), a member of the macrophage migration inhibitory factor (MIF) protein superfamily, is a newly described cytokine with chemokine-like characteristics. However, research on fish DDT remains limited. In this study, we identified a DDT homolog (LjDDT) from the Japanese sea bass, Lateolabrax japonicus. Sequence analysis showed that LjDDT had typical sequence features of known DDT and MIF homologs and was most closely related to DDT of rock bream (Oplegnathus fasciatus). LjDDT transcripts were detected in all tested tissues of healthy Japanese sea bass, with the highest expression found in the liver. Upon infection with Vibrio harveyi, LjDDT transcripts were significantly down-regulated in the three tested tissues, including the liver, spleen, and head kidney. Recombinant LjDDT (rLjDDT) and the corresponding antibody (anti-rLjDDT) were subsequently prepared. The administration of 100 μg/g anti-rLjDDT had a statistically significant protective effect on the survival of V. harveyi-infected fish. Moreover, rLjDDT was able to induce the migration of monocytes/macrophages (MO/MФ) and lymphocytes both in vitro and in vivo, but without significant influence on the migration of neutrophils. rLjDDT exhibited chemotactic activity for lipopolysaccharide (LPS) -stimulated M1-type MO/ MΦ in vitro, but not for cAMP-stimulated M2-type MO/MΦ. Furthermore, the knockdown of LjCD74, but not LjCXCR4, significantly down-regulated the rLjDDT-enhanced migration of MO/MΦ and relieved the rLjMIF-inhibited migration of MO/MΦ. These results indicate that LjCD74 may be the major chemotactic receptor of LjDDT and LjMIF in Japanese sea bass MO/MΦ. Combined rLjDDT+ rLjMIF treatment had no significant effect on the migration of MsiRNA, LjCD74si-, or LjCXCR4sitreated MO/MΦ compared to the control group, suggesting that the roles of LjDDT and LjMIF may be antagonistic. In conclusion, our study demonstrates for the first time that DDT may play a role in the immune responses of fish against bacterial infection through chemotactic recruitment of MO/MΦ via mediation of CD74 as an antagonist of MIF.

  • loading
  • [1]
    Abe R, Peng T, Sailors J, Bucala R, Metz CN. 2001. Regulation of the CTL response by macrophage migration inhibitory factor. The Journal of Immunology, 166(2): 747−753. doi: 10.4049/jimmunol.166.2.747
    Benedek G, Meza-Romero R, Jordan K, Zhang Y, Nguyen H, Kent G, Li J, Siu E, Frazer J, Piecychna M, Du X, Sreih A, Leng L, Wiedrick J, Caillier SJ, Offner H, Oksenberg JR, Yadav V, Bourdette D, Bucala R, Vandenbark AA. 2017. MIF and D-DT are potential disease severity modifiers in male MS subjects. Proceedings of the National Academy of Sciences of the United States of America, 114(40): E8421−E8429. doi: 10.1073/pnas.1712288114
    Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C. 2007. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 13(5): 587−596. doi: 10.1038/nm1567
    Bloom BR, Bennett B. 1966. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 153(3731): 80−82. doi: 10.1126/science.153.3731.80
    Chen F, Lu XJ, Nie L, Ning YJ, Chen J. 2018. Molecular characterization of a CC motif chemokine 19-like gene in ayu (Plecoglossus altivelis) and its role in leukocyte trafficking. Fish and Shellfish Immunology, 72: 301−308. doi: 10.1016/j.fsi.2017.11.012
    Chen J, Chen Q, Lu XJ, Li CH. 2014. LECT2 improves the outcomes in ayu with Vibrio anguillarum infection via monocytes/macrophages. Fish and Shellfish Immunology, 41(2): 586−592. doi: 10.1016/j.fsi.2014.10.012
    Chen K, Shi YH, Chen J, Li MY. 2019. A soluble FcγR homolog inhibits IgM antibody production in ayu spleen cells. Zoological Research, 2019, 40(5): 404−415.
