Volume 41 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Zhe Zhang, Saber Khederzadeh, Yan Li. Deciphering the puzzles of dog domestication. Zoological Research, 2020, 41(2): 97-104. doi: 10.24272/j.issn.2095-8137.2020.002
Citation: Zhe Zhang, Saber Khederzadeh, Yan Li. Deciphering the puzzles of dog domestication. Zoological Research, 2020, 41(2): 97-104. doi: 10.24272/j.issn.2095-8137.2020.002

Deciphering the puzzles of dog domestication

doi: 10.24272/j.issn.2095-8137.2020.002
Funds:  This work was supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0501), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA2004010302), and National Natural Science Foundation of China (31860305). Y.L. was supported by the Young Academic and Technical Leader Raising Foundation of Yunnan Province
More Information
  • Corresponding author: E-mail: liyan0910@ynu.edu.cn
  • Received Date: 2019-07-05
  • Publish Date: 2020-03-01
  • The domestic dog, as a highly successful domestication model, is well known as a favored human companion. Exploring its domestication history should provide great insight into our understanding of the prehistoric development of human culture and productivity. Furthermore, investigation on the mechanisms underpinning the morphological and behavioral traits associated with canid domestication syndrome is of significance not only for scientific study but also for human medical research. Current development of a multidisciplinary canine genome database, which includes enormous omics data, has substantially improved our understanding of the genetic makeup of dogs. Here, we reviewed recent advances associated with the original history and genetic basis underlying environmental adaptations and phenotypic diversities in domestic dogs, which should provide perspectives on improving the communicative relationship between dogs and humans.

  • loading
  • [1]
    Anderson TM, vonHoldt BM, Candille SI, Musiani M, Greco C, Stahler DR, Smith DW, Padhukasahasram B, Randi E, Leonard JA, Bustamante CD, Ostrander EA, Tang H, Wayne RK, Barsh GS. 2009. Molecular and evolutionary history of melanism in North American gray wolves. Science, 323(5919): 1339−1343. doi: 10.1126/science.1165448
    [2]
    Arendt M, Cairns KM, Ballard JWO, Savolainen P, Axelsson E. 2016. Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity (Edinb), 117(5): 301−306. doi: 10.1038/hdy.2016.48
    [3]
    Arendt M, Fall T, Lindblad-Toh K, Axelsson E. 2014. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes. Animal Genetics, 45(5): 716−722. doi: 10.1111/age.12179
    [4]
    Axelsson E, Ratnakumar A, Arendt ML, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K. 2013. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature, 495(7441): 360−364. doi: 10.1038/nature11837
    [5]
    Bai B, Zhao WM, Tang BX, Wang YQ, Wang L, Zhang Z, Yang HC, Liu YH, Zhu JW, Irwin DM, Wang GD, Zhang YP. 2015. DoGSD: the dog and wolf genome SNP database. Nucleic Acids Research, 43(D1): D777−D783. doi: 10.1093/nar/gku1174
    [6]
    Baker J, Liu JP, Robertson EJ, Efstratiadis A. 1993. Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75(1): 73−82. doi: 10.1016/S0092-8674(05)80085-6
    [7]
    Boyko AR, Boyko RH, Boyko CM, Parker HG, Castelhano M, Corey L, Degenhardt JD, Auton A, Hedimbi M, Kityo R, Ostrander EA, Schoenebeck J, Todhunter RJ, Jones P, Bustamante CD. 2009. Complex population structure in African village dogs and its implications for inferring dog domestication history. Proceedings of the National Academy of Sciences of the United States of America, 106(33): 13903−13908. doi: 10.1073/pnas.0902129106
    [8]
    Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Zhao K, Brisbin A, Parker HG, vonHoldt BM, Cargill M, Auton A, Reynolds A, Elkahloun AG, Castelhano M, Mosher DS, Sutter NB, Johnson GS, Novembre J, Hubisz MJ, Siepel A, Wayne RK, Bustamante CD, Ostrander EA. 2010. A simple genetic architecture underlies morphological variation in dogs. PLoS Biology, 8(8): e1000451. doi: 10.1371/journal.pbio.1000451
    [9]
    Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, Parker HG, VonHoldt BM, Rhue A, Boyko A, Byers A, Wong A, Mosher DS, Elkahloun AG, Spady TC, AndréC, Lark KG, Cargill M, Bustamante CD, Wayne RK, Ostrander EA. 2009. Coat variation in the domestic dog is governed by variants in three genes. Science, 326(5949): 150−153. doi: 10.1126/science.1177808
    [10]
    Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, Nix MA, Kerns JA, Schmutz SM, Millhauser GL, Barsh GS. 2007. A β-defensin mutation causes black coat color in domestic dogs. Science, 318(5855): 1418−1423. doi: 10.1126/science.1147880
    [11]
    Cao X, Irwin DM, Liu YH, Cheng LG, Wang L, Wang GD, Zhang YP. 2014. Balancing selection on CDH2 may be related to the behavioral features of the belgian malinois. PLoS One, 9(10): e110075. doi: 10.1371/journal.pone.0110075
    [12]
    Clark LA, Wahl JM, Rees CA, Murphy KE. 2006. Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proceedings of the National Academy of Sciences of the United States of America, 103(5): 1376−1381. doi: 10.1073/pnas.0506940103
    [13]
    Cruz F, Vilà C, Webster MT. 2008. The legacy of domestication: accumulation of deleterious mutations in the dog genome. Molecular Biology and Evolution, 25(11): 2331−2336. doi: 10.1093/molbev/msn177
    [14]
    De Risio L, Bhatti S, Muñana K, Penderis J, Stein V, Tipold A, Berendt M, Farqhuar R, Fischer A, Long S, Mandigers PJ, Matiasek K, Packer RM, Pakozdy A, Patterson N, Platt S, Podell M, Potschka H, Batlle MP, Rusbridge C, Volk HA. 2015. International veterinary epilepsy task force consensus proposal: diagnostic approach to epilepsy in dogs. BMC Veterinary Research, 11: 148. doi: 10.1186/s12917-015-0462-1
    [15]
    Dewey CW, Davies ES, Xie H, Wakshlag JJ. 2019. Canine cognitive dysfunction: pathophysiology, diagnosis, and treatment. Veterinary Clinics of North America-Small Animal Practice, 49(3): 477−499. doi: 10.1016/j.cvsm.2019.01.013
    [16]
    Ding ZL, Oskarsson M, Ardalan A, Angleby H, Dahlgren LG, Tepeli C, Kirkness E, Savolainen P, Zhang YP. 2012. Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA. Heredity, 108(5): 507−514. doi: 10.1038/hdy.2011.114
    [17]
    Dobney K, Larson G. 2006. Genetics and animal domestication: new windows on an elusive process. Journal of Zoology, 269(2): 261−271.
    [18]
    Dodman NH, Karlsson EK, Moon-Fanelli A, Galdzicka M, Perloski M, Shuster L, Lindblad-Toh K, Ginns EI. 2010. A canine chromosome 7 locus confers compulsive disorder susceptibility. Molecular Psychiatry, 15(1): 8−10. doi: 10.1038/mp.2009.111
    [19]
    Doebley J. 1989. Isozymic evidence and the evolution of crop plants. In: Soltis DE, Soltis PS, Dudley TR (eds). Isozymes in Plant Biology. Dordrecht: Springer.
    [20]
    Drogemuller C, Karlsson EK, Hytönen MK, Perloski M, Dolf G, Sainio K, Lohi H, Lindblad-Toh K, Leeb T. 2008. A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science, 321(5895): 1462−1462. doi: 10.1126/science.1162525
    [21]
    Dupre G, Heidenreich D. 2016. Brachycephalic Syndrome. Veterinary Clinics of North America-Small Animal Practice, 46(4): 691−707. doi: 10.1016/j.cvsm.2016.02.002
    [22]
    Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS. 1998. Investigation of the bottleneck leading to the domestication of maize. Proceedings of the National Academy of Sciences of the United States of America, 95(8): 4441−4446. doi: 10.1073/pnas.95.8.4441
    [23]
    Fan Z, Silva P, Gronau I, Wang S, Armero AS, Schweizer RM, Ramirez O, Pollinger J, Galaverni M, Ortega Del-Vecchyo D, Du L, Zhang W, Zhang Z, Xing J, Vila C, Marques-Bonet T, Godinho R, Yue B, Wayne RK. 2016. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Research, 26(2): 163−73. doi: 10.1101/gr.197517.115
    [24]
    Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M, Perri A, Linderholm A, Mattiangeli V, Teasdale MD, Dimopoulos EA, Tresset A, Duffraisse M, McCormick F, Bartosiewicz L, Gál E, Nyerges ÉA, Sablin MV, Brehard S, Mashkour M, Bălăşescu A, Gillet B, Hughes S, Chassaing O, Hitte C, Vigne JD, Dobney K, Hänni C, Bradley DG, Larson G. 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science, 352(6290): 1228−1231. doi: 10.1126/science.aaf3161
    [25]
    Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, Galaverni M, Fan Z, Marx P, Lorente-Galdos B, Beale H, Ramirez O, Hormozdiari F, Alkan C, Vilà C, Squire K, Geffen E, Kusak J, Boyko AR, Parker HG, Lee C, Tadigotla V, Wilton A, Siepel A, Bustamante CD, Harkins TT, Nelson SF, Ostrander EA, Marques-Bonet T, Wayne RK, Novembre J. 2014. Genome sequencing highlights the dynamic early history of dogs. PLoS Genetics, 10(1): e1004016. doi: 10.1371/journal.pgen.1004016
    [26]
    Freedman AH, Wayne RK. 2017. Deciphering the origin of dogs: From fossils to genomes. Annual Review of Animal Biosciences, 5: 281−307. doi: 10.1146/annurev-animal-022114-110937
    [27]
    Gou X, Wang Z, Li N, Qiu F, Xu Z, Yan DW, Yang SL, Jia J, Kong XY, Wei ZH, Lu SX, Lian LS, Wu CX, Wang XY, Li GZ, Ma T, Jiang Q, Zhao X, Yang JQ, Liu BH, Wei DK, Li H, Yang JF, Yan YL, Zhao GY, Dong XX, Li ML, Deng WD, Leng J, Wei CC, Wang C, Mao HM, Zhang H, Ding GH, Li YX. 2014. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Research, 24(8): 1308−1315. doi: 10.1101/gr.171876.113
    [28]
    Ito H, Nara H, Inoue-Murayama M, Shimada MK, Koshimura A, Ueda Y, Kitagawa H, Takeuchi Y, Mori Y, Murayama Y, Morita M, Iwasaki T, Ôta K, Tanabe Y, Ito S. 2004. Allele frequency distribution of the canine dopamine receptor D4 gene exon III and I in 23 breeds. Journal of Veterinary Medical Science, 66(7): 815−820. doi: 10.1292/jvms.66.815
    [29]
    Kariuki SM, Rockett K, Clark TG, Reyburn H, Agbenyega T, Taylor TE, Birbeck GL, Williams TN, Newton CRJC. 2013. The genetic risk of acute seizures in African children with falciparum malaria. Epilepsia, 54(6): 990−1001. doi: 10.1111/epi.12173
    [30]
    Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NH, Zody MC, Anderson N, Biagi TM, Patterson N, Pielberg GR, Kulbokas EJ, Comstock KE, Keller ET, Mesirov JP, von Euler H, Kampe O, Hedhammar A, Lander ES, Andersson G, Andersson L, Lindblad-Toh K. 2007. Efficient mapping of mendelian traits in dogs through genome-wide association. Nature Genetics, 39(11): 1321−1328. doi: 10.1038/ng.2007.10
    [31]
    Kukekova AV, Trut LN, Chase K, Kharlamova AV, Johnson JL, Temnykh SV, Oskina IN, Gulevich RG, Vladimirova AV, Klebanov S, Shepeleva DV, Shikhevich SG, Acland GM, Lark KG. 2011. Mapping loci for fox domestication: deconstruction/reconstruction of a behavioral phenotype. Behavior Genetics, 41(4): 593−606. doi: 10.1007/s10519-010-9418-1
    [32]
    Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillén S, Vilà C. 2002. Ancient DNA evidence for Old World origin of New World dogs. Science, 298(5598): 1613−1616. doi: 10.1126/science.1076980
    [33]