    Coleman AM, Rendon BE, Zhao M, Qian MW, Bucala R, Xin D, Mitchell RA. 2008. Cooperative regulation of non-small cell lung carcinoma angiogenic potential by macrophage migration inhibitory factor and its homolog, D-dopachrome tautomerase. The Journal of Immunology, 181(4): 2330−2337. doi: 10.4049/jimmunol.181.4.2330
    David JR. 1966. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proceedings of the National Academy of Sciences of the United States of America, 56(1): 72−77. doi: 10.1073/pnas.56.1.72
    Esumi N, Budarf M, Ciccarelli L, Sellinger B, Kozak CA, Wistow G. 1998. Conserved gene structure and genomic linkage for D-dopachrome tautomerase (DDT) and MIF. Mammalian Genome, 9(9): 753−757. doi: 10.1007/s003359900858
    Fagone P, Mazzon E, Cavalli E, Bramanti A, Petralia MC, Mangano K, Al-Abed Y, Bramati P, Nicoletti F. 2018. Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: in silico and in vivo evidences. Journal of Neuroimmunology, 322: 46−56. doi: 10.1016/j.jneuroim.2018.06.009
    Fernández J, Acevedo J, Wiest R, Gustot T, Amoros A, Deulofeu C, Reverter E, Martínez J, Saliba F, Jalan R, Welzel T, Pavesi M, Hernández-Tejero M, Ginès P, Arroyo V. 2018. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut, 67(10): 1870−1880. doi: 10.1136/gutjnl-2017-314240
    Furukawa R, Tamaki K, Kaneko H. 2016. Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis. Immunology and Cell Biology, 94(4): 315−321. doi: 10.1038/icb.2016.6
    Günther S, Fagone P, Jalce G, Atanasov AG, Guignabert C, Nicoletti F. 2019. Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discovery Today, 24(2): 428−439. doi: 10.1016/j.drudis.2018.11.003
    Guo D, Guo J, Yao J, Jiang K, Hu J, Wang B, Liu H, Sun W, Jiang X. 2016. D-dopachrome tautomerase is over-expressed in pancreatic ductal adenocarcinoma and acts cooperatively with macrophage migration inhibitory factor to promote cancer growth. International Journal of Cancer, 139(9): 2056−2067. doi: 10.1002/ijc.30278
    Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. 2019. Evolving complexity of MIF signaling. Cellular Signalling, 57: 76−88. doi: 10.1016/j.cellsig.2019.01.006
    Jin HJ, Xiang LX, Shao JZ. 2007. Molecular cloning and identification of macrophage migration inhibitory factor (MIF) in teleost fish. Developmental and Comparative Immunology, 31(11): 1131−1144. doi: 10.1016/j.dci.2007.02.004
    Joerink M, Ribeiro CMS, Stet RJM, Hermsen T, Savelkoul HFJ, Wiegertjes GF. 2006. Head kidney-derived macrophages of common carp (Cyprinus carpio L. ) show plasticity and functional polarization upon differential stimulation. The Journal of Immunology, 177(1): 61−69.
    Kim BS, Stoppe C, Grieb G, Leng L, Sauler M, Assis D, Simons D, Boecker AH, Schulte W, Piecychna M, Hager S, Bernhagen J, Pallua N, Bucala R. 2016. The clinical significance of the MIF homolog d-dopachrome tautomerase (MIF-2) and its circulating receptor (sCD74) in burn. Burns, 42(6): 1265−1276. doi: 10.1016/j.burns.2016.02.005
    Kim BS, Tilstam PV, Hwang SS, Simons D, Schulte W, Leng L, Sauler M, Ganse B, Averdunk L, Kopp R, Stoppe C, Bernhagen J, Pallua N, Bucala R. 2017. D-dopachrome tautomerase in adipose tissue inflammation and wound repair. Journal of Cellular and Molecular Medicine, 21(1): 35−45. doi: 10.1111/jcmm.12936
    Klasen C, Ohl K, Sternkopf M, Shachar I, Schmitz C, Heussen N, Hobeika E, Levit-Zerdoun E, Tenbrock K, Reth M, Bernhagen J, El Bounkari O. 2014. MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. The Journal of Immunology, 192(11): 5273−5284. doi: 10.4049/jimmunol.1302209
    Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    Leng L, Bucala R. 2006. Insight into the biology of macrophage migration inhibitory factor (MIF) revealed by the cloning of its cell surface receptor. Cell Research, 16(2): 162−168. doi: 10.1038/sj.cr.7310022
    Liu H, Lu XJ, Chen J. 2018. Full-length and a smaller globular fragment of adiponectin have opposite roles in regulating monocyte/macrophage functions in ayu, Plecoglossus altivelis. Fish and Shellfish Immunology, 82: 319−329. doi: 10.1016/j.fsi.2018.08.041
    Lu XJ, Chen J. 2019. Specific function and modulation of teleost monocytes/ macrophages: polarization and phagocytosis. Zoological Research, 40(3): 146−150. doi: 10.24272/j.issn.2095-8137.2019.035
    Luster AD, Alon R, von Andrian UH. 2005. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 6(12): 1182−1190. doi: 10.1038/ni1275
    Ma Y, Su KN, Pfau D, Rao VS, Wu X, Hu X, Leng L, Du X, Piecychna M, Bedi K, Campbell SG, Eichmann A, Testani JM, Margulies KB, Bucala R, Young LH. 2019. Cardiomyocyte d-dopachrome tautomerase protects against heart failure. The Journal of Clinical Investigation Insight, 4(17): 128900.