    Li Y, von Holdt BM, Reynolds A, Boyko AR, Wayne RK, Wu DD, Zhang YP. 2013. Artificial selection on brain-expressed genes during the domestication of dog. Molecular Biology and Evolution, 30(8): 1867−1876. doi: 10.1093/molbev/mst088
    [34]
    Li Y, Wang GD, Wang MS, Irwin DM, Wu DD, Zhang YP. 2014a. Domestication of the dog from the wolf was promoted by enhanced excitatory synaptic plasticity: A hypothesis. Genome Biology and Evolution, 6(11): 3115−3121. doi: 10.1093/gbe/evu245
    [35]
    Li Y, Wu DD, Boyko AR, Wang GD, Wu SF, Irwin DM, Zhang YP. 2014b. Population variation revealed high-altitude adaptation of Tibetan mastiffs. Molecular Biology and Evolution, 31(5): 1200−1205. doi: 10.1093/molbev/msu070
    [36]
    Lindberg J, Björnerfeldt S, Saetre P, Svartberg K, Seehuus B, Bakken M, Vilà C, Jazin E. 2005. Selection for tameness has changed brain gene expression in silver foxes. Current Biology, 15(22): R915−R916. doi: 10.1016/j.cub.2005.11.009
    [37]
    Liu YH, Wang L, Xu T, Guo XM, Li Y, Yin TT, Yang HC, Hu Y, Adeola AC, Sanke OJ, Otecko NO, Wang M, Ma YP, Charles OS, Sinding MHS, Gopalakrishnan S, Samaniego JA, Hansen AJ, Fernandes C, Gaubert P, Budd J, Dawuda PM, Rueness EK, Jiang LB, Zhai WW, Gilbert MTP, Peng MS, Qi XP, Wang GD, Zhang YP. 2018. Whole-genome sequencing of African dogs provides insights into adaptations against tropical parasites. Molecular Biology and Evolution, 35(2): 287−298. doi: 10.1093/molbev/msx258
    [38]
    Marchant TW, Johnson EJ, McTeir L, Johnson CI, Gow A, Liuti T, Kuehn D, Svenson K, Bermingham ML, Drögemüller M, Nussbaumer M, Davey MG, Argyle DJ, Powell RM, Guilherme S, Lang J, Ter Haar G, Leeb T, Schwarz T, Mellanby RJ, Clements DN, Schoenebeck JJ. 2017. Canine brachycephaly is associated with a retrotransposon-mediated missplicing of SMOC2. Current Biology, 27(11): 1573−1584. doi: 10.1016/j.cub.2017.04.057
    [39]
    Miao B, Wang Z, Li Y. 2017. Genomic analysis reveals hypoxia adaptation in the Tibetan mastiff by introgression of the gray wolf from the Tibetan Plateau. Molecular Biology and Evolution, 34(3): 734−743.
    [40]
    Moon-Fanelli AA, Dodman NH. 1998. Description and development of compulsive tail chasing in terriers and response to clomipramine treatment. Journal of the American Veterinary Medical Association, 212(8): 1252−1257.
    [41]
    Moya PR, Dodman NH, Timpano KR, Rubenstein LM, Rana Z, Fried RL, Reichardt LF, Heiman GA, Tischfield JA, King RA, Galdzicka M, Ginns EI, Wendland JR. 2013. Rare missense neuronal cadherin gene (CDH2) variants in specific obsessive-compulsive disorder and Tourette disorder phenotypes. European Journal of Human Genetics, 21(8): 850−854. doi: 10.1038/ejhg.2012.245
    [42]
    Ni Leathlobhair M, Perri AR, Irving-Pease EK, Witt KE, Linderholm A, Haile J, Lebrasseur O, Ameen C, Blick J, Boyko AR, Brace S, Cortes YN, Crockford SJ, Devault A, Dimopoulos EA, Eldridge M, Enk J, Gopalakrishnan S, Gori K, Grimes V, Guiry E, Hansen AJ, Hulme-Beaman A, Johnson J, Kitchen A, Kasparov AK, Kwon YM, Nikolskiy PA, Lope CP, Manin A, Martin T, Meyer M, Myers KN, Omura M, Rouillard JM, Pavlova EY, Sciulli P, Sinding MS, Strakova A, Ivanova VV, Widga C, Willerslev E, Pitulko VV, Barnes I, Gilbert MTP, Dobney KM, Malhi RS, Murchison EP, Larson G, Frantz LAF. 2018. The evolutionary history of dogs in the Americas. Science, 361(6397): 81−85. doi: 10.1126/science.aao4776
    [43]
    Ollivier M, Tresset A, Frantz LAF, Bréhard S, Bălăşescu A, Mashkour M, Boroneant A, Pionnier-Capitan M, Lebrasseur O, Arbogast RM, Bartosiewicz L, Debue K, Rabinovich R, Sablin MV, Larson G, Hänni C, Hitte C, Vigne JD. 2018. Dogs accompanied humans during the Neolithic expansion into Europe. Biology Letters, 14(10).
    [44]
    Ostrander EA, Wayne RK, Freedman AH, Davis BW. 2017. Demographic history, selection and functional diversity of the canine genome. Nature Reviews Genetics, 18(12): 705−720. doi: 10.1038/nrg.2017.67
    [45]
    Pang JF, Kluetsch C, Zou XJ, Zhang AB, Luo LY, Angleby H, Ardalan A, Ekström C, Sköllermo A, Lundeberg J, Matsumura S, Leitner T, Zhang YP, Savolainen P. 2009. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16, 300 years Ago, from numerous wolves. Molecular Biology and Evolution, 26(12): 2849−2864. doi: 10.1093/molbev/msp195
    [46]
    Parker HG, VonHoldt BM, Quignon P, Margulies EH, Shao S, Mosher DS, Spady TC, Elkahloun A, Cargill M, Jones PG, Maslen CL, Acland GM, Sutter NB, Kuroki K, Bustamante CD, Wayne RK, Ostrander EA. 2009. An expressed Fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science, 325(5943): 995−998. doi: 10.1126/science.1173275
    [47]
    Plassais J, Rimbault M, Williams FJ, Davis BW, Schoenebeck JJ, Ostrander EA. 2017. Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness. PLoS Genetics, 13(3): e1006661. doi: 10.1371/journal.pgen.1006661
    [48]
    Rimbault M, Beale HC, Schoenebeck JJ, Hoopes BC, Allen JJ, Kilroy-Glynn P, Wayne RK, Sutter NB, Ostrander EA. 2013. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Research, 23(12): 1985−1995. doi: 10.1101/gr.157339.113
    [49]
    Saetre P, Lindberg J, Leonard JA, Olsson K, Pettersson U, Ellegren H, Bergström TF, Vila C, Jazin E. 2004. From wild wolf to domestic dog: gene expression changes in the brain. Molecular Brain Research, 126(2): 198−206. doi: 10.1016/j.molbrainres.2004.05.003
    [50]
    Saetre P, Strandberg E, Sundgren PE, Pettersson U, Jazin E, Bergström TF. 2006. The genetic contribution to canine personality. Genes Brain and Behavior, 5(3): 240−248. doi: 10.1111/j.1601-183X.2005.00155.x
    [51]
    Savolainen P, Leitner T, Wilton AN, Matisoo-Smith E, Lundeberg J. 2004. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 101(33): 12387−12390. doi: 10.1073/pnas.0401814101
    [52]
    Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T. 2002. Genetic evidence for an East Asian origin of domestic dogs. Science, 298(5598): 1610−1613. doi: 10.1126/science.1073906
    [53]
    Schmutz SM, Berryere TG. 2007. Genes affecting coat colour and pattern in domestic dogs: a review. Animal Genetics, 38(6): 539−549. doi: 10.1111/j.1365-2052.2007.01664.x
    [54]
    Schmutz SM, Berryere TG, Goldfinch AD. 2002. TYRP1 and MC1R genotypes and their effects on coat color in dogs. Mammalian Genome, 13(7): 380−387. doi: 10.1007/s00335-001-2147-2
    [55]
    Schoenebeck JJ, Hutchinson SA, Byers A, Beale HC, Carrington B, Faden DL, Rimbault M, Decker B, Kidd JM, Sood R, Boyko AR, Fondon JW, 3 rd, Wayne RK, Bustamante CD, Ciruna B, Ostrander EA. 2012. Variation of BMP3 contributes to dog breed skull diversity. PLoS Genetics, 8(8): e1002849. doi: 10.1371/journal.pgen.1002849
    [56]
    Shearin AL, Ostrander EA. 2010a. Canine morphology: hunting for genes and tracking mutations. PLoS Biology, 8(3): e1000310. doi: 10.1371/journal.pbio.1000310
    [57]
    Shearin AL, Ostrander EA. 2010b. Leading the way: canine models of genomics and disease. Disease Models and Mechanisms, 3(1−2): 27−34. doi: 10.1242/dmm.004358
    [58]
    Spady TC, Ostrander EA. 2007. Canid genomics: mapping genes for behavior in the silver fox. Genome Research, 17(3): 259−263. doi: 10.1101/gr.6055807
    [59]
    Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao KY, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA. 2007. A single IGF1 allele is a major determinant of small size in dogs. Science, 316(5821): 112−115. doi: 10.1126/science.1137045
    [60]
    Tang B, Zhou Q, Dong L, Li W, Zhang X, Lan L, Zhai S, Xiao J, Zhang Z, Bao Y, Zhang YP, Wang GD, Zhao W. 2019. iDog: an integrated resource for domestic dogs and wild canids. Nucleic Acids Research, 47(D1): D793−D800. doi: 10.1093/nar/gky1041
    [61]
    Tang R, Noh HJ, Wang D, Sigurdsson S, Swofford R, Perloski M, Duxbury M, Patterson EE, Albright J, Castelhano M, Auton A, Boyko AR, Feng G, Lindblad-Toh K, Karlsson EK. 2014. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biology, 15(3): R25. doi: 10.1186/gb-2014-15-3-r25
    [62]
    Thawornwattana Y, Dalquen D, Yang Z. 2018. Coalescent analysis of phylogenomic data confidently resolves the species relationships in the anopheles gambiae species complex. Molecular Biology and Evolution, 35(10): 2512−2527. doi: 10.1093/molbev/msy158
    [63]
    Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK. 1997. Multiple and ancient origins of the domestic dog. Science, 276(5319): 1687−1689. doi: 10.1126/science.276.5319.1687
    [64]
    Vonholdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, Degenhardt JD, Boyko AR, Earl DA, Auton A, Reynolds A, Bryc K, Brisbin A, Knowles JC, Mosher DS, Spady TC, Elkahloun A, Geffen E, Pilot M, Jedrzejewski W, Greco C, Randi E, Bannasch D, Wilton A, Shearman J, Musiani M, Cargill M, Jones PG, Qian Z, Huang W, Ding ZL, Zhang YP, Bustamante CD, Ostrander EA, Novembre J, Wayne RK. 2010. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature, 464(7290): 898−902. doi: 10.1038/nature08837
    [65]
    Wang GD, Fan RX, Zhai W, Liu F, Wang L, Zhong L, Wu H, Yang HC, Wu SF, Zhu CL, Li Y, Gao Y, Ge RL, Wu CI, Zhang YP. 2014. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the tibetan plateau. Genome Biology and Evolution, 6(8): 2122−2128. doi: 10.1093/gbe/evu162
    [66]
    Wang GD, Zhai W, Yang HC, Wang L, Zhong L, Liu YH, Fan RX, Yin TT, Zhu CL, Poyarkov AD, Irwin DM, Hytönen MK, Lohi H, Wu CI, Savolainen P, Zhang YP. 2016. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Research, 26(1): 21−33. doi: 10.1038/cr.2015.147
    [67]
    Wang GD, Zhai WW, Yang HC, Fan RX, Cao X, Zhong L, Wang L, Liu F, Wu H, Cheng LG, Poyarkov AD, Poyarkov NA, Tang SS, Zhao WM, Gao Y, Lv XM, Irwin DM, Savolainen P, Wu CI, Zhang YP. 2013. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nature Communications, 4: 1860.
    [68]
    Webb AA, Cullen CL. 2010. Coat color and coat color pattern-related neurologic and neuro-ophthalmic diseases. Canadian Veterinary Journal, 51(6): 653−657.
    [69]
    Woods KA, Camacho-Hübner C, Barter D, Clark AJ, Savage MO. 1997. Insulin-like growth factor I gene deletion causing intrauterine growth retardation and severe short stature. Acta Paediatrica Supplement, 86(S423): 39−45. doi: 10.1111/j.1651-2227.1997.tb18367.x
    [70]
    Woods KA, Camacho-Hübner C, Savage MO, Clark AJ. 1996. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. New England Journal of Medicine, 335(18): 1363−1367. doi: 10.1056/NEJM199610313351805
    [71]
    Wu DD, Ding XD, Wang S, Wójcik JM, Zhang Y, Tokarska M, Li Y, Wang MS, Faruque O, Nielsen R, Zhang Q, Zhang YP. 2018. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nature Ecology & Evolution, 2(7): 1139−1145.
    [72]
    Wu H, Liu YH, Wang GD, Yang CT, Otecko NO, Liu F, Wu SF, Wang L, Yu L, Zhang YP. 2016. Identifying molecular signatures of hypoxia adaptation from sex chromosomes: A case for Tibetan Mastiff based on analyses of X chromosome. Scientific Reports, 6: 35004. doi: 10.1038/srep35004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5832) PDF downloads(581) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return