    Merk M, Baugh J, Zierow S, Leng L, Pal U, Lee SJ, Ebert AD, Mizue Y, Trent JO, Mitchell R, Nickel W, Kavathas PB, Bernhagen J, Bucala R. 2009. The golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. The Journal of Immunology, 182(11): 6896−6906. doi: 10.4049/jimmunol.0803710
    Merk M, Mitchell RA, Endres S, Bucala R. 2012. D-dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family. Cytokine, 59(1): 10−17. doi: 10.1016/j.cyto.2012.03.014
    Merk M, Zierow S, Leng L, Das R, Du X, Schulte W, Fan J, Lue H, Chen Y, Xiong H, Chagnon F, Bernhagen J, Lolis E, Mor G, Lesur O, Bucala R. 2011. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proceedings of the National Academy of Sciences of the United States of America, 108(34): E577−E585. doi: 10.1073/pnas.1102941108
    Nishihira J, Fujinaga M, Kuriyama T, Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Sakai M. 1998. Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochemical and Biophysical Research Communications, 243(2): 538−544. doi: 10.1006/bbrc.1998.8123
    Odh G, Hindemith A, Rosengren AM, Rosengren E, Rorsman H. 1993. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole. Biochemical and Biophysical Research Communications, 197(2): 619−624. doi: 10.1006/bbrc.1993.2524
    Oh M, Kasthuri SR, Wan Q, Bathige SDNK, Whang I, Lim BS, Jung HB, Oh MJ, Jung SJ, Kim SY, Lee J. 2013. Characterization of MIF family proteins: MIF and DDT from rock bream, Oplegnathus fasciatus. Fish and Shellfish Immunology, 35(2): 458−468. doi: 10.1016/j.fsi.2013.05.003
    Pasupuleti V, Du W, Gupta Y, Yeh IJ, Montano M, Magi-Galuzzi C, Welford SM. 2014. Dysregulated D-dopachrome tautomerase, a hypoxia-inducible factor-dependent gene, cooperates with macrophage migration inhibitory factor in renal tumorigenesis. Journal of Biological Chemistry, 289(6): 3713−3723. doi: 10.1074/jbc.M113.500694
    Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. 2015. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Frontiers in Immunology, 6: 429.
    Pohl J, Hendgen-Cotta UB, Stock P, Luedike P, Rassaf T. 2017. Elevated MIF-2 levels predict mortality in critically ill patients. Journal of Critical Care, 40: 52−57. doi: 10.1016/j.jcrc.2017.03.012
    Presti M, Mazzon E, Basile MS, Petralia MC, Bramanti A, Colletti G, Bramanti P, Nicoletti F, Fagone P. 2018. Overexpression of macrophage migration inhibitory factor and functionally-related genes, D-DT, CD74, CD44, CXCR2 and CXCR4, in glioblastoma. Oncology Letters, 16(3): 2881−2886.
    Rajasekaran D, Gröning S, Schmitz C, Zierow S, Drucker N, Bakou M, Kohl K, Mertens A, Lue H, Weber C, Xiao A, Luker G, Kapurniotu A, Lolis E, Bernhagen J. 2016. Macrophage migration inhibitory factor-CXCR4 receptor interactions: evidence for partial allosteric agonism in comparison with CXCL12 chemokine. Journal of Biological Chemistry, 291(30): 15881−15895. doi: 10.1074/jbc.M116.717751
    Ren Y, Liu SF, Nie L, Cai SY, Chen J. 2019. Involvement of ayu NOD2 in NF-κB and MAPK signaling pathways: insights into functional conservation of NOD2 in antibacterial innate immunity. Zoological Research, 40(2): 77−88. doi: 10.24272/j.issn.2095-8137.2018.066
    Rijvers L, Melief MJ, van der Vuurst de Vries RM, Stéphant M, van Langelaar J, Wierenga-Wolf AF, Hogervorst JM, Geurts-Moespot AJ, Sweep FCGJ, Hintzen RQ, van Luijn MM. 2018. The macrophage migration inhibitory factor pathway in human B cells is tightly controlled and dysregulated in multiple sclerosis. European Journal of Immunology, 48(11): 1861−1871. doi: 10.1002/eji.201847623
    Schober A, Bernhagen J, Weber C. 2008. Chemokine-like functions of MIF in atherosclerosis. Journal of Molecular Medicine, 86(7): 761−770. doi: 10.1007/s00109-008-0334-2
    Schwartz V, Lue H, Kraemer S, Korbiel J, Krohn R, Ohl K, Bucala R, Weber C, Bernhagen J. 2009. A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Letters, 583(17): 2749−2757. doi: 10.1016/j.febslet.2009.07.058
    Shen YC, Thompson DL, Kuah MK, Wong KL, Wu KL, Linn SA, Jewett EM, Shu-Chien AC, Barald KF. 2012. The cytokine macrophage migration inhibitory factor (MIF) acts as a neurotrophin in the developing inner ear of the zebrafish, Danio rerio. Developmental Biology, 363(1): 84−94. doi: 10.1016/j.ydbio.2011.12.023
    Sinitski D, Kontos C, Krammer C, Asare Y, Kapurniotu A, Bernhagen J. 2019. Macrophage migration inhibitory factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Journal of Thrombosis and Haemostasis, 119(4): 553−566. doi: 10.1055/s-0039-1677803
    Soppert J, Kraemer S, Beckers C, Averdunk L, Möllmann J, Denecke B, Goetzenich A, Marx G, Bernhagen J, Stoppe C. 2018. Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. Journal of the American Heart Association, 7(17): e009384.
    Sugimoto H, Taniguchi M, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. 1999. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at1.54 Å resolution. Biochemistry, 38(11): 3268−3279. doi: 10.1021/bi982184o
    Tilstam PV, Qi D, Leng L, Young L, Bucala R. 2017. MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opinion on Therapeutic Targets, 21(7): 671−683. doi: 10.1080/14728222.2017.1336227
    Valiño-Rivas L, Cuarental L, Grana O, Bucala R, Leng L, Sanz A, Gomez G, Ortiz A, Sanchez-Niño MD. 2018. TWEAK increases CD74 expression and sensitizes to DDT proinflammatory actions in tubular cells. PLoS One, 13(6): e0199391. doi: 10.1371/journal.pone.0199391
    Vincent FB, Lin E, Sahhar J, Ngian GS, Kandane-Rathnayake R, Mende R, Hoi AY, Morand EF, Lang T, Harris J. 2018. Analysis of serum macrophage migration inhibitory factor and D-dopachrome tautomerase in systemic sclerosis. Clinical & Translational Immunology, 7(12): e1042.
    Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. 2019. M2b macrophage polarization and its roles in diseases. Journal of Leukocyte Biology, 106(2): 345−358. doi: 10.1002/JLB.3RU1018-378RR
    Wang Q, Wei Y, Zhang J. 2017. Combined knockdown of D-dopachrome tautomerase and migration inhibitory factor inhibits the proliferation, migration, and invasion in human cervical cancer. International Journal of Gynecological Cancer, 27(4): 634−642. doi: 10.1097/IGC.0000000000000951
    Weber C, Kraemer S, Drechsler M, Lue H, Koenen RR, Kapurniotu A, Zernecke A, Bernhagen J. 2008. Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America, 105(42): 16278−16283. doi: 10.1073/pnas.0804017105
    Xu F, Shi YH, Chen J. 2019. Characterization and immunologic functions of the macrophage migration inhibitory factor from Japanese sea bass, Lateolabrax japonicus. Fish and Shellfish Immunology, 86: 947−955. doi: 10.1016/j.fsi.2018.12.042
    Yu L, Li CH, Chen J. 2019. A novel CC chemokine ligand 2 like gene from ayu Plecoglossus altivelis is involved in the innate immune response against to Vibrio anguillarum. Fish and Shellfish Immunology, 87: 886−896. doi: 10.1016/j.fsi.2019.02.019
    Zhang M, Åman P, Grubb A, Panagopoulos I, Hindemith A, Rosengren E, Rorsman H. 1995. Cloning and sequencing of a cDNA encoding rat D-dopachrome tautomerase. FEBS Letters, 373(3): 203−206. doi: 10.1016/0014-5793(95)01041-C
    Zhou QJ, Wang L, Chen J, Wang RN, Shi YH, Li CH, Zhang DM, Yan XJ, Zhang YJ. 2014. Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. Journal of Microbiological Methods, 104: 26−35. doi: 10.1016/j.mimet.2014.06.008
  • ZoolRes-41-1-39-Supplementary Tables and Figures.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (1834) PDF downloads(181) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint